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New Wildcat Realizm Graphics Technology 
Bigger Bandwidth, Greater Programmability, Higher Precision  
Achieving New Levels of Performance, Scalability, and Visual Fidelity! 

Introduction 
This whitepaper introduces the unique technology underlying the next-generation Wildcat® 

Realizm™ graphics subsystems from 3Dlabs. Addressing high and ultra-high-end 3D graphics 
requirements for both AGP 8x and PCI Express-based environments, Wildcat Realizm technology 
establishes previously unimaginable performance and visual fidelity standards for professional 
visual computing applications.  

 
Graphics technology is currently undergoing a process of extreme architectural churn. A 

common scenario circa 2000 was the use of fixed-function devices called Graphics Processing 
Units (GPUs). Engineered for extreme speed, GPUs feature highly parallel pipelines that exploit 
the natural parallelism inherent in vertex processing and pixel processing algorithms. However, 
their hardware-centric implementations largely dictate that these algorithms are frozen in silicon. 
This limits the algorithmic complexity that can be supported and prevents these devices from 
being easily adapted to accommodate evolving standards. 

 
The latest developments in graphics processing engines are Vertex/Scalability Units (VSUs) 

and Visual Processing Units (VPUs). These revolutionary devices combine massive parallelism 
with programmable hardware architectures and a compiler-centric approach. In addition to their 
extreme graphics processing capability, their programmable architectures mean that VSUs and 
VPUs can support never-before-seen visual effects. 

 
In addition to supporting the state-of-the-art in resolutions, fill rates, and SuperScene 

antialiasing (with 4, 8, or 16 samples), Wildcat Realizm technology also raises the level of realism 
with features such as a programmable pipeline that is fully floating-point throughout.  

 
Wildcat Realizm technology also offers some unique features. These include the use of a 

Hierarchical Z-buffer depth culling and the direct display of 16-bit floating-point values, both of 
which provide substantial algorithmic efficiencies and corresponding increases in processing 
speeds and capabilities. When coupled with this level of performance, the programmable nature 
of Wildcat Realizm technology allows application developers to fully unleash their creativity. Since 
this technology is the first to be based on a 3D graphics pipeline that exhibits true floating point 
from the input vertices to the final displayed pixels means end users now have access to new 
levels of image quality and realism. 

Shading Languages 
To discuss Shading Languages in the appropriate context, one must understand how the 3D 

graphics pipeline works. A 3D graphics application running on the host platform communicates 
with the graphics subsystem via a bus interface (the two interfaces of interest for the purposes of 
this paper are AGP 8x and PCI Express). 

 
The application views each object in its 3D world as being composed of a collection of polygons 

(usually triangles). The application passes data such as the XYZ (location) and color information 
associated with the vertices (corners) for each polygon to the graphics subsystem (Figure 1).   
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Figure 1. A highly simplified view of the 3D graphics pipeline 

 
This vertex data is operated by a suite of Transformation and Lighting (T&L) algorithms that 

perform tasks such as transforming 3D world coordinates into corresponding 2D display 
coordinates and determining the lighting conditions at each vertex. In today’s terminology, this 
unit is referred to as a Vertex Shader. The resulting data is passed via a rasterization engine into 
a Fragment Shader, which calculates values such as the red, green, blue, and alpha color 
components associated with each fragment (pixel). Following any final blend operations, the data 
is ultimately handed over to a display device. 

 
There are a number of well-known graphics Application Programming Interfaces (APIs) that 

application developers might choose to use. In the case of home entertainment programs such as 
computer games, many developers choose to work with the DirectX® API from Microsoft®. By 
comparison, when it comes to high-end visual 
computing applications such as Computer-Aided 
Design (CAD), Digital Content Creation (DCC), 
engineering, medical imaging, and visual simulation 
applications, developers typically opt for the 
industry-standard open platform API, OpenGL®.  

 
Both DirectX and OpenGL employ underlying 

3D graphics pipelines architecture as illustrated in 
Figure 1. Over time, the level of sophistication 
associated with shading algorithms has increased 
to meet ever-increasing demands for more realism. 
For example, very simple “flat” shading was 
replaced by the slightly more sophisticated 
Gouraud shading algorithm. This was subsequently 
augmented by bilinear and later trilinear MIP-
mapped textures. Similarly, only a limited selection 
of simple models for ambient, directional, and 
positional light sources were commonly available 
via these APIs. In addition to being relatively 
simplistic, these shading algorithms and lighting elements were well defined and widely accepted, 
which made them amenable to being implemented using fixed-function GPUs. 

