Real-time Shading:
Hardware Shading Effects

Wolfgang Heidrich
The University of British Columbia

Abstract

In this part of the course we will review some examples
of shading algorithms that we might want to implement
in a real-time or interactive system. This will help us
to identify common approaches for real-time shading
systems and to acquire information about feature sets
required for this kind of system.

The shading algorithms we will look at fall into three
categories: realistic materials for local and global illu-
mination, shadow mapping, and finally bump mapping
algorithms.

1 Realistic Materials

In this section we describe techniques for a variety of
different reflection models to the computation of local
illumination in hardware-based rendering. Rather than
replacing the standard Phong model by another single,
fixed model, we seek a method that allows us to uti-
lize a wide variety of different models so that the most
appropriate model can be chosen for each application.

1.1 Arbitrary BRDFs for Local lllumina-
tion

We will first consider the case of local illumination,
i.e. light that arrives at objects directly from the light
sources. The more complicated case of indirect illu-
mination (i.e. light that bounces around in the envi-
ronment before hitting the object) will be described in
Section 1.3.

The fundamental approach for rendering arbitrary
materials works as follows. A reflection model in re-
flection model in computer graphics is typically given
in the form of a bidirectional reflectance distribution
function (BRDF), which describes the amount of light
reflected for each pair of incoming (i.e. light) and out-
going (i.e. viewing) direction. This function can either

be represented analytically, in which case it is called a
reflection model), or it can be represented in a tabular or
sampled form as a four-dimensional array (two dimen-
sions each for the incoming and outgoing direction).
The problem with both representations is that they
cannot directly be used in hardware rendering: the
interesting analytical models are mathematically too
complex for hardware implementations, and the tabular
form consumes too much memory (a four-dimensional
table can easily consume dozens of MB). A differ-
ent approach has been proposed by Heidrich and Sei-
del [9]. It turns out that most lighting models in com-
puter graphics can be factored into independent com-
ponents that only depend on one or two angles. These
can then be independently sampled and stored as lower-
dimensional tables that consume much less memory.
Kautz and McCool [12] described a method for factor-
izing BRDFs given in tabular form into lower dimen-
sional parts that can be rendered in a similar fashion.
As an example for the treatment of analytical models,
consider the one by Torrance and Sparrow [29]:

F-G-D

m-cosa-cosf3’

frl—v) = ey
where f, is the BRDF, « is the angle between the sur-
face normal 77 and the vector [pointing towards the light
source, while /3 is the angle between 72 and the viewing
direction ¢. The geometry is depicted in Figure 1.

For a fixed index of refraction, the Fresnel term F
in Equation 1 only depends on the angle 6 between the
light direction ["and the micro facet normal ki, which is
the halfway vector between ['and 7. Thus, the Fresnel
term can be seen as a univariate function F'(cos 6).

The micro facet distribution function D, which de-
fines the percentage of facets oriented in direction h,
depends on the angle § between h and the surface nor-
mal 77, as well as a roughness parameter. This is true
for all widely used choices of distribution functions, in-
cluding a Gaussian distribution of J or of the surface

11-1

-
An
—
___\h
R 1 \\\
Ve~ ~ 1 N
1 ~
1 \\
B2/ N
N\ & S =
1 \\Z
9 8\t
- !
t 1
1
1
¢ 1
i

Figure 1: The local geometry of reflection at a rough
surface.

height, as well as the distribution by Beckmann [3].
Since the roughness is generally assumed to be constant
for a given surface, this is again a univariate function
D(cos).

Finally, when using the geometry term G proposed
by Smith [27], which describes the shadowing and
masking of light for surfaces with a Gaussian mi-
cro facet distribution, this term is a bivariate function
G(cos a, cos 3).

The contribution of a single point- or directional light
source with intensity I; to the intensity of the surface is
given as I, = f.(I — @) cos - I;. The term f,.(x,[—
¥) cos cv can be split into two bivariate parts F'(cos) -
D(cosd) and G(cosa,cosf3)/(m - cos3), which are
then stored in two independent 2-dimensional lookup
tables.

Regular 2D texture mapping can be used to imple-
ment the lookup process. If all vectors are normalized,
the texture coordinates are simple dot products between
the surface normal, the viewing and light directions,
and the micro facet normal. These vectors and their
dot products can be computed in software and assigned
as texture coordinates to each vertex of the object.

The interpolation of these texture coordinates across
a polygon corresponds to a linear interpolation of the
vectors without renormalization. Since the reflection
model itself is highly nonlinear, this is much better than
simple Gouraud shading, but not as good as evaluating
the illumination in every pixel (Phong shading). The in-
terpolation of normals without renormalization is com-
monly known as fast Phong shading.

This method for looking up the illumination in two
separate 2-dimensional textures requires either a single

rendering pass with two simultaneous textures, or two
separate rendering passes with one texture each in or-
der to render specular reflections on an object. If two
passes are used, their results are multiplied using alpha
blending. A third rendering pass with hardware lighting
(or a third simultaneous texture) is applied for adding a
diffuse term.

If the light and viewing directions are assumed to
be constant, that is, if a directional light and an or-
thographic camera are assumed, the computation of the
texture coordinates can even be done in hardware. To
this end, light and viewing direction as well as the
halfway vector between them are used as row vectors
in the texture matrix for the two textures:

0 0 O cost Ny cosf
hy hy h. 0 ny | | cosd
0O 0 O 0 n, | 0 2)
0O 0 O 1 1 1
lx ly lz 0 Uz COS &
Uy vy vy 0O Ny | | cos I6]
0O 0 0 O n, | 0 3)
0 0 0 1 1 1

Figure 2 shows a torus rendered with two different
roughness settings using this technique.

