

© 2004 3Dlabs, www.3dlabs.com Page 13-1

New Wildcat Realizm Graphics Technology
Bigger Bandwidth, Greater Programmability, Higher Precision
Achieving New Levels of Performance, Scalability, and Visual Fidelity!

Introduction
This whitepaper introduces the unique technology underlying the next-generation Wildcat®

Realizm™ graphics subsystems from 3Dlabs. Addressing high and ultra-high-end 3D graphics
requirements for both AGP 8x and PCI Express-based environments, Wildcat Realizm technology
establishes previously unimaginable performance and visual fidelity standards for professional
visual computing applications.

Graphics technology is currently undergoing a process of extreme architectural churn. A

common scenario circa 2000 was the use of fixed-function devices called Graphics Processing
Units (GPUs). Engineered for extreme speed, GPUs feature highly parallel pipelines that exploit
the natural parallelism inherent in vertex processing and pixel processing algorithms. However,
their hardware-centric implementations largely dictate that these algorithms are frozen in silicon.
This limits the algorithmic complexity that can be supported and prevents these devices from
being easily adapted to accommodate evolving standards.

The latest developments in graphics processing engines are Vertex/Scalability Units (VSUs)

and Visual Processing Units (VPUs). These revolutionary devices combine massive parallelism
with programmable hardware architectures and a compiler-centric approach. In addition to their
extreme graphics processing capability, their programmable architectures mean that VSUs and
VPUs can support never-before-seen visual effects.

In addition to supporting the state-of-the-art in resolutions, fill rates, and SuperScene

antialiasing (with 4, 8, or 16 samples), Wildcat Realizm technology also raises the level of realism
with features such as a programmable pipeline that is fully floating-point throughout.

Wildcat Realizm technology also offers some unique features. These include the use of a

Hierarchical Z-buffer depth culling and the direct display of 16-bit floating-point values, both of
which provide substantial algorithmic efficiencies and corresponding increases in processing
speeds and capabilities. When coupled with this level of performance, the programmable nature
of Wildcat Realizm technology allows application developers to fully unleash their creativity. Since
this technology is the first to be based on a 3D graphics pipeline that exhibits true floating point
from the input vertices to the final displayed pixels means end users now have access to new
levels of image quality and realism.

Shading Languages
To discuss Shading Languages in the appropriate context, one must understand how the 3D

graphics pipeline works. A 3D graphics application running on the host platform communicates
with the graphics subsystem via a bus interface (the two interfaces of interest for the purposes of
this paper are AGP 8x and PCI Express).

The application views each object in its 3D world as being composed of a collection of polygons

(usually triangles). The application passes data such as the XYZ (location) and color information
associated with the vertices (corners) for each polygon to the graphics subsystem (Figure 1).

© 2004 3Dlabs, www.3dlabs.com Page 13-2

To/From
Host System

To
Display

Bus
Interface

Vertex
Input

Vertex
Shader (T&L) Rasterization

Fragment
Shader

Pixel Final Blend
(Depth, Stencil, Alpha)

Frame Buffer

Figure 1. A highly simplified view of the 3D graphics pipeline

This vertex data is operated by a suite of Transformation and Lighting (T&L) algorithms that

perform tasks such as transforming 3D world coordinates into corresponding 2D display
coordinates and determining the lighting conditions at each vertex. In today’s terminology, this
unit is referred to as a Vertex Shader. The resulting data is passed via a rasterization engine into
a Fragment Shader, which calculates values such as the red, green, blue, and alpha color
components associated with each fragment (pixel). Following any final blend operations, the data
is ultimately handed over to a display device.

There are a number of well-known graphics Application Programming Interfaces (APIs) that

application developers might choose to use. In the case of home entertainment programs such as
computer games, many developers choose to work with the DirectX® API from Microsoft®. By
comparison, when it comes to high-end visual
computing applications such as Computer-Aided
Design (CAD), Digital Content Creation (DCC),
engineering, medical imaging, and visual simulation
applications, developers typically opt for the
industry-standard open platform API, OpenGL®.

