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Course Background 

This is the sixth offering of a graphics hardware-based shading course at 
SIGGRAPH, and the field has changed and matured enormously in that 
time span. The first course, "Procedural Shading on Graphics Hardware" 
in 2000 focused on a handful of research projects that had emerged 
showing procedural shading actually could be accomplished on graphics 
hardware (if you tried really, really hard). The focus was on how you could 
possibly get those inflexible graphics machines to do something as 
flexible as procedural shading. 

Since that early beginning, real-time procedural shading hardware and 
software has blossomed. This year's course focuses much more on 
current shading and rendering approaches on the GPU, both real-time 
and non-real-time. 

The remainder of this chapter provides some basic shading 
background. If you are a long-time shading user, skip ahead. If you're 
just getting started and wonder what all this shading stuff is about, read 
on. 

Shading Background 

Procedural shading is a proven rendering technique in which a short 
user-written procedure, called a shader, determines the shading and 
color variations across each surface. This gives great flexibility and 
control over the surface appearance. 

The widest use of procedural shading is for production animation, 
where has been effectively used for years in commercials and feature 
films. These animations are rendered in software, taking from seconds to 
hours per frame. The resulting frames are typically replayed at 24-30 
frames per second. 

One important factor in procedural shading is the use of a shading 
language. A shading language is a high-level special-purpose language 
for writing shaders. The shading language provides a simple interface for 
the user to write new shaders. Pixar's RenderMan shading language 
[Upstill90] is the most popular, and several off-line renderers use it. A 
shader written in the RenderMan shading language can be used with any 
of these renderers. 

Meanwhile, polygon-per-second performance has been the major focus 
for most interactive graphics hardware development. Only in the last few 
years has attention been given to surface shading quality for interactive 
graphics. Recently, great progress has been made on two fronts toward 
achieving real-time procedural shading. This course will cover progress 
on both. First, graphics hardware is capable of performing more of the 
computations necessary for shading. Second, new languages and 



 

machine abstractions have been developed that are better adapted for 
real-time use. 

To support general procedural shading, a system must support the 
following: 

1. Texture or table lookup 

2. Arithmetic operations sufficient to implement all functions in a 
standard math library 

3. Types with sufficient range and precision for shading computations 
(preferably floating point) 

4. Flow control (at least looping, preferably also branching and 
function calls) 

The first has been common at the fragment level for a couple of decades, 
but is only just appearing at the vertex level. Graphics hardware has had 
the second (in the guise of texture lookups and flexible blending) for a 
while, but only in the past 4-5 years has the interface to it been refined 
to treat them as generic arithmetic operations. The third has only really 
been available for the past couple of years. The last has been possible for 
years through multi-pass rendering with the application able to decide 
how many passes is sufficient for the required loop iterations, but has 
only become possible in fragment shading in the most recent hardware. 
The recent introduction of NVIDIA gelato™ to accelerate production film 
rendering provides a concrete demonstration that we are finally reaching 
the point where graphics shading hardware has the same basic 
capabilities as CPU-based shading. 

Interactive graphics machines themselves are complex systems with 
relatively limited lifetimes. The RenderMan shading language insulates 
the shading writer from the implementation details of the off-line 
renderer. A RenderMan shader writer does not know or care if the 
renderer uses the REYES algorithm, ray tracing, radiosity, or some other 
rendering algorithm. In the same way, a real-time shading system 
presents a simplified view of the interactive graphics hardware. This is 
done in two ways. First, we create an abstract model of the hardware. 
This abstract model gives the user a consistent high-level view of the 
graphics process that can be mapped onto the machine. Second, a 
special-purpose language allows a high-level description of each 
procedure. Given current hardware limitations, languages for real-time 
shading differ quite a bit from the one presented by RenderMan. Through 
these two, we can achieve device-independence, so procedures written 
for one graphics machine have the potential to work on other machines 
or other generations of the same machine. 

In the first incarnation of this course at SIGGRAPH 2000, there were as 
many single-platform shading languages as there were presenters. Each 



 

with the same spirit, but incompatible in syntax. Now we have a selection 
of cross-platform languages. Where the choice of language used to be 
based on which hardware you were using, now it is based more on which 
graphics API and language syntax you prefer. 

Procedural Techniques 

Procedural techniques have been used in all facets of computer graphics, 
but most commonly for surface shading. As mentioned above, the job of 
a surface shading procedure is to choose a color for each pixel on a 
surface, incorporating any variations in color of the surface itself and the 
effects of lights that shine on the surface. A simple example may help 
clarify this. 