 
Problems started to arise when users wished to make use of more realistic light sources 

such as a square light panel combined with more sophisticated shading algorithms such as 
Phong Shading and more realistic illumination effects employing techniques such as Torrance 
Cook micro-facet and BRDF-based lighting models. As these elements had not been hard wired 
into the GPUs, the only way to implement them was in software running on the host system’s 
general-purpose microprocessor. Tapping into the host system to perform rendering functions 
was horrendously slow, and was only used for final production rendering. The fact that rendering 
each frame might take minutes, or even hours, was considered acceptable by most users as the 
price one had to pay in order to achieve a professional level of visual fidelity. 

 

What is a Shader? 
A shader is source code written in a 
graphics specific programming 
language that runs programmable 
graphics hardware. 
 
Shaders are used to define the 
processing that occurs on each vertex, 
and pixel/fragment that is provided for 
display. 
 
By using a shader you can implement 
your own specialized surface color, 
texture, and material properties; light 
source positions and emission 
characteristics; and transmission 
properties of fog and many other visual 
effects. 
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After a number of false starts, such as the use of hardware-centric techniques based on multi-
register combiners, it became obvious that the real solution was to move away from a 3D graphics 
pipeline based on fixed-function GPUs. Instead, the pipeline should be programmable, thereby 
allowing application developers to create new vertex, fragment, and pixel shaders as required 
(Figure 2). 
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Figure 2. Augmenting the 3D graphics pipeline with programmable shaders 
 
Depending on the actual implementation, having programmable vertex, fragment, and pixel 

shaders can unleash the creativity of application developers. These developers now have a 
mechanism to implement algorithms that are magnitudes faster and more sophisticated than the 
combination of Gouraud Shading with simple texture mapping, and that can provide real-time 
preview rendering that is much closer to production-level quality. Furthermore, developers are no 
longer limited to aiming only at photorealism. It is now possible to implement novel T&L algorithms 
and to realize watercolor, oil painting, or pen-and-ink renderings. 

  
When it comes to creating custom shaders, two main approaches allow these shaders to be 

captured in a high-level, augmented C-like language. As shown in Figure 3a, the layered 
approach employed by DirectX involves creating a shader in what is known as High-Level 
Shading Language (HLSL).  
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Figure 3. High-level comparison of different techniques for implementing shading 
languages  

This HLSL shader is then run through a translator to generate equivalent DirectX assembly 
language source code. In turn, the DirectX assembler processes this assembly code to generate 
corresponding machine code, which is subsequently loaded into the graphics hardware by the 
DirectX driver. Thus, an HLSL shader is simply an additional layer that conceptually resides 
above an existing API. Although such shaders certainly facilitate relatively easy programming, 
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Widely respected for its industry 
leadership, 3Dlabs pioneered the 
development of the recently ratified 
OpenGL Shading Language. 
  
As another industry first, 3Dlabs has 
also released an open source version of 
the OpenGL Shading Language 
compiler front-end to stimulate creativity 
in the market. 
 
In fact, the Director of Developer 
Relations for 3Dlabs’ Fort Collins, CO, 
graphics software team, Randi Rost, is 
the author of OpenGL Shading 
Language book, published by Addison 
Wesley, ISBN: 0-321-19789-5. 
 

they do not actually provide any increase in fundamental processing power or programming 
flexibility. Also, the fact that these shaders are translated into assembly code outside of DirectX 
makes for a somewhat time consuming and unwieldy implementation path. 

 
By comparison, the technique adopted by OpenGL is to embed the compiler for the OpenGL 

Shader Language inside the OpenGL Driver itself (Figure 3b). This approach provides application 
developers with C-like programming capabilities for implementing shaders directly into the 
graphics subsystem. Of course, unlike an HLSL shader that will only work on PCs, an OpenGL 
shader will work on all systems that support OpenGL and the OpenGL Shading Language, 
including Windows® and Linux® OS environments. 

AGP 8x versus PCI Express-based Bus Interfaces 
Previous graphics subsystems running on the PCI bus interface, could accommodate a peak 

data transfer rate of only 133 MB/s at 33 MHz and over a 32-bit (4-byte) bus. This quickly became 
unacceptable for any kind of serious graphics-intensive application, so the Advanced Graphics 
Port (AGP) standard was developed. 