Both DirectX and OpenGL employ underlying

3D graphics pipelines architecture as illustrated in
Figure 1. Over time, the level of sophistication
associated with shading algorithms has increased
to meet ever-increasing demands for more realism.
For example, very simple “flat” shading was
replaced by the slightly more sophisticated
Gouraud shading algorithm. This was subsequently
augmented by bilinear and later trilinear MIP-
mapped textures. Similarly, only a limited selection
of simple models for ambient, directional, and
positional light sources were commonly available
via these APIs. In addition to being relatively
simplistic, these shading algorithms and lighting elements were well defined and widely accepted,
which made them amenable to being implemented using fixed-function GPUs.

Problems started to arise when users wished to make use of more realistic light sources

such as a square light panel combined with more sophisticated shading algorithms such as
Phong Shading and more realistic illumination effects employing techniques such as Torrance
Cook micro-facet and BRDF-based lighting models. As these elements had not been hard wired
into the GPUs, the only way to implement them was in software running on the host system’s
general-purpose microprocessor. Tapping into the host system to perform rendering functions
was horrendously slow, and was only used for final production rendering. The fact that rendering
each frame might take minutes, or even hours, was considered acceptable by most users as the
price one had to pay in order to achieve a professional level of visual fidelity.

What is a Shader?
A shader is source code written in a
graphics specific programming
language that runs programmable
graphics hardware.

Shaders are used to define the
processing that occurs on each vertex,
and pixel/fragment that is provided for
display.

By using a shader you can implement
your own specialized surface color,
texture, and material properties; light
source positions and emission
characteristics; and transmission
properties of fog and many other visual
effects.

© 2004 3Dlabs, www.3dlabs.com Page 13-3

After a number of false starts, such as the use of hardware-centric techniques based on multi-
register combiners, it became obvious that the real solution was to move away from a 3D graphics
pipeline based on fixed-function GPUs. Instead, the pipeline should be programmable, thereby
allowing application developers to create new vertex, fragment, and pixel shaders as required
(Figure 2).

To/From
Host System

To
Display

Bus
Interface

Vertex
Input

Programmable Vertex Shader

Rasterization

Programmable Fragment Shader

(Final Blend)

Frame Buffer

Programmable Pixel Shader

Figure 2. Augmenting the 3D graphics pipeline with programmable shaders

Depending on the actual implementation, having programmable vertex, fragment, and pixel

shaders can unleash the creativity of application developers. These developers now have a
mechanism to implement algorithms that are magnitudes faster and more sophisticated than the
combination of Gouraud Shading with simple texture mapping, and that can provide real-time
preview rendering that is much closer to production-level quality. Furthermore, developers are no
longer limited to aiming only at photorealism. It is now possible to implement novel T&L algorithms
and to realize watercolor, oil painting, or pen-and-ink renderings.

When it comes to creating custom shaders, two main approaches allow these shaders to be

captured in a high-level, augmented C-like language. As shown in Figure 3a, the layered
approach employed by DirectX involves creating a shader in what is known as High-Level
Shading Language (HLSL).

HLSL Shader

(a) The DirectX “layered” approach

HLSL Translator

HLSL Shader
(Direct3D assembly code)

DirectX Assembler

HLSL Shader
(Machine code)

DirectX Driver
(Machine code)

Hardware
(Graphics subsystem)

OGLSL Shader

Hardware
(Graphics subsystem)

OpenGL Driver
OGLSL Compiler

(b) The OpenGL “internal” approach

Figure 3. High-level comparison of different techniques for implementing shading
languages

This HLSL shader is then run through a translator to generate equivalent DirectX assembly
language source code. In turn, the DirectX assembler processes this assembly code to generate
corresponding machine code, which is subsequently loaded into the graphics hardware by the
DirectX driver. Thus, an HLSL shader is simply an additional layer that conceptually resides
above an existing API. Although such shaders certainly facilitate relatively easy programming,

© 2004 3Dlabs, www.3dlabs.com Page 13-4

Widely respected for its industry
leadership, 3Dlabs pioneered the
development of the recently ratified
OpenGL Shading Language.

