
A Short Introduction to

Michael McCool
mmccool@cgl.uwaterloo.ca

http://libsh.sourceforge.net/

http://www.cgl.uwaterloo.ca/

Computer Graphics Laboratory
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

26th April 2004

8 – 1

8 – 2

Figure 1: Some example shaders.

1 Introduction

Sh is a high-level GPU programming “language” whose “parser” is imple-
mented using C++ operator overloading. Actually, Sh is not really a lan-
guage, but an advanced C++ API. It looks at first like a standard graphics
library, with matrices, points, and vectors, and you can use it that way if
you want. But you can also capture sequences of operations in a “retained
mode”, much like a display list, and compile these operations for later execu-
tion on the GPU. Sh has its own optimizer and supports a modular backend
system. The runtime engine of Sh tries to make best use of the available
hardware and graphics API features but without burdening the programmer
with low-level details. It manages buffers and textures as well as shaders,
making it much more convenient to program multipass algorithms and to
encapsulate data representations.

Sh programs can run on the GPU but act like extensions of the host
application. In particular, the semantics of Sh have been set up so that Sh
programs act like C++ functions, and textures and buffers act like arrays.
For instance, uniform parameters are simply variables external to Sh pro-

8 – 3

gram definitions, and textures are simply an array-valued parameter type.
The C++ scope rules then control which parameters and textures get bound
to which shaders, while the Sh runtime system manages updates of uniforms,
buffers, and binding of texture units. This means that C++ modularity con-
structs can be used to organize Sh programs: namespaces, templates, and
classes can be used to organize and parameterize shaders; you can define
your own types and operators; and you can define libraries of functions and
shaders. C++ control constructs can also be used to manipulate and con-
struct Sh programs on the fly. Such metaprogramming can be used to adapt
implementation complexity and performance to the target platform, generate
variants of shaders for different levels of detail, and generate shaders from
data files read in at runtime. Since C++ scope rules are used to control
binding, no glue code is needed.

Sh can be used for single shaders, to implement complex multipass algo-
rithms, or for general-purpose computation on GPUs. For general-purpose
computation, compiled Sh program objects can be applied as functions to
streams of data. These programs will execute on the GPU without it ever
being necessary for the user to make a graphics API call. The same pro-
grams can be compiled (on the fly, using just-in-time compilation, and with
full support for metaprogramming) to the host CPU as well, so the decision
to execute an algorithm on the CPU or GPU can be deferred — until run-
time if necessary. Program objects can also be manipulated in various ways:
specialization, conversion of uniform variables to inputs, conversion of in-
puts to uniform variables, conversion of inputs to texture lookups, currying,
functional composition, concatenation, and other operations are available.

Sh comes with an extensive standard library that includes complex num-
bers, quaternions, matrix and geometry functions, lighting models, noise
functions (cellnoise, perlin, turbulence, worley, . . .), advanced texture repre-
sentations, standard shader kernels, and other functionality.

In the following sections we will introduce Sh by working through a num-
ber of examples. First, in Section 2, we will present the basic datatypes of
Sh, the tuples and matrices, and show how they can be used in immediate
mode. Section 3 shows how Sh programs are created by capturing sequences
of operations on these types using a retained-mode mechanism. We also
show how the interface between Sh programs and the rest of the application
is defined. In Section 4 we discuss textures, and show how Sh can be used
to build data abstractions. In Section 5 we present the stream processing
model of Sh, which provides support for general-purpose programming. We

8 – 4

also discuss capabilities for manipulating program objects. In Section 6 we
discuss the internals of the Sh implementation and the development tools
available for it. Finally, in Section 7 we explain the licensing and history
of Sh and how to obtain it. Sh is free, open-source, and vendor and API
neutral.

2 Tuples, Matrices, Operators, and Functions

The core types in Sh are n-tuples of numbers. Tuples have a semantic type
(such as point, vector, normal, plane, and so forth), a length (which must
be a compile time constant, but may otherwise be arbitrary; in particular,
tuples in Sh are not limited to length 4), and a storage type. For instance,
ShPoint3f is a three-dimensional point stored as a triple of single-precision
floating-point numbers, whereas ShColor4ub is a four-component color whose
components are stored as unsigned bytes. Generic tuples are given the se-
mantic type of ShAttrib, for instance ShAttrib3f; this type is the superclass
of the other tuple types.

