
15 - 1

Shader Model 3.0 - No Limits
Updated: April 5, 2004
By D. Sim Dietrich Jr., Nvidia

Microsoft® DirectX® 9.0 introduced several new standards for advanced vertex and pixel shader

technology, version 2.0 and version 3.0. Shader Model 2.0 hardware has been available for over a year,

and both hardware and software support is growing rapidly. Shader Model 2.0 includes technologies

useful for advanced lighting and animation techniques, but has limited shader program length, and

complexity, which limits the fidelity of the effects that can be achieved.

As developers push against the limits inherent in Pixel Shader 2.0 and Vertex Shader 2.0, they have

started to adopt the newer, more advanced Shader Model 3.0. This shader model has advances in

several areas, in both pixel and vertex shader processing.

The following is a feature summary outlining the key differentiators between Pixel Shader 2.0 and 3.0.

Pixel Shader
Feature

Shader
2.0

Shader 3.0 Description

Shader
length

96 65535+ Allows more complex shading, lighting, and
procedural materials

Dynamic
branching

No Yes Saves performance by skipping complex
shading on irrelevant pixels

Shader anti-
aliasing

Not
supported

Built-in
derivative
instructions

Developers can calculate the screen space
derivatives of any function, allowing them to
adjust shading frequencies or over-sampling
to eliminate artifacts

Back-face
register

No Yes Allows two-sided lighting in a single pass

Interpolated
color format

8-bit
integer
minimum

32-bit
floating point
minimum

Higher range and precision color allows high-
dynamic range lighting at the vertex level

Multiple
render
targets

Optional 4 required Allows advanced lighting algorithms to save
filtering and vertex work – thus more lights
for minimal cost

Fog and
specular

8-bit fixed
function
minimum

Custom
fp16-fp32
shader
program

Shader Model 3.0 gives developers full and
precise control over specular and fog
computations, previously fixed-function

Texture
coordinate
count

8 10 More per-pixel inputs allows more realistic
rendering, especially for skin

15 - 2

Here is a similar listing of key features developers enjoy when moving from Vertex Shader Model 2.0 to

3.0.

Vertex
shader
feature

Shader 2.0 Shader 3.0 Description

Shader
length

256
Instructions

65535
instructions

More instructions allow more detailed
character lighting and animation

Dynamic
branching

No Yes Saves performance by skipping animation and
calculations on irrelevant vertices

Vertex
texture

No Any number of
lookups from up
to 4 textures

Allows displacement mapping, particle effects

Instancing
support

No Required Allows many varied objects to be drawn with
only a single command

One major feature of both Shader 3.0 models (vertex and pixel) is Dynamic Branching. Put simply, this

allows a shader author to create true loops and conditionals in their shader programs. For instance, one

could write a shader that looped through a certain number of vertex lights, determine which ones might

influence a particular vertex, and then pass down the index of each relevant light to the pixel shader.

The pixel shader could then use this ‘light index’ to determine which light parameters to apply. The

pixel shader would then loop over the active lights, then use dynamic branching to exit the shader early

once all lights are processed.

Most light types only apply to the front side of an object—the side facing the light. Therefore, you can

use both vertex and pixel branching to skip processing for lights that the shader detects as facing away

from the light. This can save significant processing time, and speed up the shader. Similar speedups

can be used to skip processing of character bone animation as well as many similar algorithms.

As game engines become more and more complex, they often create many different versions of each

shader in order to fit them all in to the Pixel Shader 2.0 program length limitations. This can add to

code maintenance, as well as take up valuable system memory at runtime. Shader Model 3.0

eliminates this issue, through its comprehensive looping and branching, allowing the engine to write a

single vertex and single pixel shader containing appropriate static and dynamic branching in order to

select the correct execution path at runtime, thus greatly simplifying the shader combinatorial explosion

issue.

Another key feature of Shader Model 3.0 is the support for the Microsoft DirectX® Instancing API.

Currently, games face limits on the number of unique objects they can display in the scene, not because

of graphics horsepower, but often the CPU-side overhead of either storing or submitting many slightly

different variations of the same object. For instance, a forest is made up of trees that are often similar

to each other, but each would be in a different position, have differing height, branch length, leaf color,

and so on. In order to add the desired variation, developers have to choose between storing many

15 - 3

separate copies of the tree, each slightly different, or making expensive render state changes in order

to rotate, scale, color and place each tree.

Instancing allows the programmer to store a single tree, and then several other vertex data streams to

specify the per-instance color, height, branch size and so on. For instance, a single 1000-vertex tree

model would contain the vertex positions and normals, and a 200-element vertex streams would

contain positions, colors, heights, and branch length values. Instancing allows the programmer to

submit a single draw call, which renders each of the 200 trees, using the same data for the basic tree

shape, but then vary it through the per-instance streams.

In summary, DirectX 9.0 Shader Model 3.0 is a significant step forward in terms of ease of use,

performance, and shader complexity. Dynamic branching brings speed-ups to many algorithms which

contain early-out opportunities, while also simplifying shader code paths in graphics engines and tools.

Lastly, instancing allows extreme complexity for very low CPU and memory overhead.

15 - 4