As another industry first, 3Dlabs has
also released an open source version of
the OpenGL Shading Language
compiler front-end to stimulate creativity
in the market.

In fact, the Director of Developer
Relations for 3Dlabs’ Fort Collins, CO,
graphics software team, Randi Rost, is
the author of OpenGL Shading
Language book, published by Addison
Wesley, ISBN: 0-321-19789-5.

they do not actually provide any increase in fundamental processing power or programming
flexibility. Also, the fact that these shaders are translated into assembly code outside of DirectX
makes for a somewhat time consuming and unwieldy implementation path.

By comparison, the technique adopted by OpenGL is to embed the compiler for the OpenGL

Shader Language inside the OpenGL Driver itself (Figure 3b). This approach provides application
developers with C-like programming capabilities for implementing shaders directly into the
graphics subsystem. Of course, unlike an HLSL shader that will only work on PCs, an OpenGL
shader will work on all systems that support OpenGL and the OpenGL Shading Language,
including Windows® and Linux® OS environments.

AGP 8x versus PCI Express-based Bus Interfaces
Previous graphics subsystems running on the PCI bus interface, could accommodate a peak

data transfer rate of only 133 MB/s at 33 MHz and over a 32-bit (4-byte) bus. This quickly became
unacceptable for any kind of serious graphics-intensive application, so the Advanced Graphics
Port (AGP) standard was developed.

The first incarnation of AGP was a 32-bit bus running at 66 MHz, thereby providing a peak

data transfer rate of 266 MB/s. This initial release was subsequently upgraded to AGP 2x, which
used a double-clocking technique to provide 533 MB/s. A later incarnation, AGP 4x, used a quad-
clocked data transfer technology to achieve a peak bandwidth of a little over 1 GB/s; and the
current interface, AGP 8x, octal-pumps data to realize slightly more than 2 GB/s. At the time of
this writing, it is generally accepted that the AGP technology has reached its peak and there are
no plans to go beyond the current AGP 8x implementation.

This poses a problem for today’s high and ultra-high-end graphics subsystems, because they

require significantly more bandwidth in order to handle the huge amounts of data associated with
professional graphics applications. The solution is a serial data communications technology called
PCI Express. A single PCI Express lane employs two differential pairs to provide a point-to-point
connection between two devices: one to transmit
and the other to receive data (Figure 4).

Differential pairs
Device #1

(e.g. Host system)
Device #2

(e.g. Graphics subsystem)

Transmit (TX)

Receive (RX) Transmit (TX)

Receive (RX)

Figure 4. A single PCI Express lane

Depending on their requirements, some devices will be able to make do with a single lane. One

lane can support up to 250 MB/s of real data communications in both directions simultaneously,
which equates to a total bandwidth of 500 MB/s. (By comparison, an AGP interface can pass data
in only one direction at any particular time.) Some devices may require two or four PCI Express
lanes to provide additional bandwidth, while today’s high-end graphics subsystems employ 16
lanes. Known as 16x PCI Express, such an implementation provides a data bandwidth of 4 GB/s in
both directions simultaneously, which equates to a total bandwidth of 8 GB/s.

© 2004 3Dlabs, www.3dlabs.com Page 13-5

There are several reasons why graphics subsystems may wish to pass data back to the host

system. As a simple example, consider the case where the graphics subsystem is being used to
merge a real-world video signal with computer-generated imagery (CGI) for a DCC application. In
this case, in addition to presenting the results on a display device, it may be required to bring
those results back to the host system to be stored for future processing.

Unfortunately, some vendors of graphics subsystems are jumping on the PCI Express

bandwagon by using a front-ending technique with an existing AGP 8x device and bridging chip
(Figure 5).