We would like to note that the use of textures for rep-
resenting the lighting model introduces an approxima-
tion error: while the term F'- D is bounded by the inter-
val [0, 1], the second term G/ (7r-cos [3) exhibits a singu-
larity for grazing viewing directions (cos 3 — 0). Since
graphics hardware typically uses a fixed-point represen-
tation of textures, the texture values are clamped to the
range [0, 1]. When these clamped values are used for
the illumination process, areas around the grazing an-
gles can be rendered too dark, especially if the surface
is very shiny. This artifact can be reduced by dividing
the values stored in the texture by a constant which is
later multiplied back onto the final result. In practice,
however, these artifacts are hardly noticeable.

The same methods can be applied to all kinds of
variations of the Torrance-Sparrow model, using differ-
ent distribution functions and geometry terms, or the
approximations proposed in [24]. With varying num-
bers of terms and rendering passes, it is also possible
to come up with similar factorizations for all kinds of
other models. For example the Phong, Blinn-Phong

11-2

Figure 2: A torus rendered with the proposed hardware multi-pass method using the Torrance-Sparrow reflection
model (Gaussian height distribution and geometry term by [27]) and different settings for the surface roughness. For
these images, the torus was tessellated into 200 x 200 polygons.

and Cosine Lobe models can all be rendered in a sin-
gle pass with a single texture, which can even already
account for an ambient and a diffuse term in addition to
the specular one.

1.1.1 Anisotropy

Although the treatment of anisotropic materials is
somewhat harder, similar factorization techniques can
be applied here. For anisotropic models, the micro
facet distribution function and the geometrical attenu-
ation factor also depend on the angle ¢ between the
facet normal and a reference direction in the tangent
plane. This reference direction is given in the form of a
tangent vector .

For example, the elliptical Gaussian model [31] in-
troduces an anisotropic facet distribution function spec-
ified as the product of two independent Gaussian func-
tions, one in the direction of ¢, and one in the direction
of the binormal 7 x . This makes D a bivariate function
in the angles § and ¢. Consequently, the texture coor-

dinates can be computed in software in much the same
way as described above for isotropic materials. This
also holds for the other anisotropic models in computer
graphics literature.

Since anisotropic models depend on both a normal
and a tangent per vertex, the texture coordinates cannot
be generated with the help of a texture matrix, even if
light and viewing directions are assumed to be constant.
This is due to the fact that the anisotropic term can usu-
ally not be factored into a term that only depends on
the surface normal, and one that only depends on the
tangent.

One exception to this rule is the model by Banks [2],
which is mentioned here despite the fact that it is an
ad-hoc model which is not based on physical consider-
ations. Banks defines the reflection off an anisotropic
surface as

I, = cosa- (kg(!|l} + k(! [R)Y7) - I;, ()

where ' is the projection of the light vector ['into the

11-3

plane perpendicular to the tangent vector . This vec-
tor is then used as a shading normal for a Blinn-Phong
lighting model with diffuse and specular coefficients k4
and k,, and surface roughness . In [28], it has been
pointed out that this Phong term is really only a func-
tion of the two angles between the tangent and the light
direction, as well as the tangent and the viewing direc-
tion. This fact was used for the illumination of lines
in [28].

Applied to anisotropic reflection models, this means
that this Phong term can be looked up from a 2-
dimensional texture, if the tangent ¢ is specified as a
texture coordinate, and the texture matrix is set up as in
Equation 3. The additional term cos « in Equation 4 is
computed by hardware lighting with a directional light
source and a purely diffuse material, so that the Banks
model can be rendered with one texture and one pass
per light source. Figure 3 shows images rendered with
this reflection model.

Figure 3: Disk and sphere illuminated with isotropic

reflection (left), anisotropic reflection with circular fea-
tures (center), and radial features (right).

1.1.2 Measured or Simulated Data

As mentioned above, the idea of factorizing BRDFs
into low-dimensional parts that can be sampled and
stored as textures not only applies to analytical reflec-
tion models, but also to BRDFs given in a tabular form.
Different numerical methods have been presented for
factorizing these tabular BRDFs [12, 18]. The discu-
sion of these is beyond the scope of this course, how-
ever.

The advantage of the analytical factorization is that
it is very efficient to adjust parameters of the reflection

model, so this can be done interactively. The numeri-
cal methods take too long for that. On the other hand,
the big advantage of the numerical methods is that arbi-
trary BRDFs resulting from measurements or physical
simulations can be used. Figure 4, for example, shows
a teapot with a BRDF that looks blue from one side and
red from another. This BRDF has been generated using
a simulation of micrgeometry [8].

Figure 4: A teapot with a simulated BRDF.

1.2 Gilobal lllumination using Environ-
ment Maps

The presented techniques for applying alternative re-
flection models to local illumination computations can
significantly increase the realism of synthetic images.
However, true photorealism is only possible if global
effects are also considered. Since texture mapping tech-
niques for diffuse illumination are widely known and
applied, we concentrate on non-diffuse global illumi-
nation, in particular mirror- and glossy reflection.