We will show a shader that might be used for a brick wall (Figure 1.1). 
The wall is to be described as a single polygon with texture coordinates. 
These texture coordinates are not going to be used for image texturing: 
they are just a pair of numbers that parameterize the position on the 
surface. 

The shader requires several additional parameters to describe the size, 

 

Figure 1.1. Size and shape parameters for brick shader 

// find row of bricks for this pixel (row is 8-bit integer) 
fixed<8,0> row = tt/height; 
 
// offset even rows by half a row  
if (row % 2 == 0) ss += width/2; 
 
// wrap texture coordinates to get "brick coordinates"  
ss = ss % width; tt = tt % height; 
 
// pick a color for this pixel, brick or mortar  
float surface_color[3] = brick_color;  
if (ss < mortar || tt < mortar) 

surface_color = mortar_color;  

Figure 1.2. Portion of code for a simple brick shader 



 

shape and color of the brick. These are the width and height of the brick, 
the width of the mortar between bricks, and the colors for the mortar and 
brick (see Figure 1.1). These parameters are used to fold the texture 
coordinates into brick coordinates for each brick. These are (0,0) at one 
corner of each brick, and can be used to easily tell whether to use brick 
or mortar color. A portion of the brick shader is shown in Figure 1.2 (this 
shader happens to be written in the pfman language, the first real-time 
shading language). In this figure, ss and tt are local variables used to 
construct the brick coordinates. The simple bricks that result are shown 
in Figure 1.3a. 

One of the real advantages of procedural shading is the ease with which 
shaders can be altered to produce the desired results. Figure 1.3 shows a 
series of changes from the simple brick shader to a much more realistic 
brick. Several of these changes demonstrate one of the most common 
features of procedural shaders: controlled randomness. With controlled 
use of random elements in the procedure, this same shader can be used 
for large or small walls without any two bricks looking the same. In 
contrast, an image texture would have to be re-rendered, re-scanned, or 
re-painted to handle a larger wall than originally intended. 

Procedural shading can also be used to create shaders that change with 
time or distance. Figure 1.4a and b are frames from a rippling mirror 
animated shader. Figure 1.4c shows a yellow brick road where high-
frequency elements fade out with distance. Figure 1.4d and e show a 

 

Figure 1.3. Evolution of a brick shader. a) simple version. b) with 
indented mortar computed bump map. c) with added graininess. 
d) with variations in color from brick to brick. e) with color 
variations within each brick 

 

Figure 1.4. Examples of shaders. a+b) two frames of rippling mirror. 
c) yellow brick road. d+e) wood volume shader. 



 

wood shader that uses surface position instead of texture coordinates. 
Figure 1.4d is also lit by a procedural light, simulating light shining 
through a paned window. 

Shading for Interactive Rendering 

The shaders shown above were written for interactive rendering on the 
PixelFlow graphics system [Olano and Lastra 1998]. This system had 
somewhat different performance characteristics than current shading 
hardware. Specifically, texture lookups on PixelFlow had a high latency 
(the time between when you started the lookup and when you absolutely 
had to know the result). This was reasonable if only a few textures were 
used in each shader, but made it generally preferable to do shading 
computations as explicit computations rather than many texture lookups. 
Even without that performance difference, shaders written for offline use 
(large RenderMan shaders for example), tend to include a fairly high ratio 
of computation to texture lookups. While textures may still play a large 
part in computing the shaded appearance, a computation-based shader 
is much more flexible than one that is more strongly texture-based. That 
flexibility translates into shaders that are useful in more situations 
without needing to be rewritten, and fewer design cycles trying to get the 
shader appearance just right. In contrast to both of these, today's 
shading hardware (at least the fragment shading hardware responsible 
for per-pixel computation) encourages the use of textures, including 
storing partial computations into textures, over raw computation alone. 
This has had a great impact on the way we write shaders for real-time 
use, and has created a whole area of graphics research on how to cast 
different problems into a form requiring only combinations of functions 
of two variables that can easily be stored in a texture. 

What's to Come 

These notes are divided into a series of eleven chapters, each 
corresponding to one of the presentations during the course. Some 
chapters are longer, and others are only a couple of pages. The notes are 
roughly divided into four parts: 

1. Shading Technology in chapters 1-3 

2. Shading Languages in chapters 4-7 

3. GPU Rendering in chapters 8 and 9 

4. Shading Systems in chapters 10 and 11 
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