To/From
Host System

AGP 8x

To
DisplayGPU

(a) GPU with internal AGP 8x interface

To/From
Host System
PCI Express

To
DisplayGPU

(b) GPU with bridging chip to PCI Express

B
rid

gi
ng

 C
hi

p

2 gigabytes/second
(one direction at a

time = 2 GB/s total)

2 gigabytes/second
(one direction at a

time = 2 GB/s total)

4 gigabytes/second (both
directions simultaneously

= 8 GB/s total)

GPU

Figure 5. Using a PCI Express bridging chip does not
increase the performance of an AGP 8x-based GPU

This can lead to specmanship at its worst, because it allows these vendors to claim that their

subsystems have the capability of communicating with the host system at the PCI Express
bandwidth of 4 GB/s in both directions simultaneously. While theoretically true, there is no
practical use for this bandwidth, because the downstream (GPU) end is limited to the AGP 8x
interface, which can support only 2 GB/s in a single direction.

In those cases where one requires the bandwidth of a PCI Express interface, the graphics

subsystem should be capable of taking full advantage of this interface.

Wildcat Realizm VPU-based Solutions
With over 150 million transistors, the Visual Processing Unit (VPU) featured in 3Dlabs’ new

Wildcat Realizm technology is quite simply the most advanced and highest-performance graphics
device in the world at this time.

3Dlabs pioneered the development of OpenGL Shading Language and designed their VPU

with OpenGL Shading Language in mind. The Wildcat Realizm VPU fully addresses OpenGL
Shading Language requirements by combining massive parallelism with the most sophisticated
programmable vertex and fragment shaders available (Figure 6).

© 2004 3Dlabs, www.3dlabs.com Page 13-6

OpenGL SL

Compiler

OpenGL SL

Compiler

To/From
Host System

AGP 8x

To
Display

Bus
Interface

Vertex
Input Rasterization

Final Blend (Depth,
Stencil, Alpha)

- Image formats
- Vertex arrays
- Display lists

- 16 processors
- 1K instructions
- 36-bit floats

- 64 pixels/clock
- Hierarchical Z

- 48 processors
- 256K instructions
- 32-bit floats
- 32 textures

Vertex
Shader
(T&L)

Fragment
Shader

VPU

2 gigabytes/second
(one direction at a
time = 2 GB/s total)

Pixel
Shader

- Programmable
- Outputs 16-bit floats

Realizm

Figure 6. The 3D graphics pipeline in the context of a VPU-based architecture

The VPU’s Vertex Shader combines a vector processor capable of operating on 16 vertices

simultaneously with a shader containing up to 1 K instructions. The resulting data is handed over
to the VPU’s rasterization engine, which can process 64 pixels-per-clock.

This rasterization engine also offers the unique capability of Hierarchical Z-buffer depth

culling. Objects in the scene are evaluated to determine if they are hidden by (located behind)
other objects. If the objects are hidden, they are discarded from the graphics pipeline much
earlier than is typically the case. This culling saves time by not processing pixels that will not be
displayed. The resulting efficiency is fantastic and significantly boosts the overall performance of
the system.

Following rasterization, the data is handed over to the fragment shader. This comprises 48
independent multi-threading processors that can operate with 32-bit floating-point accuracy on 48
pixels simultaneously. Due to the fact that fragment shading algorithms are invariably much more
complex than their vertex shading counterparts the VPU’s fragment shader supports 256 K
instructions. It is important to note that the 1 K and 256 K values quoted for the VPU’s vertex and
fragment shading units are real machine code instructions. In another example of “specmanship”,
some vendors multiply the maximum number of times a program might go around a loop by the
number of instructions contained within that loop and use this value to report inflated instruction-
count capabilities.

In addition to incredible processing power, a Wildcat Realizm VPU-based graphics

subsystem is capable of addressing up to 512 MB of physical GDDR3 memory. This is typically
used as the working set for the very much larger 16 GB of unified virtual memory (used for the
frame buffer, storing textures, etc.). This is extremely useful for applications that employ large
numbers of large textures, because only visible elements need to be loaded into the physical
memory while the page-fault mechanism allows the VPU’s memory to behave as an L2 cache. (In
many cases, the host system’s memory may not be much larger than the 512 MB on the graphics
card.)