Operators are overloaded on these types. Arithmetic operators usually
act componentwise, except for multiplication and division on certain types in
which an alternative definition makes sense (complex numbers and quater-
nions). Scalar promotion works on most operators; for instance, you can
multiply a vector by a scalar (and that scalar can be a C++ floating-point
value or an Sh 1-tuple).

Sh is not overly picky about type checking; for instance, it is possible
to add two points, even though this is geometrically questionable. However,
if we made this operation illegal, common operations such as barycentric
combinations would be annoying to specify. Most of the standard library
functions will also silently accept most semantic types. The semantic types
still provide useful documentation and metainformation, and in some cases
control the meaning of operators and functions (multiplication on complex
numbers, for instance).

The “()” notation is used for swizzling, using integers to index compo-
nents. If c is an ShColor3f representing an RGB color, then c(2,1,0) gives
that color in BGR order. Swizzles can also change the length of a tuple or
repeat elements. If we are given a 2-component LA color b and want to
convert it to a 3-component RGB color, we could use b(0,0,0). The swiz-
zle notation with one argument can be used to select elements of a tuple,

8 – 5

although the “[]” operator can also be used in this case.
The “|” and “^” operators are used for dot product and cross product

respectively, although dot and cross functions are also supported. Sh sup-
ports a large number of other built-in functions, including noise functions
of various kinds, tuple sorting, trigonometric, exponential, logarithmic, and
geometric operations, smoothed discontinuities, and spline evaluators. All
functions in the standard library are designed to work on graphics hardware
without branches or loops, and when possible the names are similar to those
in other shading languages and the C++ standard library.

Comparison operations return tuples whose components are either 0 or
1, using the same storage types as their inputs. The “&&” and “||” opera-
tors are defined to mean min and max respectively (which is consistent with
Boolean operations). The any and all operations can be used to reduce
Boolean tuples to a single decision. The cond function supports conditional
assignment (unfortunately, “?:” cannot be overloaded in C++) with both
Boolean tuples and scalars.

Suppose you would like to simulate the appearance of glass. You will
need a function to compute a reflection vector, a refraction vector, and the
Fresnel coefficient to determine the ratio between reflection and refraction.
These are actually already in the standard library, but if you wanted to define
a reflection function yourself, you could do it as shown in Listing 1. This
has the obvious semantics. In fact, you can use function pointers, pass by
reference to return values in arguments, separate compilation, and all the
usual machinery of C++.

ShVector3f
reflect (ShVector3f v, ShNormal3f n) {

return ShVector3f(2.0*(n|v)*n - v);
}

Listing 1: Reflection function.

Sh supports small fixed-size matrices to represent transformations of
points and vectors. Matrix types have names like ShMatrix3x4f and can
be square or rectangular. There is a standard library that supports opera-
tions on these matrices, and includes functions to compute the determinant,
adjoint, trace, inverse, and transpose, and to build matrices from tuples by
row or column. Matrices also support swizzling and slicing. If M is a 4 × 4
matrix, then M(2,1,0)(2,1,0) extracts the 3× 3 upper-left submatrix and
transposes it. Both row and column swizzles must be supplied, but the empty

8 – 6

swizzle “()” is the identity. Therefore, M()(3,2,1,0) reverses the columns
of M and M(3,2,1,0)() reverses the rows. Matrices also support the “[]”
operator. Application of this operator extracts a tuple representing a row of
the matrix. A second application of “[]” then selects a component of this
tuple, so M[2] selects row 2 of the matrix M as an ShAttrib4f and M[2][3]

selects the scalar at row 2, column 3.
On the left hand side of an assignment, the swizzling operators can be

used to selectively write to elements of both tuples and matrices.
Transformations of tuples by matrices is supported by the “*” or “|”

operators, which both support matrix/tuple multiplication. If the matrix is
on the left and the tuple on the right, the tuple is interpreted as a column
vector. If the tuple is on the left and the matrix is on the right, the tuple is
interpreted as a row vector. This rule avoids a lot of transpose operators, and
is consistent with the use of “|” for dot product. If a tuple is one element
too small for the matrix being applied to it, it is automatically extended
with a homogeneous coordinate relative to its type. For instance, if you try
to transform an ShPoint3f by an ShMatrix4x4f, the point will be automat-
ically extended with a homogeneous coordinate of 1. If an ShVector3f is
transformed the same way, it will be extended with a homogeneous coordi-
nate of 0.