We describe here an approach based on environment
maps, as presented by Heidrich and Seidel [9], be-
cause they offer a good compromise between render-
ing quality and storage requirements. With environ-
ment maps, 2-dimensional textures instead of the full
4-dimensional radiance field [19] can be used to store
the illumination.

1.3 View-independent Environment Maps

The techniques described in the following assume that
environment maps can be reused for different viewing
positions in different frames, once they have been gen-
erated. It is therefore necessary to choose a representa-
tion for environment maps which is valid for arbitrary
viewing positions. This includes both cube maps [6]

11-4

and parabolic maps [9], both of which are supported on
all modern platforms.

1.4 Mirror and Diffuse Terms with Envi-
ronment Maps

Once an environment map is given in a view-
independent parameterization, it can be used to add a
mirror reflection term to an object. Using multi-pass
rendering and either alpha blending or an accumulation
buffer [7], it is possible to add a diffuse global illumi-
nation term through the use of a precomputed texture.
Two methods exist for the generation of such a texture.
One way is, that a global illumination algorithm such
as Radiosity is used to compute the diffuse global illu-
mination in every surface point.

The second approach is purely image-based, and was
proposed by Greene [6]. The environment map used for
the mirror term contains information about the incom-
ing radiance L;(x, f), where x is the point for which the
environment map is valid, and [the direction of the in-
coming light. This information can be used to prefilter
the environment map to represent the diffuse reflection
of an object for all possible surface normals. Like regu-
lar environment maps, this texture is only valid for one
point in space, but can be used as an approximation for
nearby points.

1.5 Fresnel Term

A regular environment map without prefiltering de-
scribes the incoming illumination in a point in space.
If this information is directly used as the outgoing il-
lumination, as with regular environment mapping, only
metallic surfaces can be modeled. This is because for
metallic surfaces (surfaces with a high index of refrac-
tion) the Fresnel term is almost one, independent of the
angle between light direction and surface normal. Thus,
for a perfectly smooth (i.e. mirroring) surface, incom-
ing light is reflected in the mirror direction with a con-
stant reflectance.

For non-metallic materials (materials with a small in-
dex of refraction), however, the reflectance strongly de-
pends on the angle of the incoming light. Mirror re-
flections on these materials should be weighted by the
Fresnel term for the angle between the normal and the
viewing direction v.

Similar to the techniques for local illumination pre-
sented in Section 1, the Fresnel term F(cos) for the

mirror direction 7, can be stored in a texture map. Since
here only the Fresnel term is required, a 1-dimensional
texture map suffices for this purpose. This Fresnel term
is rendered to the framebuffer’s alpha channel in a sep-
arate rendering pass. The mirror part is then multiplied
with this term in a second pass, and a third pass is used
to add the diffuse part. This yields an outgoing radiance
of L, =F - L,, + Ly, where L,, is the contribution of
the mirror term, while L is the contribution due to dif-
fuse reflections.

In addition to simply adding the diffuse part to the
Fresnel-weighted mirror reflection, we can also use the
Fresnel term for blending between diffuse and specular:
L,=F-Ly+ (1— F)Lg. This allows us to simulate
diffuse surfaces with a transparent coating: the mirror
term describes the reflection off the coating. Only light
not reflected by the coating hits the underlying surface
and is there reflected diffusely.

Figure 5 shows images generated using these two ap-
proaches. In the top row, the diffuse term is simply
added to the Fresnel-weighted mirror term (the glossy
reflection is zero). For a refractive index of 1.5 (left),
which approximately corresponds to glass, the object
is only specular for grazing viewing angles, while for
a high index of refraction (200, right image), which is
typical for metals, the whole object is highly specular.

The bottom row of Figure 5 shows two images gen-
erated with the second approach. For a low index of
refraction, the specular term is again high only for graz-
ing angles, but in contrast to the image above, the dif-
fuse part fades out for these angles. For a high index
of refraction, which, as pointed out above, corresponds
to metal, the diffuse part is practically zero everywhere,
so that the object is a perfect mirror for all directions.

1.6 Precomputed Glossy Reflection and
Transmission

We would now like to extend the concept of environ-
ment maps to glossy reflections. The idea is similar
to the diffuse prefiltering proposed by Greene [6] and
the approach by Voorhies and Foran [30] to use envi-
ronment maps to generate Phong highlights from di-
rectional light sources. These two ideas can be com-
bined to precompute an environment map containing
the glossy reflection of an object with a Phong material.
With this concept, effects similar to the ones presented
by Debevec [5] are possible in real time.

11-5

Figure 5: Top row: Fresnel weighted mirror term. Second row: Fresnel weighted mirror term plus diffuse illumina-
tion. Third row: Fresnel blending between mirror and diffuse term. The indices of refraction are (from left to right)
1.5, 5, and 200. Bottom row: a prefiltered version of the map with a roughness of 0.01, and application of this map
to a reflective sphere and torus.

11-6

As shown in [15], the Phong BRDF is given by

-1 A1/r - (R1/r
folT—) = b STy IO
cos o cos o
where 77, and 7, are the reflected light- and viewing
directions, respectively.
Thus, the specular global illumination using the
Phong model is

Lo(7) = ke - / FlBY L) deo(B, (6)
Q)

which is only a function of the reflection vector 7, and
the environment map containing the incoming radiance

—

L;(1). Therefore, it is possible to take a map containing
L; (f), and generate a filtered map containing the outgo-
ing radiance for a glossy Phong material. Since this fil-
tering is relatively expensive, it can on most platforms
not be redone for every frame in an interactive applica-
tion. On special graphics hardware that supports con-
volution operations, however, it can be performed on
the fly, as described by Kautz et al. [13].