When it comes to outputting data, a VPU can be used to drive two single-link DVI outputs,

each of which can accommodate a digital or analog display device (Figure 7a). Alternatively, a
VPU can drive two, dual-link DVI outputs, thereby providing the capability to handle much higher
resolutions and refresh rates (Figure 7b).

© 2004 3Dlabs, www.3dlabs.com Page 13-7

Unified
Virtual

Memory

To/From
Host System

AGP 8x

To Display

2 gigabytes/second
(one direction at a
time = 2 GB/s total)

VPU

To Display

2x DVI
Single Links

Frame buffer,
textures, etc.

VPU can support
512 MB physical,

16 GB virtual

256 bits
wide

(a) VPU driving two single DVI links

Unified
Virtual

Memory

To/From
Host System

AGP 8x

To Display

VPU

To Display

To Display

To Display

2x DVI
Dual Links

Frame buffer,
textures, etc.

VPU can support
512 MB physical,

16 GB virtual

256 bits
wide

(b) VPU driving two dual DVI links

Figure 7. VPU-based systems address high and ultra-high-end
AGP 8x implementations

Consider the 9.2 Megapixel (3,480 x 2,400) flat-panel displays that are used for extremely

high-end visualization applications such as DCC, engineering, medical imaging, and geophysical
research. Such a display can accept one single-link DVI input, two single-link DVI inputs, one
dual-link DVI input, or two dual-link DVI inputs. Even with a graphics subsystem as advanced as
a Wildcat Realizm VPU-based unit, the awesome resolution of this display means that one single-
link DVI connector would provide a refresh rate of only 12.5 Hz, while two single-link DVIs could
achieve a maximum of only 24.5 Hz. However, a VPU equipped with two dual-link DVI outputs
can drive such a display at a very respectable 50 Hz.

 As was noted earlier, the VPU’s vertex shader works with 36-bit floating-point values,
while its fragment shader works with 32-bit floating-point values. The VPU directly outputs 16-bit
floating-point values, making it the first device to be based on a 3D graphics pipeline that is truly
floating-point all the way from the input vertices to the final displayed pixels. The result is that
VPU-based graphics subsystems provide truly stunning image quality and realism that can more
than satisfy the requirements of high and ultra-high-end AGP 8x-based host systems.

Wildcat Realizm VSU/VPU-based Solutions
For those applications that demand the ultimate in graphics processing, 3Dlabs’ new Wildcat

Realizm technology can augment the power of one or two VPUs with an additional processing
engine called a Vertex/Scalability Unit (VSU). Comprising more than 130 million transistors, a VSU
supports a full 16x PCI Express interface and it doubles the number of vertex processors available
in a VPU-only configuration. A VSU can be used to drive one or two VPUs, where each VSU-to-
VPU interface has a bandwidth of 4.2 GB/s (twice that of an AGP 8x interface).

First, consider a configuration comprising a VSU driving a single VPU (Figure 8). In this case,

the VPU’s vertex shader is automatically disabled and the two vertex shaders in the VSU take over
this portion of the processing, thereby providing a much greater vertex processing capability than a
VPU in isolation. The 4 GB/s incoming data bandwidth of the 16x PCI Express interface means
that the 2 x 16 = 32 processors in the VSU’s dual vertex shaders are never starved of data. As
well, the fact that the 16x PCI Express interface is a fully integrated element in the VSU, as
opposed to using a bridging chip, means that an additional 4 GB/s outgoing data bandwidth is
simultaneously available to return information to the host system (for example, the results of
merging a live video feed with CGI.).