3 Programs, Parameters, and Attributes

Tuple and matrix types can be used in immediate mode as if Sh were a sim-
ple graphics utility library. However, in Sh sequences of operations on these
types can also be recorded in a retained mode and dynamically cross com-
piled to another target using the SH BEGIN PROGRAM and SH END keywords.
The SH BEGIN PROGRAM keyword takes a string parameter that specifies the
compilation target. A value of "gpu:vertex" indicates compilation to the
vertex shading unit of the currently installed GPU, while "gpu:fragment"

indicates compilation to the fragment unit of the currently installed GPU.
The SH BEGIN PROGRAM keyword returns an object of type ShProgram which
represents the compiled shader.

Consider Listing 2, which implements vertex and fragment programs that
support point and normal transformation as well as a modified Blinn-Phong
lighting model for point light sources. We use C++ metaprogramming to
unroll a loop over the light sources and build different versions of the shader

8 – 7

supporting different numbers of point sources. A typical rendering (with one
source) is given on the left hand side of Figure 2.

vertex_shader = SH_BEGIN_PROGRAM("gpu:vertex") {
// declare input vertex attributes (unpacked in order given)
ShInputNormal3f nm; // normal vector (MCS)
ShInputPosition3f pm; // position (MCS)
// declare outputs vertex attributes (packed in order given)
ShOutputNormal3f nv; // normal (VCS)
ShOutputPoint3f pv; // position (VCS)
ShOutputPosition4f pd; // position (DCS)
// specify computations
pv = MV | pm; // VCS position
pd = VD | pv; // DCS position
nv = normalize(nm | inverse_MV); // VCS normal

} SH_END;
fragment_shader = SH_BEGIN_PROGRAM("gpu:fragment") {

// declare input fragment attributes (unpacked in order given)
ShInputNormal3f nv; // normal (VCS)
ShInputPoint3f pv; // position (VCS)
ShInputPosition3f pd; // fragment position (DCS)
// declare output fragment attributes (packed in order given)
ShOutputColor3f fc; // fragment color
// compute unit normal and view vector
nv = normalize(nv);
vv = -normalize(ShVector3f(pv));
// process each light source
for (int i=0; i<NLIGHTS; i++) {

// compute per-light normalized vectors
ShVector3f lv = normalize(light_position[i] - pv);
ShVector3f hv = normalize(lv + vv);
ShColor3f ec = light_color[i] * max(0.0,(nv|lv));
// sum up contribution of light source
fc += ec*(kd + ks*pow(pos(hv|nv),exp));

}
} SH_END;

Listing 2: Vertex and fragment shaders for the Blinn-Phong lighting model
using multiple point light sources.

Note the use of Input and Output binding type modifiers to modify the dec-

8 – 8

laration of some of the types inside each shader. Conceptually, ShPrograms
represent functions that are applied in parallel to streams of records, each
record containing k objects of various types, and produces another stream
of records, with each output record containing m objects of various types.
For instance, a vertex shader takes the vertex attributes bound to each input
vertex by the user and produces another set of attributes that will be inter-
polated by the rasterizer, and this computation is repeated for each vertex.
Likewise, the fragment shader takes as input interpolated values bound to
fragments and computes output values (in this case only one color tuple per
fragment, but multiple output values are possible in Sh, even if the hard-
ware does not support them directly). In general, we refer to values that are
presented as inputs and outputs to ShProgram objects as attributes.

Tuples and matrices declared without qualifiers are temporaries local to
the shader. They are initialized to zero at the start of every invocation
of a shader, which in this case simplifies the accumulation of contributions
from multiple light sources. Sh also permits reading from output tuples
and writing to input tuples (the latter does not change the real input data;
shaders are pass by value). If the target platform does not support this, then
Sh automatically introduces an appropriate temporary.

Other values are used in this computation. These are highlighted in
italics in the listings: MV , light position , kd , and so forth. These are Sh
matrix and tuple types declared external to a shader. Using an externally
declared Sh object in an ShProgram definition means that the values of that
object should be made available for use by the shader as a “global variable”.
These objects cannot be assigned to inside the shader, but immediate-mode
assignments to tuples and matrices referenced by a program will update these
values for the next evaluation of the program. We call Sh objects used in
this manner parameters.