 
The first incarnation of AGP was a 32-bit bus running at 66 MHz, thereby providing a peak 

data transfer rate of 266 MB/s. This initial release was subsequently upgraded to AGP 2x, which 
used a double-clocking technique to provide 533 MB/s. A later incarnation, AGP 4x, used a quad-
clocked data transfer technology to achieve a peak bandwidth of a little over 1 GB/s; and the 
current interface, AGP 8x, octal-pumps data to realize slightly more than 2 GB/s. At the time of 
this writing, it is generally accepted that the AGP technology has reached its peak and there are 
no plans to go beyond the current AGP 8x implementation. 

 
This poses a problem for today’s high and ultra-high-end graphics subsystems, because they 

require significantly more bandwidth in order to handle the huge amounts of data associated with 
professional graphics applications. The solution is a serial data communications technology called 
PCI Express. A single PCI Express lane employs two differential pairs to provide a point-to-point 
connection between two devices: one to transmit 
and the other to receive data (Figure 4). 
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Figure 4. A single PCI Express lane 
 
Depending on their requirements, some devices will be able to make do with a single lane. One 

lane can support up to 250 MB/s of real data communications in both directions simultaneously, 
which equates to a total bandwidth of 500 MB/s. (By comparison, an AGP interface can pass data 
in only one direction at any particular time.) Some devices may require two or four PCI Express 
lanes to provide additional bandwidth, while today’s high-end graphics subsystems employ 16 
lanes. Known as 16x PCI Express, such an implementation provides a data bandwidth of 4 GB/s in 
both directions simultaneously, which equates to a total bandwidth of 8 GB/s. 
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There are several reasons why graphics subsystems may wish to pass data back to the host 

system. As a simple example, consider the case where the graphics subsystem is being used to 
merge a real-world video signal with computer-generated imagery (CGI) for a DCC application. In 
this case, in addition to presenting the results on a display device, it may be required to bring 
those results back to the host system to be stored for future processing. 

 
Unfortunately, some vendors of graphics subsystems are jumping on the PCI Express 

bandwagon by using a front-ending technique with an existing AGP 8x device and bridging chip 
(Figure 5). 
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Figure 5. Using a PCI Express bridging chip does not  
increase the performance of an AGP 8x-based GPU 

 
This can lead to specmanship at its worst, because it allows these vendors to claim that their 

subsystems have the capability of communicating with the host system at the PCI Express 
bandwidth of 4 GB/s in both directions simultaneously. While theoretically true, there is no 
practical use for this bandwidth, because the downstream (GPU) end is limited to the AGP 8x 
interface, which can support only 2 GB/s in a single direction.  

 
In those cases where one requires the bandwidth of a PCI Express interface, the graphics 

subsystem should be capable of taking full advantage of this interface. 

Wildcat Realizm VPU-based Solutions 
With over 150 million transistors, the Visual Processing Unit (VPU) featured in 3Dlabs’ new 

Wildcat Realizm technology is quite simply the most advanced and highest-performance graphics 
device in the world at this time.  

 
3Dlabs pioneered the development of OpenGL Shading Language and designed their VPU 

with OpenGL Shading Language in mind. The Wildcat Realizm VPU fully addresses OpenGL 
Shading Language requirements by combining massive parallelism with the most sophisticated 
programmable vertex and fragment shaders available (Figure 6). 
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Figure 6. The 3D graphics pipeline in the context of a VPU-based architecture 

 
The VPU’s Vertex Shader combines a vector processor capable of operating on 16 vertices 

simultaneously with a shader containing up to 1 K instructions. The resulting data is handed over 
to the VPU’s rasterization engine, which can process 64 pixels-per-clock.  

 
This rasterization engine also offers the unique capability of Hierarchical Z-buffer depth 

culling. Objects in the scene are evaluated to determine if they are hidden by (located behind) 
other objects. If the objects are hidden, they are discarded from the graphics pipeline much 
earlier than is typically the case. This culling saves time by not processing pixels that will not be 
displayed. The resulting efficiency is fantastic and significantly boosts the overall performance of 
the system.  
 

Following rasterization, the data is handed over to the fragment shader. This comprises 48 
independent multi-threading processors that can operate with 32-bit floating-point accuracy on 48 
pixels simultaneously. Due to the fact that fragment shading algorithms are invariably much more 
complex than their vertex shading counterparts the VPU’s fragment shader supports 256 K 
instructions. It is important to note that the 1 K and 256 K values quoted for the VPU’s vertex and 
fragment shading units are real machine code instructions. In another example of “specmanship”, 
some vendors multiply the maximum number of times a program might go around a loop by the 
number of instructions contained within that loop and use this value to report inflated instruction-
count capabilities. 