The bottom row of Figure 5 shows such a prefiltered
map as well as applications of this map for reflection
and transmision. If the original environment map is
given in a high-dynamic range format, then this pre-
filtering technique allows for effects similar to the ones
described by Debevec [5].

2 Shadow Mapping

After discussing models for local illumination in the
previous chapter, we now turn to global effects. In this
chapter we deal with algorithms for generating shadows
in hardware-based renderings.

Shadows are probably the visually most important
global effect. This fact has resulted in a lot of re-
search on how to generate them in hardware-based
systems. Thus, interactive shadows are in principle
a solved problem. However, current graphics hard-
ware rarely directly supports shadows, and, as a con-
sequence, fewer applications than one might expect ac-
tually use the developed methods.

In contrast to the analytic approach shadow volumes,
shadow maps [33] are a sampling-based method. First,
the scene is rendered from the position of the light
source, using a virtual image plane (see Figure 6). The
depth image stored in the z-buffer is then used to test
whether a point is in shadow or not.

point
light source

virtual
image plane
with

depth image

occluder

=]~

receiver

Figure 6: Shadow maps use the z-buffer of an image of
the scene rendered from the light source.

To this end, each fragment as seen from the cam-
era needs to be projected onto the depth image of the
light source. If the distance of the fragment to the light
source is equal to the depth stored for the respective
pixel, then the fragment is lit. If the fragment is further
away, is is in shadow.

A hardware multi-pass implementation of this prin-
ciple has been proposed in [25]. The first step is the
acquisition of the shadow map by rendering the scene
from the light source position. For walkthroughs, this is
a preprocessing step, for dynamic scenes it needs to be
performed each frame. Then, for each frame, the scene
is rendered without the illumination contribution from
the light source. In a second rendering pass, the shadow
map is specified as a projective texture, and a specific
hardware extension is used to map each pixel into the
local coordinate space of the light source and perform
the depth comparison. Pixels passing this depth test are
marked in the stencil buffer. Finally, the illumination
contribution of the light source is added to the lit re-
gions by a third rendering pass.

The advantage of the shadow map algorithm is that
it is a general method for computing all shadows in the
scene, and that it is very fast, since the representation
of the shadows is independent of the scene complex-
ity. On the down side, there are artifacts due to the dis-
crete sampling and the quantization of the depth. One
benefit of the shadow map algorithm is that the ren-
dering quality scales with the available hardware. The
method could be implemented on fairly low end sys-
tems, but for high end systems a higher resolution or
deeper z-buffer could be chosen, so that the quality in-

11-7

creases with the available texture memory. Unfortu-
nately, the necessary hardware extensions to perform
the depth comparison on a per-fragment basis are cur-
rently only availablehave until recently only been avail-
able on two high-end systems, the RealityEngine [1]
and the InfiniteReality [20].

2.1 Shadow Maps Using the Alpha Test

Instead of relying on a dedicated shadow map exten-
sion, it is also possible to use projective textures and
the alpha test. Basically, this method is similar to the
method described in [25], but it efficiently takes advan-
tage of automatic texture coordinate generation and the
alpha test to generate shadow masks on a per-pixel ba-
sis. This method takes one rendering pass more than
required with the appropriate hardware extension.

In contrast to traditional shadow maps, which use the
contents of a z-buffer for the depth comparison, we use
a depth map with a linear mapping of the z values in
light source coordinates. This allows us to compute
the depth values via automatic texture coordinate gen-
eration instead of a per-pixel division. Moreover, this
choice improves the quality of the depth comparison,
because the depth range is sampled uniformly, while a
z-buffer represents close points with higher accuracy
than far points.

As before, the entire scene is rendered from the light
source position in a first pass. Automatic texture coor-
dinate generation is used to set the texture coordinate of
each vertex to the depth as seen from the light source,
and a 1-dimensional texture is used to define a linear
mapping of this depth to alpha values. Since the al-
pha values are restricted to the range [0 . . . 1], near and
far planes have to be selected, whose depths are then
mapped to alpha values 0 and 1, respectively. The re-
sult of this is an image in which the red, green, and
blue channels have arbitrary values, but the alpha chan-
nel stores the depth information of the scene as seen
from the light source. This image can later be used as a
texture.

For all object points visible from the camera, the
shadow map algorithm now requires a comparison of
the point’s depth with respect to the light source with
the corresponding depth value from the shadow map.
The first of these two values can be obtained by apply-
ing the same 1-dimensional texture that was used for
generating the shadow map. The second value is ob-
tained simply by using the shadow map as a projective

texture. In order to compare the two values, we can
subtract them from each other, and compare the result
to zero.

With multi-texturing, this comparison can be im-
plemented in a single rendering pass. Both the 1-
dimensional texture and the shadow map are specified
as simultaneous textures, and the texture blending func-
tion is used to implement the difference. The result-
ing o value is 0 at each fragment that is lit by the light
source, and > 0 for fragments that are shadowed. Then,
an alpha test is employed to compare the results to zero.
Pixels passing the alpha test are marked in the stencil
buffer, so that the lit regions can then be rendered in a
final rendering pass.