The scope rules and modularity constructs of C++ can be used to con-
trol which parameters get bound to which shaders. Normally we would de-
fine shaders inside a framework that encapsulates parameters and program
objects. A simple example is given in Listing 3. Here we declare transforma-
tion parameters in the BaseShader abstract class, point light parameters for
NLIGHT light sources in the PointLightShader templated subclass, and fi-
nally the Blinn-Phong specific parameters in the BlinnPhong subclass. The
constructor BaseShader calls the initialization method, eventually defined
in the BlinnPhong concrete class, which constructs the ShProgram objects
vertex shader and fragment shader. The bind member function loads

8 – 9

these shaders onto the GPU when called. Such encapsulation is not manda-
tory. On the other hand, more sophisticated frameworks are certainly possi-
ble. Sh provides some optional frameworks that can provide various shader
management facilities. Many other programming and encapsulation tech-
niques are enabled by the close binding between C++ and Sh and the se-
mantic similarity of ShProgram definitions to dynamic function definitions
with static binding to parameters.

Figure 2: The Blinn-Phong lighting model, with specular and diffuse textures
on the right.

class BaseShader {
public:

static ShMatrix4x4f VD; // VCS to DCS
static ShMatrix4x4f MV; // MCS to VCS
static ShMatrix4x4f MD; // MCS to DCS
static ShMatrix4x4f inverse_MV; // MCS from VCS
ShProgram vertex_shader;
ShProgram fragment_shader;
BaseShader();
void bind();
virtual void init() = 0;

};
template <int NLIGHTS>
class PointLightShader: public BaseShader {

public:
static ShPoint3f light_position[NLIGHTS];

8 – 10

static ShColor3f light_color[NLIGHTS];
PointLightShader();

};
template <int NLIGHTS>
class BlinnPhongShader: public PointLightShader<NLIGHTS> {

public:
ShColor3f ks; // specular color
ShColor3f kd; // diffuse color
ShAttrib1f exp; // exponent
BlinnPhongShader();
virtual void init();

};

Listing 3: Framework classes for managing parameters.

Introspection is also supported on ShProgram objects. Member functions
are supported for iterating over inputs, outputs, and parameters, and recall-
ing metadata for each. Sh supports built-in metadata such as type, name,
and description, but also provides a mechanism for the application to bind
arbitrary metadata to tuples, matrices, and other Sh types, then retrieve this
data from ShPrograms that use them.

4 Arrays and Textures

Texture maps in Sh are supported as template classes which take the type
they store as a template argument. For instance, if we want to create a
texture that stores 3-channel unsigned byte color data in a 3D grid, we would
declare an ShTexture3D<ShColor3ub>. If we wanted a cube map of floating-
point vectors, we would declare an ShTextureCube<ShVector3f>.

Lookups on textures are supported with the “()” and “[]” operators.
These are slightly different. The “()” operator treats the lookup as if the
texture were a tabulated function, and the function were resolution indepen-
dent. It therefore uses a normalized texture coordinate range of [0, 1]× [0, 1].
However, if “[]” is used, Sh centers texels at the integers, although interpo-
lation is still performed.

An example shader using texture lookup is given in Listing 4; this is a
small modification of the shader given in Listing 2. All we have done is passed
through texture coordinates in the vertex shader (demonstrating the InOut

8 – 11

binding type, which declares both an input and an output) and converted ks

and ks to textures. An example rendering is given on the right of Figure 2.

template <int NLIGHTS>
class TexturedBlinnPhongShader: public PointLightShader<NLIGHTS> {
public:
ShTexture2D<ShColor3f> ks; // specular texture
ShTexture2D<ShColor3f> kd; // diffuse texture
ShAttrib1f exp; // exponent
TexturedBlinnPhongShader();
void init() {
vertex_shader = SH_BEGIN_PROGRAM("gpu:vertex") {
// declare input vertex attributes (unpacked in order given)
ShInOutTexCoord2f u; // texture coordinate
ShInputNormal3f nm; // normal vector (MCS)
ShInputPosition3f pm; // position (MCS)
// declare outputs vertex attributes (packed in order given)
ShOutputNormal3f nv; // normal (VCS)
ShOutputPoint3f pv; // position (VCS)
ShOutputPosition4f pd; // position (DCS)
// specify computations
pv = MV | pm; // VCS position
pd = VD | pv; // DCS position
nv = normalize(nm | inverse_MV); // VCS normal
} SH_END;
fragment_shader = SH_BEGIN_PROGRAM("gpu:fragment") {
// declare input fragment attributes (unpacked in order given)
ShInputTexCoord2f u; // texture coordinate
ShInputNormal3f nv; // normal (VCS)
ShInputPoint3f pv; // position (VCS)
ShInputPosition3f pd; // fragment position (DCS)
// declare output fragment attributes (packed in order given)
ShOutputColor3f fc; // fragment color
// compute unit normal and view vector
nv = normalize(nv);
vv = -normalize(ShVector3f(pv));
// process each light source
for (int i=0; i<NLIGHTS; i++) {
// compute per-light normalized vectors
ShVector3f lv = normalize(light_position[i] - pv);
ShVector3f hv = normalize(lv + vv);