 
In addition to incredible processing power, a Wildcat Realizm VPU-based graphics 

subsystem is capable of addressing up to 512 MB of physical GDDR3 memory. This is typically 
used as the working set for the very much larger 16 GB of unified virtual memory (used for the 
frame buffer, storing textures, etc.). This is extremely useful for applications that employ large 
numbers of large textures, because only visible elements need to be loaded into the physical 
memory while the page-fault mechanism allows the VPU’s memory to behave as an L2 cache. (In 
many cases, the host system’s memory may not be much larger than the 512 MB on the graphics 
card.) 

 
When it comes to outputting data, a VPU can be used to drive two single-link DVI outputs, 

each of which can accommodate a digital or analog display device (Figure 7a). Alternatively, a 
VPU can drive two, dual-link DVI outputs, thereby providing the capability to handle much higher 
resolutions and refresh rates (Figure 7b). 
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Figure 7. VPU-based systems address high and ultra-high-end  
AGP 8x implementations 

 
Consider the 9.2 Megapixel (3,480 x 2,400) flat-panel displays that are used for extremely 

high-end visualization applications such as DCC, engineering, medical imaging, and geophysical 
research. Such a display can accept one single-link DVI input, two single-link DVI inputs, one 
dual-link DVI input, or two dual-link DVI inputs. Even with a graphics subsystem as advanced as 
a Wildcat Realizm VPU-based unit, the awesome resolution of this display means that one single-
link DVI connector would provide a refresh rate of only 12.5 Hz, while two single-link DVIs could 
achieve a maximum of only 24.5 Hz. However, a VPU equipped with two dual-link DVI outputs 
can drive such a display at a very respectable 50 Hz.  
 
 As was noted earlier, the VPU’s vertex shader works with 36-bit floating-point values, 
while its fragment shader works with 32-bit floating-point values. The VPU directly outputs 16-bit 
floating-point values, making it the first device to be based on a 3D graphics pipeline that is truly 
floating-point all the way from the input vertices to the final displayed pixels. The result is that 
VPU-based graphics subsystems provide truly stunning image quality and realism that can more 
than satisfy the requirements of high and ultra-high-end AGP 8x-based host systems. 

Wildcat Realizm VSU/VPU-based Solutions 
For those applications that demand the ultimate in graphics processing, 3Dlabs’ new Wildcat 

Realizm technology can augment the power of one or two VPUs with an additional processing 
engine called a Vertex/Scalability Unit (VSU). Comprising more than 130 million transistors, a VSU 
supports a full 16x PCI Express interface and it doubles the number of vertex processors available 
in a VPU-only configuration. A VSU can be used to drive one or two VPUs, where each VSU-to-
VPU interface has a bandwidth of 4.2 GB/s (twice that of an AGP 8x interface). 

 
First, consider a configuration comprising a VSU driving a single VPU (Figure 8). In this case, 

the VPU’s vertex shader is automatically disabled and the two vertex shaders in the VSU take over 
this portion of the processing, thereby providing a much greater vertex processing capability than a 
VPU in isolation. The 4 GB/s incoming data bandwidth of the 16x PCI Express interface means 
that the 2 x 16 = 32 processors in the VSU’s dual vertex shaders are never starved of data. As 
well, the fact that the 16x PCI Express interface is a fully integrated element in the VSU, as 
opposed to using a bridging chip, means that an additional 4 GB/s outgoing data bandwidth is 
simultaneously available to return information to the host system (for example, the results of 
merging a live video feed with CGI.).  
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Figure 8. The 3D graphics pipeline in the context of a  
VSU-to-1xVPU-based architecture 

 
Of course there is little point in having the VSU’s phenomenal vertex processing capabilities if 

the results have to pass through a bottleneck, such as an AGP 8x port, to reach the rasterization 
and fragment shading engines in the downstream VPU. Thus, the VSU-to-VPU interface supports 
a bandwidth of 4.2 GB/s, which is twice that of an AGP 8x port. 