Without support for multi-texturing, the same algo-
rithm is much more expensive. First, two separate
passes are required for applying the texture maps, and
alpha blending is used for the difference. Now, the
framebuffer contains an « value of 0 at each pixel that
is lit by the light source, and > 0 for shadowed pixels.
In the next step it is then necessary to set o to 1 for
all the shadowed pixels. This will allow us to render
the lit geometry, and simply multiply each fragment by
1 — « of the corresponding pixel in the framebuffer (the
value of 1 — o would be 0 for shadowed and 1 for lit
regions). In order to do this, we have to copy the frame-
buffer onto itself, thereby scaling o by 2™, where n is
the number of bits in the o channel. This ensures that
1/2™, the smallest value > 0, will be mapped to 1. Due
to the automatic clamping to the interval [0... 1], all
larger values will also be mapped to 1, while zero val-
ues remain zero. In addition to requiring an expensive
framebuffer copy, this algorithm also needs an alpha
channel in the framebuffer (“destination alpha”), which
might not be available on some systems.

Figure 7 shows an engine block where the shadow re-
gions have been determined using this approach. Since
the scene is rendered at least three times for every frame
(four times if the light source or any of the objects
move), the rendering times for this method strongly de-
pend on the complexity of the visible geometry in every
frame, but not at all on the complexity of the geometry
casting the shadows. Scenes of moderate complexity
can be rendered at high frame rates even on low end
systems. The images in Figure 7 are actually the results
of texture-based volume rendering using 3D texturing
hardware (see [32] for the details of the illumination
process).

11-8

Figure 7: An engine block generated from a volume
data set with and without shadows. The shadows have
been computed with our algorithm for alpha-coded
shadow maps. The Phong reflection model is used for
the unshadowed parts.

3 Bump Mapping Algorithms

Bump maps have become a popular approach for
adding visual complexity to a scene, without increas-
ing the geometric complexity. They have been used
in software rendering systems for quite a while [4],
but hardware implementations have only occurred rela-
tively recently, and several different methods are pos-
sible, depending on the level of hardware support
(e.g. [23, 22,9, 14]).

The original approach to bump mapping [4] defines
surface detail as a height value at every point on a
smooth base surface. From this texture-mapped height
value, one can compute a per-pixel normal by taking
the partial derivatives of the height values. Since this
is a fairly expensive operation, most recent hardware
implementations [22, 9, 14] precompute the normal for
every surface point in an offline process, and store it
directly in a texture map.

The bump mapping scheme that has become most
popular for interactive applications recently is de-
scribed in detail in a technical report by Kilgard [14].
First, the light and the viewing vector at every vertex
of the geometry is computed and transformed into the
local coordinate frame at that vertex (“tangent space”,
see [22]). In the original version, this is a software step,
which can now, however also be done directly in hard-
ware [16]. Then, these local vectors are interpolated
across the surface using Gouraud shading and the per-
pixel bump map normals are looked up from a texture

map. A simple reflection model containing a diffuse
and a Phong component can then be implemented as a
number of dot products followed by successive squar-
ing (for the Phong exponent). These operations map
easily to the register combiner facility present in mod-
ern hardware [21].

3.1 Shadows for Bump Maps

The basic approach to bump mapping as outlined above
can be extended to approximate the shadows that the
bumps cast onto each other. Note that approaches like
shadow maps do not work for bump maps because dur-
ing the rendering phase the geometry is not available;
only per-pixel normals are. Shadowing algorithms for
bump maps therefore encode the visibility of every sur-
face point for every possible light direction. This is
simplified by the fact that bump maps are derived from
height fields (i.e. terrains), which allows us to use the
notion of a horizon. In a terrain, a distant light source
located in a certain direction is visible from a given sur-
face point if and only if it is located above the horizon
for that surface point. Thus, it is sufficient to encode the
horizon for all height field points and directions. This
approach is called horizon mapping, first presented by
Max [17].

The question is, how this horizon information can be
represented such that it consumes little memory, and
such that the test of whether a given light direction is
above or below the horizon for any point in the bump
map can be done efficiently in hardware. We describe
here a method proposed by Heidrich et al. [8].

We start with a bump map given as a height field,
as in the original formulation by Blinn [4]. We then
select a number of random directions D = {d;}, and
shoot rays from all height field points p into each of the
directions d;. For the shadowing algorithm we will only
record a boolean value for each of these rays, namely
whether the ray hits another point in the height field, or
not. In Section 3.2 we will describe how to use a similar
preprocessing step for computing indirect illumination
in bump maps.

Now let us consider all the rays shot from a single
surface point p. We project all the unit vectors for
the sampling directions d; € D into the tangent plane,
i.e. we drop the z coordinate of J; in the local coordi-
nate frame. Then we fit an ellipse containing as many
of those 2D points that correspond to unshadowed di-
rections as possible, without containing too many shad-

11-9

owed directions. This ellipse is uniquely determined by
its (2D) center point c, a direction (a,, ay)T describing
the direction of the major axis (the minor axis is then
simply (—ay, az)"), and two radii r; and ro, one for
the extent along each axis.

Figure 8: For the shadow test we precompute 2D el-
lipses at each point of the height field, by fitting them
to the projections of the scattering directions into the
tangent plane.