8 – 12

ShColor3f ec = light_color[i] * max(0.0,(nv|lv));
// sum up contribution of light source
fc += ec*(kd(u) + ks(u)*pow(pos(hv|nv),exp));
}
} SH_END;
}

};

Listing 4: Textured Blinn-Phong shader.

Texture types are supported for 1D, 2D (both square and rectangular),
3D, and cube textures. If a feature is missing for some storage format on
some platform, Sh will emulate it with shader code. For instance, on the
GeForceFX, floating point textures are not bilinearly interpolated in hard-
ware. In Sh, all ShTexture types support bilinear interpolation. Sh inserts
code into the implementation of the “()” and “[]” lookup operators to im-
plement interpolation in software if necessary.

Inserting code to support lookup options poses a problem, however. What
if you want to change the interpolation mode of a texture after it has been
used in a shader, and possibly loaded into the GPU? We don’t want to trigger
implicit recompilation and possibly reloading of shaders upon such changes.
Since shader compilation and loading are relatively heavyweight operations,
they should be explicit. On the other hand, if we allowed some dynamic
mode changes and not others, we would be exposing platform dependencies.
Our solution is to disallow all dynamic changes to texture lookup modes.
Instead, lookup modes are made a part of the type of a texture, and can
therefore only be set when the texture is created. If you really want to use
the same shader with different textures using two different lookup modes, you
can recompile the shader, using a template type or a common base type for
the texture in question. If you really want to share data between two textures
with different lookup modes, an explicit data-sharing facility is available.

Three major classes of texture types are supported. The ShArray types
(ShArray1D, ShArray2D, ShArrayRect, etc.) only support nearest-neighbour
lookup and no filtering. The ShTable types support bilinear interpolation
but not filtering. Finally, ShTexture types support MIP-map filtering with
trilinear interpolation. Other minor modes or variations on these modes are
supported with template trait modifiers. Suppose you want a MIP-filtered
ShArray2D. Then you could use the type ShMIPFilter<ShArray2D<T> >.
Other trait modifiers can be used to set wrap and clamping modes and de-

8 – 13

tailed interpolation modes.
You can define your own data abstractions by encapsulating texture types

and providing your own access functions. For intance, consider Listing 5,
which implements homomorphically factorized reflectance models [3], using
a parabolic representation of the hemispherically parameterized functions
involved. Figure 3 gives some renderings using homomorphically factorized
materials.

class HfShader: public ShPointLightShader<1> {
public:
ShTexture2D<ShColor3f> p;
ShTexture2D<ShColor3f> q;
ShColor3f a;
HfShader ();
void init() {
vertex_shader = SH_BEGIN_PROGRAM("gpu:vertex") {
// declare input vertex attributes (unpacked in order given)
ShInputVector3f tm; // primary tangent (MCS)
ShInputVector3f sm; // secondary tangent (MCS)
ShInputPosition3f pm; // position (MCS)
// declare output vertex attributes (packed in order given)
ShOutputVector3f vs; // view-vector (SCS)
ShOutputVector3f ls; // light-vector (SCS)
ShOutputColor3f ec; // irradiance
ShOutputPosition4f pd; // position (HDCS)
// compute transformations
ShPoint3f pv = MV|pm; // VCS position
pd = MD|pv; // DCS position
// find surface frame
ShVector3f tv = normalize(MV|tm); // transform tangents
ShVector3f sv = normalize(MV|sm);
ShNormal3f nv = normalize(tv^sv); // normal
// compute irradiance
ShVector3f lv = normalize(light_position[0] - pv);
ec = light_color[0] * max(0.0,(nv|lv));
// compute SCS view and light vectors
ShVector3f vv = -normalize(ShVector3f(pv));
ls = ShVector3f(lv|tv,lv|sv,lv|nv);
vs = ShVector3f(vv|tv,vv|sv,vv|nv);
} SH_END;