© 2004 3Dlabs, www.3dlabs.com Page 13-8

OpenGL SL

Compiler

To/From
Host Sy stem
PCI Express

To
Display

Bus
Interf ace

Vertex
Input

Rasterization Final Blend

- Image formats
- Vertex arrays
- Display lists

Per Shader
- 16 processors
 (= 32 total)
- 1K instructions
- 36-bit floats

- 64 pixels/clock
- Hierarchical Z

- 48 processors
- 256K instructions
- 32-bit floats
- 32 textures

VPU

Vertex
Shader

VSU

4 gigabytes/second
(both directions
simultaneously
= 8 GB/s total)

OpenGL SL

Compiler

4.2 GB/s
(one direction

at a time)

Vertex
Shader

Fragment
Shader

- Programmable
- Outputs 16-bit floats

Pixel
Shader

Realizm Realizm

Figure 8. The 3D graphics pipeline in the context of a
VSU-to-1xVPU-based architecture

Of course there is little point in having the VSU’s phenomenal vertex processing capabilities if

the results have to pass through a bottleneck, such as an AGP 8x port, to reach the rasterization
and fragment shading engines in the downstream VPU. Thus, the VSU-to-VPU interface supports
a bandwidth of 4.2 GB/s, which is twice that of an AGP 8x port.

The VSU also has an interface to 128 MB of GDDR3 DirectBurst™ memory. This is used to

implement 3Dlabs DirectBurst technology, which utilizes the internal architecture of the host
processor to its fullest extent (Figure 9).

Direct Burst
Memory

(128 MB)

Unified
Virtual

Memory

To/From
Host System
PCI Express

To
Display

VPU

To
Display

2x DVI
Single Links

Frame buffer, textures, etc.
VSU/VPU combo can

support 512 MB physical,
256 GB virtual

256 bits
wide

VSU

128 bits
wide

4 gigabytes/second (both
directions simultaneously

= 8 GB/s total)

4.2 gigabytes/second (one
direction at a time,
2x that of AGP 8x)

Figure 9. When combined with a VSU, a VPU can support
up to 256 GB of virtual memory

In this case, instead of constantly updating a vertex buffer in the host system’s main memory,

vertex data from the 3D graphics application is stored in a burst buffer located in the processor
itself. As soon as the processor’s burst buffer is full, this data is streamed directly to the VSU’s
DirectBurst memory. Unlike conventional graphics subsystem architectures, which require multiple
accesses to the main memory (a processor read, a processor write, and a DMA read), Wildcat
Realizm DirectBurst technology employs only a single processor-to-main-memory read. This
optimizes the system’s memory bandwidth requirements and balances the 3D graphics pipeline to
achieve optimal system performance.

Finally, for those applications that demand the ultimate in graphics processing power and
performance, a Wildcat Realizm VSU can be used to drive two VPU devices (Figure 10).

© 2004 3Dlabs, www.3dlabs.com Page 13-9

OpenGL SL

Compiler

To/From
Host System
PCI Express

To
Display

Bus
Interface

Vertex
Input

Rasterization Final Blend

- Image formats
- Vertex arrays
- Display lists

Per Shader
- 16 processors
 (= 32 total)
- 1K instructions
- 36-bit floats

Per Rasterization
- 64 pixels/clock
- Hierarchical Z

Per Shader
- 48 processors
 (= 96 total)
- 256K instructions
- 32-bit floats
- 32 textures

VPU

Vertex
Shader

VSU4 gigabytes/second
(both directions
simultaneously
= 8 GB/s total)

OpenGL SL

Compiler

Each bus 4.2 GB/s
(one direction

at a time) VPU

To
Display

Vertex
Shader

Fragment
Shader

Fragment
Shader

Crossbar
switch

- Programmable
- Outputs 16-bit floats

Pixel
Shader

Pixel
Shader

Figure 10. The 3D graphics pipeline in the context of a

VSU-to-2xVPU-based architecture

In this case, the (2 x 16 =) 32 processors in the VSU’s dual vertex shaders are now
complemented by (2 x 48 =) 96 processors in the dual VPU fragment shaders. Once again, the
combination of a VSU with two VPUs means that the VPUs are now capable of addressing up to
256 GB of virtual memory. Both VSU-to-VPU interfaces support a bandwidth of 4.2 GB/s, thereby
providing an aggregate data bandwidth of 8.4 GB/s, which is four times that of an AGP 8x port
(Figure 11).