For the fitting process, we begin with the ellipse rep-
resented by the eigenvectors of the covariance matrix
of all points corresponding to unshadowed directions.
We then optimize the radii with a local optimization
method. As an optimization criterion we try to max-
imize the number of light directions inside the ellipse
while at the same time minimizing the number of shad-
owed directions inside it.

Once we have computed this ellipse for each grid
point in the height field, the shadow test is simple. The
light direction [is also projected into the tangent plane,
and it is checked whether the resulting 2D point is in-
side the ellipse (corresponding to a lit point) or not (cor-
responding to a shadowed point).

Both the projection and the in-ellipse test can math-
ematically be expressed very easily. First, the 2D coor-
dinates [, and [, have to be transformed into the coor-
dinate system defined by the axes of the ellipse:

S >>,)

) l
° ly —cy
. —a ly —cp
ly'_<< a:cy>|(ly_cy >> ®)

>0 €))

has to be performed.
To map these computations to graphics hardware, we
represent the six degrees of freedom for the ellipses as

2 RGB textures. Then the required operations to im-
plement Equations 7 through 9 are simple dot products
as well as additions and multiplications. This is possi-
ble using the OpenGL imaging subset [26], available on
most contemporary workstations, but also using some
vendor specific extensions, such as the register com-
biner extension from NVIDIA [21]. Depending on the
exact graphics hardware available, the implementation
details will have to vary slightly. These details for dif-
ferent platforms are described in a technical report [11].

Figure 9 shows some results of this shadowing algo-
rithm.

Figure 9: A simple bump map with and without shad-
ows

3.2 Indirect lllumination in Bump Maps

Finally, we would like to discuss a method for com-
puting the indirect light in bump maps [8], i.e. the light
that bounces around multiple times in the bumps before
hitting the camera.

As in the case of bump map shadows, we start by
choosing a set of random directions d; € D, and shoot-
ing rays from al points p on the height field into all
directions d;. This time, however, we do not only store
a boolean value for every ray, but rather the 2D coordi-
nates of the intersection of that ray with the height field
(if any). That is, for every direction d;, we store a 2D
map S; that, for every point p, holds the 2D coordinates
of the point q visible from p in direction d;.

Using this precomputed visiblity information, we
can then integrate over the light arriving from all di-
rections. For every point p in the height field, we sum
up the indirect illumination arriving from any of the di-
rections d;, as depicted in Figure 10.

If we assume that both the light and the viewing di-
rection vary slowly across the height field (this corre-
sponds to the assumption that the bumps are relatively
small compared to the distance from both the viewer
and the light source), then the only strongly varying pa-

11-10

/ / L

7&/

Figure 10: With the precomputed visibility, the differ-
ent paths for the illumination in all surface points are
composed of pieces with identical directions.

rameters are the surface normals. More specifically, for
the radiance leaving a grid point p in direction ¥, the
important varying parameters are the normal 77, the
point q := S;[p] visible from p in direction d;, and
the normal 77, in that point.

In particular, the radiance in direction ' caused by
light arriving from direction [’and scattered once in di-
rection —ci; is given by the following formula.

Lo(p, ¥) =f(7ip, di, 0) (iy|d;)-

(#0530, T =) g1 - Li(a, 1) - (10)

Usually, the BRDF is written as a 4D function of the in-
coming and the outgoing direction, both given relative
to a local coordinate frame where the local surface nor-
mal coincides with the z-axis. In a height field setting,
however, the viewing and light directions are given in
some global coordinate system that is not aligned with
the local coordinate frame, so that it is first necessary
to perform a transformation between the two frames.
To emphasize this fact, we have denoted the BRDF as a
function of the incoming and outgoing direction as well
as the surface normal. If we plan to use an anisotropic
BRDF on the micro geometry level, we would also have
to include a reference tangent vector.

Note that the term in parenthesis is simply the di-
rect illumination of a height field with viewing direc-
tion —d;, with light arriving from [If we precompute
this term for all grid points in the height field, we ob-
tain a texture L, containing the direct illumination for
each surface point. This texture can be generated us-
ing a bump mapping step where an orthographic cam-
era points down onto the height field, but —d; is used
as the viewing direction for shading purposes.

Once we have L,4, the second reflection is just an-
other bump mapping step with ¢’ as the viewing direc-
tion and dz as the light direction. This time, the incom-
ing radiance is not determined by the intensity of the
light source, but rather by the content of the L, texture.

For each surface point p we look up the corresponding
visible point g = S;[p]. The outgoing radiance at q,
which is stored in the texture as Ly[q], is at the same
time the incoming radiance at p.

Thus, we have reduced computing the once-scattered
light in each point of the height field to two succes-
sive bump mapping operations, where the second one
requires an additional indirection to look up the illumi-
nation. We can easily extend this technique to longer
paths, and also add in the direct term at each scattering
point. This is illustrated in the Figure 11.

Direct Illum. Indirect Illum.

T2, " 7.7,
Direct Illum. l Indirect Illum.
> F——— + — > >
l,-d, dy,—d;
Direct Illum. l Indirect Illum.
- F——» + > >
l,-dj; d,,v
.
.
Direct Illum. l
T F— + —»
»V

Figure 11: Extending the dependent test scattering al-
gorithm to multiple scattering. Each box indicates a
texture that is generated with regular bump mapping.