 
The VSU also has an interface to 128 MB of GDDR3 DirectBurst™ memory. This is used to 

implement 3Dlabs DirectBurst technology, which utilizes the internal architecture of the host 
processor to its fullest extent (Figure 9). 
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Figure 9. When combined with a VSU, a VPU can support  
up to 256 GB of virtual memory 

 
In this case, instead of constantly updating a vertex buffer in the host system’s main memory, 

vertex data from the 3D graphics application is stored in a burst buffer located in the processor 
itself. As soon as the processor’s burst buffer is full, this data is streamed directly to the VSU’s 
DirectBurst memory. Unlike conventional graphics subsystem architectures, which require multiple 
accesses to the main memory (a processor read, a processor write, and a DMA read), Wildcat 
Realizm DirectBurst technology employs only a single processor-to-main-memory read. This 
optimizes the system’s memory bandwidth requirements and balances the 3D graphics pipeline to 
achieve optimal system performance. 
 

Finally, for those applications that demand the ultimate in graphics processing power and 
performance, a Wildcat Realizm VSU can be used to drive two VPU devices (Figure 10). 
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Figure 10. The 3D graphics pipeline in the context of a  

VSU-to-2xVPU-based architecture 
 

In this case, the (2 x 16 =) 32 processors in the VSU’s dual vertex shaders are now 
complemented by (2 x 48 =) 96 processors in the dual VPU fragment shaders. Once again, the 
combination of a VSU with two VPUs means that the VPUs are now capable of addressing up to 
256 GB of virtual memory. Both VSU-to-VPU interfaces support a bandwidth of 4.2 GB/s, thereby 
providing an aggregate data bandwidth of 8.4 GB/s, which is four times that of an AGP 8x port 
(Figure 11). 
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Figure 11. The VSU-to-2xVPU data bandwidth is an incredible 8.4 GB/s 
One very important point concerns the way in which the VSU uses its crossbar switch (shown 

in Figure 10) to partition data and hand it over to the two VPUs. The idea here is that a 3D scene 
may contain some areas that encompass an extreme amount of detail, while other areas may 
include relatively little data that requires processing. As an extreme case, consider a scene in 
which the left-hand side contains the bulk of the objects in the scene, while the right-hand side 
contains only a few scene elements.  

 
In such an eventuality, if one VPU were to be presented with the data relating to the left-hand 

side of the screen and the other VPU was placed in charge of the right-hand side, the result 
would be for the first VPU to become overloaded and to slow things down. Thus, the VSU actually 
partitions the display area into a checkerboard pattern of relatively small blocks. If we visualize 
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this checkerboard as comprising white and black squares, then the VSU passes all of the display 
areas corresponding white squares to the first VPU and all of the areas corresponding to the 
black squares to the second VPU. The resulting load balancing allows the entire system to 
achieve optimum performance. 

Genlock, Framelock, and Ratelock Capability  
Visual computing applications often need to synchronize their displays to an external source, 

where this feature is called Genlock. Also, visual computing applications often need to use 
multiple displays, in which case it is extremely important that the system treats all displays as a 
single virtual canvas. Referred to as Framelock or Framesync,  this includes locking both the 
buffer swaps and the display refreshes. 

 
In the case of the new Wildcat Realizm technology Genlock and Framelock capabilities can be 

achieved based on both the VPU and the VSU/VPU combination-based graphics subsystems. With 
regards to Genlock, the technology supports both the traditional bi-level synchronization pulses 
featured in conventional NTSC, PAL, and SECAM systems along with the latest tri-level 
synchronization scheme favored by today’s high-definition (HD) display devices.  

 
The Wildcat Realizm technology also supports the Ratelock feature, in which the software 

graphics application instructs the hardware graphics subsystems as to the minimum swap period 
it is prepared to tolerate. If one of the graphics subsystems detects that it cannot complete the 
rendering of a frame in the required time, it simply discards that frame and moves on to the next 
one. This allows the system as a whole to maintain the required frame rate across the single 
virtual canvas. 

Summary 
The VSU and VPU devices featured in the new Wildcat Realizm technology maintain 

3Dlabs’ position as an innovator and industry leader in professional graphics. VSU and VPU-
based graphics subsystems can provide previously unattainable levels of quality and 
performance.  

 
For example, at the time of this writing, the highest reported performance score for the 

industry-standard ViewPerf UGS benchmark is 45 frames-per-second (FPS). By comparison, 
Wildcat Realizm technology will more than double this performance and set a new industry 
standard. 

 
Finally, as incredible as Wildcat Realizm technology is, it is important to note that 3Dlabs 

sees this technology as just a step along the path to the future. Thus, graphics accelerators 
based on Wildcat Realizm technology are not the final word in graphics subsystems, they will 
simply be the best that are available. 

 