8 – 14

fragment_shader = SH_BEGIN_PROGRAM("gpu:fragment") {
// declare input fragment attributes (unpacked in order given)
ShInputVector3f vs; // view-vector (SCS)
ShInputVector3f ls; // light-vector (SCS)
ShInputColor3f ec; // irradiance
ShInputPosition3f pd; // fragment position (DCS)
// declare output fragment attributes (packed in order given)
ShOutputColor3f fc; // fragment color
// compute normalized vectors
ls = normalize(ls);
vs = normalize(vs);
ShVector3f hs = normalize(ls + vs);
fc = p(parabolic(vs))

* q(parabolic(hs))
* p(parabolic(ls))
* a;

fc *= ec; // multiply by irradiance
} SH_END;

}
};

Listing 5: Vertex and fragment shaders for homomorphic factorization.

We can encapsulate the representation of the BRDF in a class, as shown
in Listing 6. We could easily define other classes with the same base class to
represent reflectance models in different ways; for instance, we might define
classes that use spherical harmonics, Lafortune lobes [1], or parameterized
lighting models. It should be noted, however, that a real data abstraction
would provide stronger data hiding by providing copy constructors and access
methods rather than making data members public. Similar techniques can
be used to build new texture types, for instance sparse textures, cubically
interpolated textures, or silhouette map textures.

class HfBRDF: public BRDF {
public:
ShTexture2D<ShColor3f> p, q;
ShColor3f a;
HfBRDF();
ShColor3f operator() (ShVector3f vs, ShVector3f ls) const {
ls = normalize(ls); vs = normalize(vs);
ShVector3f hs = normalize(ls + vs);

8 – 15

ShColor3f c = p(parabolic(vs))
* q(parabolic(hs))
* p(parabolic(ls));

return c * a;
}
};
template <typename F>
class BRDFShader: public ShPointLightShader<1> {
public:
BRDFShader();
void init() {
vertex_shader = SH_BEGIN_PROGRAM("gpu:vertex") {
... // as before
} SH_END;
fragment_shader = SH_BEGIN_PROGRAM("gpu:fragment") {
// declare input fragment attributes (unpacked in order given)
ShInputVector3f vs; // view-vector (SCS)
ShInputVector3f ls; // light-vector (SCS)
ShInputColor3f ec; // irradiance
ShInputPosition3f pd; // fragment position (DCS)
// declare output fragment attributes (packed in order given)
ShOutputColor3f fc; // fragment color
// multiply BRDF by irradiance
fc = F(vs,ls) * ec;
} SH_END;

}
};

Listing 6: Data abstraction for the homomorphically factorized BRDF rep-
resentation.

5 Channels and Streams

To extend Sh to stream computation and provide facilities for manipulating
programs dynamically, two extra operators are defined that act on program
objects: the connection operator “<<”, defined as functional composition or
application, and the combination operator “&”, which is equivalent to the
concatenation of the source code of programs. These operators can also be

8 – 16

Figure 3: Homomorphically factorized materials. On the left, satin, on the
right, a combination of three materials (garnet red, satin, and mystique).

used with stream abstractions based on the ShStream and ShChannel types,
but we will describe their effect on program objects first.

Suppose we have a program q1 with n inputs and k outputs and another
program p1 with k inputs and m outputs. The “<<” operator creates a new
program object with n inputs and m outputs by taking the outputs of q1

and feeding them into the inputs of p1.
Suppose we are given two more programs p2 and q2. Let p2 have n inputs

and m outputs, and let q2 have k inputs and ` outputs. Applying the “&”
operator to p2 and q2 results in a new program with n + k inputs and m + `
outputs. This new program has all the inputs, outputs, and computations of
the original programs.

Because of the way Sh is defined, the operator “&” is in fact equivalent
to the concatenation of the source code of the input programs, using two
separate scopes. Such a concatenation would ensure that the inputs and
outputs of p2 are declared before q2, and so would give the same result as
defined above.

The use of these operators to combine Sh programs can result in redun-
dant computation. However, the “<<” operator, in conjunction with the opti-
mizer in the Sh compiler (particularly dead code removal) and the definition
of some simple “glue” programs, can be used to eliminate such redundant
computations. It is important to note that both operators actually oper-
ate on the internal representation of Sh programs to build a completely new

8 – 17

program, which is ultimately run through the full suite of optimizations and
virtualizations supported by the Sh backend.