For the total illumination in a height field, we sum
up the contributions for several such paths (some 40-
100 in most of our scenes). This way, we compute the
illumination in the complete height field at once, using
two SIMD-style operations on the whole height field
texture: bump mapping for direct illumination, using
two given directions for incoming and outgoing light,
as well as a lookup of the indirect illumination in a tex-
ture map using the precomputed visibility data in form
of the textures S;.

3.2.1 Use of Graphics Hardware

In recent graphics hardware, both on the workstation
and on the consumer level, several new features have
been introduced that we can make use of. In par-
ticular, we assume a standard OpenGL-like graphics
pipeline [26] with some extensions as described in the
following.

Firstly, we assume the hardware has some way of
rendering bump maps. This can either be supported

11-11

through specific extensions (e.g. [21]), or through the
OpenGL imaging subset [26], as described by Heidrich
and Seidel [9]. Any kind of bump mapping scheme will
be sufficient for our purposes, but the kind of reflection
model available in this bump mapping step will deter-
mine what reflection model we can use to illuminate
our hight field.

Secondly, we will need a way of interpreting the
components stored in one texture or image as texture
coordinates pointing into another texture. One way
of supporting this is the so-called pixel texture ex-
tension [10, 9], which performs this operation during
transfer of images into the frame buffer, and is currently
only available on some high-end SGI machines. Alter-
natively, we can use dependent texture lookups, a vari-
ant of multi-texturing, that has recently become avail-
able on some newer PC graphics boards. With depen-
dent texturing, we can map two or more textures simul-
taneously onto an object, where the texture coordinates
of the second texture are obtained from the components
of the first texture. This is exactly the feature we are
looking for. In case we have hardware that supports
neither of the two, it is quite simple, although not very
fast, to implement the pixel texture extension in soft-
ware: the framebuffer is read out to main memory, and
each pixel is replaced by a value looked up from a tex-
ture, using the previous contents of the pixel as texture
coordinates.

Using these two features, dependent texturing and
bump mapping, the implementation of the dependent
test method as described above is simple. As depicted
in Figure 10, the scattering of light via two points p
and q in the height field first requires us to compute
the direct illumination in q. If we do this for all grid
points we obtain a texture Ly containing the reflected
light caused by the direct illumination in each point.
This texture L4 is generated using the bump mapping
mechanism the hardware provides. Typically, the hard-
ware will support only diffuse and Phong reflections,
but if it supports more general models, then these can
also be used for our scattering implementation.

The second reflection in p is also a bump mapping
step (although with different viewing- and light direc-
tions), but this time the direct illumination from the
light source has to be replaced by a per-pixel radi-
ance value corresponding to the reflected radiance of
the point q visible from p in the scattering direction.
We achieve this by bump mapping the surface with a
light intensity of 1, and by afterwards applying a pixel-

wise multiplication of the value looked up from L with
the help of dependent texturing. Figure 12 shows how
to conceptually set up a multi-texturing system with de-
pendent textures to achieve this result.

— S;
q
LI
Ly —

Figure 12: For computing the indirect light with the
help of graphics hardware, we conceptually require a
multi-texturing system with dependent texture lookups.
This figure illustrates how this system has to be set up.
Boxes indicate one of the two textures, while incom-
ing arrows signal texture coordinates and outgoing ones
mean the resulting color values.

The first texture is the S; that corresponds to the scat-
tering direction d;. For each point p it yields q, the
point visible from p in direction d;. The second tex-
ture Ly contains the reflected direct light in each point,
which acts as an incoming radiance at p. Figure 13
shows some results of the method.

Figure 13: A bump map with and without indirect illu-
mination

By using this hardware approach, we treat the graph-
ics board as a SIMD-like machine which performs the
desired operations, and computes one light path for
each of the grid points at once. This use of hardware
dramatically increases the performance over the soft-
ware version to an almost interactive rate.

4 Conclusion

In this part, we have reviewed some of the more com-
plex shading algorithms that utilize graphics hardware.
While the individual methods are certainly quite differ-
ent, there are some features that occur in all examples:

11-12

The most expensive operations (i.e. visibility
computations, filtering of environment maps etc.)
are not performed on the fly, but are done in a pre-
computing step.

The results of the precomputation are represented
in a sampled (tabular) form that allows us to use
texture mapping to apply the information in the
actual shaders.

The shaders themselves are often relatively sim-
ple due to the amount of precomputation. They
mostly have the job of combining the precomputed
textures in various flexible ways.

The textures need to be parameterized in such a
way that the texture coordinates are easy and effi-
cient to generate, ideally directly in hardware.

References

[1]

[7]

Kurt Akeley. RealityEngine graphics. In Com-
puter Graphics (SIGGRAPH ’93 Proceedings),
pages 109-116, August 1993.

David C. Banks. Illumination in diverse codi-
mensions. In Computer Graphics (Proceedings
of SIGGRAPH ’94), pages 327-334, July 1994.

Petr Beckmann and Andre Spizzichino. The Scat-

tering of Electromagnetic Waves from Rough Sur-
faces. McMillan, 1963.

James F. Blinn. Simulation of wrinkled surfaces.
In Computer Graphics (SIGGRAPH ’78 Proceed-
ings), pages 286-292, August 1978.

Paul E. Debevec. Rendering synthetic objects into
real scenes: Bridging traditional and image-based
graphics with global illumination and high dy-
namic range photography. In Computer Graphics
(SIGGRAPH 98 Proceedings), pages 189-198,
July 1998.