Direct Burst
Memory

To/From
Host System
PCI Express

VPU

2x DVI Dual LinksVSU

128 bits
wide

4 gigabytes/second
(both directions
simultaneously
= 8 GB/s total)

Each VSU-to-VDU interface
provides 4.2 gigabytes/second

(total = 8.4 GB/s,
4x that of AGP 8x)

To Display

To Display

VPU
To Display

To Display

Unified
Virtual

Memory

Frame buffer, textures, etc.
VSU/VPU combo can

support 512 MB physical,
256 GB virtual

256 bits
wide

Unified
Virtual

Memory

Frame buffer, textures, etc.
VSU/VPU combo can

support 512 MB physical,
256 GB virtual

256 bits
wide

Figure 11. The VSU-to-2xVPU data bandwidth is an incredible 8.4 GB/s
One very important point concerns the way in which the VSU uses its crossbar switch (shown

in Figure 10) to partition data and hand it over to the two VPUs. The idea here is that a 3D scene
may contain some areas that encompass an extreme amount of detail, while other areas may
include relatively little data that requires processing. As an extreme case, consider a scene in
which the left-hand side contains the bulk of the objects in the scene, while the right-hand side
contains only a few scene elements.

In such an eventuality, if one VPU were to be presented with the data relating to the left-hand

side of the screen and the other VPU was placed in charge of the right-hand side, the result
would be for the first VPU to become overloaded and to slow things down. Thus, the VSU actually
partitions the display area into a checkerboard pattern of relatively small blocks. If we visualize

© 2004 3Dlabs, www.3dlabs.com Page 13-10

this checkerboard as comprising white and black squares, then the VSU passes all of the display
areas corresponding white squares to the first VPU and all of the areas corresponding to the
black squares to the second VPU. The resulting load balancing allows the entire system to
achieve optimum performance.

Genlock, Framelock, and Ratelock Capability
Visual computing applications often need to synchronize their displays to an external source,

where this feature is called Genlock. Also, visual computing applications often need to use
multiple displays, in which case it is extremely important that the system treats all displays as a
single virtual canvas. Referred to as Framelock or Framesync, this includes locking both the
buffer swaps and the display refreshes.

In the case of the new Wildcat Realizm technology Genlock and Framelock capabilities can be

achieved based on both the VPU and the VSU/VPU combination-based graphics subsystems. With
regards to Genlock, the technology supports both the traditional bi-level synchronization pulses
featured in conventional NTSC, PAL, and SECAM systems along with the latest tri-level
synchronization scheme favored by today’s high-definition (HD) display devices.

The Wildcat Realizm technology also supports the Ratelock feature, in which the software

graphics application instructs the hardware graphics subsystems as to the minimum swap period
it is prepared to tolerate. If one of the graphics subsystems detects that it cannot complete the
rendering of a frame in the required time, it simply discards that frame and moves on to the next
one. This allows the system as a whole to maintain the required frame rate across the single
virtual canvas.

Summary
The VSU and VPU devices featured in the new Wildcat Realizm technology maintain

3Dlabs’ position as an innovator and industry leader in professional graphics. VSU and VPU-
based graphics subsystems can provide previously unattainable levels of quality and
performance.

For example, at the time of this writing, the highest reported performance score for the

industry-standard ViewPerf UGS benchmark is 45 frames-per-second (FPS). By comparison,
Wildcat Realizm technology will more than double this performance and set a new industry
standard.

Finally, as incredible as Wildcat Realizm technology is, it is important to note that 3Dlabs

sees this technology as just a step along the path to the future. Thus, graphics accelerators
based on Wildcat Realizm technology are not the final word in graphics subsystems, they will
simply be the best that are available.