For instance, suppose we combine two programs with “&” and the result-
ing program computes the same value twice (in two different ways, so we
cannot discover this fact using common subexpression elimination). We can
define a simple program that copies its inputs to its outputs except for one of
the redundant results. This “glue” program can be connected to the output
of the combined program and the Sh dead code eliminator will remove the
redundant computation.

Unfortunately, to satisfy the type rules for connecting Sh programs, we
need to define the interface of each such glue program to match the particular
interface types of the given base program. This is annoying if all we want to
do is rearrange the inputs and outputs.

Sh provides some shortcuts, similar to manipulators in the C++ iostream

library, for manipulating the input and output channels of Sh programs:
deleting outputs, reordering inputs and outputs, replacing inputs with tex-
ture lookups, and so forth. These manipulators are really functions that re-
turn instances of either program objects or instances of special manipulator
classes. Manipulator classes store information about the particular manip-
ulation required. When combined with a program object in an expression,
the appropriate glue program is automatically generated, using introspection
over the program objects the manipulator is combined with, to perform the
desired manipulation. This approach can automatically resolve type issues.

Sh supports a stream computation model for general purpose computa-
tion based on the extension of these two operators to data. Stream objects
are represented in Sh using the ShChannel template class and the ShStream

class. A channel is a sequence of elements of the type given as its tem-
plate argument. Streams are containers for several channels of data, and are
specified by combining channels (or other streams) with the “&” operator.

Streams only refer to channels, they do not create copies. A channel can
still be referenced as a separate object, and can also be referenced by more
than one stream at once. For convenience, an ShChannel of any type can
also be used directly as a single-channel stream. Streams may not refer to
themselves as components.

In addition to being viewed as a sequence of channels, a stream can also be
seen as a sequence of homogeneous records, each record being a sequence of
elements from each component channel. Stream programs conceptually map
an input record type to an output record type, and are applied in parallel to

8 – 18

all records in the stream. If an ShProgram is compiled with the "gpu:stream"

or "cpu:stream" profile, it can be applied to streams.
The “<<” operator is overloaded to permit the application of stream pro-

grams to streams. For instance, a program p can be applied to an input
stream a and its output directed to an output stream b as follows:

b = p << a;

When specified, the above stream operation will execute immediately.
Use of “p << a” alone creates an unevaluated program, which is given

the type ShProgram (and can be assigned to a variable of this type, if the user
does not want execution to happen immediately). What actually happens is
that input attributes are replaced with fetch operators in the intermediate
language representation of the program. These fetch operators are initialized
to refer to the given stream’s channels. Such program objects can also be
interpreted as “procedural streams”. Only when an unevaluated procedural
stream is assigned to a concrete output stream will the computation actually
be executed.

The implementation of the << operator permits currying. You do not have
to supply all the inputs to a program at one time. If a stream program is
applied to a stream with an insufficient number of channels, an unevaluated
program with fewer inputs is returned. This program requires the remainder
of its inputs before it can execute.

Currying is a concept borrowed from functional languages. In a functional
language, currying is usually implemented with deferred execution. Since in
a pure functional language values in variables cannot be changed after they
are set, this is equivalent to using the value in effect at the point of the curry.
However, in an imperative language, we are free to modify the value provided
to the curried expression. We could copy the value at the point of the curry,
but this would be expensive for stream data. Instead, we use deferred read
semantics: later execution of the program will use the value of the stream
in effect at the point of actual execution, not the value in effect at the point
of the currying. This is useful in practice, as we can create (and optimize) a
network of kernels and streams in advance and then execute them iteratively.

The “<<” operator can also be used to apply programs to Sh tuples. A
mixture of tuple and stream inputs may be used. In this case, the tuple is
interpreted as a stream all of whose elements are the same value. The same
by-reference semantics are applied for consistency. In fact, what happens is
that an input “varying” attribute is converted into a “uniform” parameter,

8 – 19

a useful operation.
Since we provide an operator for turning a varying attribute into a uni-

form parameter, we also provide an inverse operator for turning a parameter
into an attribute. Given program p and parameter x, the following removes
the dependence of p on x, creating a new program object q:

ShProgram q = p >> x;

The parameter is replaced by a new attribute of the same type, pushed onto
the end of the input attribute list.

The “&” operator can also be applied to streams, channels, or tuples on
the left hand side of an assignment. This can be used to split apart the output
of a stream program. For instance, let a, b, and c be channels or streams,
and let x, y, and z be streams, channels, or tuples. Then the following binds
a program p to some inputs, executes it, and extracts the individual channels
of the output:

(a & b & c) = p << x << y << z;

This syntax also permits Sh programs to be used as subroutines (let all of a,
b, c, x, y, and z be tuples).