Ned Greene. Applications of world projections.
In Proceedings of Graphics Interface '86, pages
108-114, May 1986.

Paul E. Haeberli and Kurt Akeley. The accumu-
lation buffer: Hardware support for high-quality
rendering. In Computer Graphics (SIGGRAPH
’90 Proceedings), pages 309-318, August 1990.

(8]

(9]

[11]

[14]

[17]

[18]

11-13

W. Heidrich, K. Daubert, J. Kautz, and H.-P. Sei-
del. Illuminating Micro Geometry Based on Pre-
computed Visibility. In Computer Graphics (SIG-
GRAPH 00 Proceedings), pages 455-464, July
2000.

Wolfgang Heidrich and Hans-Peter Seidel. Real-
istic, hardware-accelerated shading and lighting.
In Computer Graphics (SIGGRAPH "99 Proceed-
ings), August 1999.

Silicon Graphics Inc. Pixel Texture Extension, De-
cember 1996. Specification document, available
from http://www.opengl.org.

Jan Kautz, Wolfgang Heidrich, and Katja
Daubert. Bump map shadows for OpenGL render-
ing. Technical Report MPI-1-2000-4-001, Max-
Planck-Institut fiir Informatik, 2000.

Jan Kautz and Michael D. McCool. Interactive
rendering with arbitrary BRDFs using separable
approximations. In Rendering Techniques ’99
(Proc. of Eurographics Workshop on Rendering),
pages 247 — 260, June 1999.

Jan Kautz, Pere-Pau Vizquez, Wolfgang Hei-
drich, and Hans-Peter Seidel. Unified approach to
prefiltered environment maps. In Rendering Tech-
niques ’00.

Mark Kilgard. A practical and robust bump map-
ping technique. Technical report, NVIDIA, 2000.
available from http://www.nvidia.com.

Robert R. Lewis. Making shaders more physically
plausible. In Fourth Eurographics Workshop on
Rendering, pages 47-62, June 1993.

Erik Lindholm, Mark Kilgard, and Henry More-
ton. A user-programmable vertex engine. In Com-
puter Graphics (SIGGRAPH ’01 Proceedings),
August 2001.

Nelson L. Max. Horizon mapping: shadows for
bump-mapped surfaces. The Visual Computer,
4(2):109-117, July 1988.

Anis Ahmad Michael D. McCool, Jason Ang.
Homomorphic factorization of BRDFs for high-
performance rendering. In Computer Graphics
(SIGGRAPH °01 Proceedings), 2001.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

Gavin Miller, Steven Rubin, and Dulce Pon-
celeon. Lazy decompression of surface light fields
for precomputed global illumination. In Render-
ing Techniques 98 (Proceedings of Eurograph-
ics Rendering Workshop), pages 281-292, March
1998.

John S. Montrym, Daniel R. Baum, David L. Dig-
nam, and Christopher J. Migdal. InfiniteReality:
A real-time graphics system. In Computer Graph-
ics (SIGGRAPH 97 Proceedings), pages 293—
302, August 1997.

NVIDIA Corporation. NVIDIA OpenGL Exten-
sion Specifications, October 1999. Available from
http://www.nvidia.com.

Mark Peercy, John Airey, and Brian Cabral. Ef-
ficient bump mapping hardware. In Computer
Graphics (SIGGRAPH 97 Proceedings), pages
303-306, August 1997.

Andreas Schilling, Giinter Knittel, and Wolfgang
Straer. Texram: A smart memory for textur-
ing. IEEE Computer Graphics and Applications,
16(3):32-41, May 1996.

Christophe Schlick. A customizable reflectance
model for everyday rendering. In Fourth Euro-
graphics Workshop on Rendering, pages 73-83,
June 1993.

Marc Segal, Carl Korobkin, Rolf van Widenfelt,
Jim Foran, and Paul Haeberli. Fast shadow and
lighting effects using texture mapping. Com-
puter Graphics (SIGGRAPH 92 Proceedings),
26(2):249-252, July 1992.

Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Specification (Version 1.2),
1998.

Bruce G. Smith. Geometrical shadowing of a ran-
dom rough surface. IEEE Transactions on Anten-
nas and Propagation, 15(5):668-671, September
1967.

Detlev Stalling, Malte Zockler, and Hans-
Christian Hege. Fast display of illuminated field
lines. IEEE Transactions on Visualization and
Computer Graphics, 3(2):118-128, 1997.

[29]

[31]

11-14

Kenneth E. Torrance and E. M. Sparrow. Theory
for off-specular reflection from roughened sur-
faces. Journal of the Optical Society of America,
57(9):1105-1114, September 1967.

D. Voorhies and J. Foran. Reflection vector
shading hardware. In Computer Graphics (SIG-
GRAPH 94 Proceedings), pages 163-166, July
1994.

Gregory J. Ward. Measuring and modeling
anisotropic reflection. Computer Graphics (SIG-
GRAPH 92 Proceedings), pages 265-273, July
1992.

Riidiger Westermann and Thomas Ertl. Efficiently
using graphics hardware in volume rendering ap-
plications. In Computer Graphics (SIGGRAPH
'98 Proceedings), pages 169—178, July 1998.

Lance Williams. Casting curved shadows on
curved surfaces. In Computer Graphics (SIG-
GRAPH 78 Proceedings), pages 270-274, Au-
gust 1978.