Listing 7 defines a stream program to update the state of a particle sys-
tem in parallel [8]. This kernel implements simple Newtonian physics and can
handle collisions with both planes and spheres. The particles are then ren-
dered as point sprites by feeding the positions of the particles back through
the GPU as a vertex array (code for this is not shown). Screenshots are
shown in Figure 4.

This example demonstrates the use of deferred read semantics for cur-
rying. The state stream is defined and bound to the particle program
along with some uniform parameters. The result is assigned to the update

program object, which triggers compilation and optimization. The update

object now has compiled-in access to the channels pointed to by the state

stream. The inner loop is very simple and fast. In particular, all shader
compilation is done during setup.

// SETUP
particle = SH_BEGIN_PROGRAM("gpu:stream") {

ShInOutPoint3f Ph; // head position
ShInOutPoint3f Pt; // tail position
ShInOutVector3f V; // velocity
ShInputVector3f A; // acceleration

8 – 20

ShInputAttrib1f delta; // timestep
Pt = Ph; // Physical state update
A = cond(abs(Ph(1)) < 0.05, ShVector3f(0.,0.,0.), A);
V += A * delta;
V = cond((V|V) < 1.0, ShVector3f(0.0, 0.0, 0.0), V);
Ph += (V + 0.5 * A) * delta;
ShAttrib1f mu(0.1), eps(0.3);
for (int i = 0; i < num_spheres; i++) { // Sphere collisions

ShPoint3f C = spheres[i].center;
ShAttrib1f r = spheres[i].radius;
ShVector3f PhC = Ph - C;
ShVector3f N = normalize(PhC);
ShPoint3f S = C + N * r;
ShAttrib1f collide = ((PhC|PhC) < r * r) * ((V|N) < 0);
Ph = cond(collide, Ph - 2.0 * ((Ph - S)|N) * N, Ph);
ShVector3f Vn = (V|N) * N;
ShVector3f Vt = V - Vn;
V = cond(collide, (1.0 - mu) * Vt - eps * Vn, V);

}
ShAttrib1f under = Ph(1) < 0.0; // Collide with ground
Ph = cond(under, Ph * ShAttrib3f(1.0, 0.0, 1.0), Ph);
ShVector3f Vn = V * ShAttrib3f(0.0, 1.0, 0.0);
ShVector3f Vt = V - Vn;
V = cond(under, (1.0 - mu) * Vt - eps * Vn, V);
Ph(1) = cond(min(under, (V|V) < 0.1), ShPoint1f(0.0f), Ph(1));
ShVector3f dt = Pt - Ph; // Avoid lines disappearing
Pt = cond((dt|dt) < 0.02, Pt + ShVector3f(0.0, 0.02, 0.0), Pt);

} SH_END;
// define stream specifying current state
ShStream state = (pos & pos_tail & vel);
// define update operator, bind to inputs
ShProgram update = particle << state << gravity << delta;
// IN INNER LOOP
// execute state update (input to update is compiled in)
state = update;

Listing 7: Particle system simulation.

8 – 21

Figure 4: Frames from the particle system animation corresponding to List-
ing 7.

6 Tools and Engineering

The Sh implementation includes three major components: the front end, the
optimizer, and the backend.

The front end supports the API described here, and generates an in-
termediate representation of programs. Our intermediate representation is
similar to the ARB assembly language, but is somewhat higher-level. When
SH BEGIN PROGRAM is called, a new intermediate representation is initialized,
and a global flag is set so that Sh classes know they are inside a program
definition. When operations are specified inside a program definition, an ap-
propriate instruction is added to the intermediate representation. We do not
build a parse tree, since operations are already called in postfix order. This
process builds a correct but inefficient program. In particular, there are a
lot of extraneous moves due to constructors and function parameter passing.
However, these extra moves will be cleaned up later by the optimizer.

When an externally declared parameter or texture is used in a program,
a dependency is set up. The visible Sh classes are really only smart pointers;
the real data is kept elsewhere, and is reference counted. Therefore, even
if a program refers to a parameter that is later destroyed, the value of that
parameter will still be available. When a shader is loaded, it goes over its
list of dependencies and notifies them that it is active. Whenever a param-
eter is modified in immediate mode, it checks for active dependencies, and
updates the appropriate constant registers as necessary. Updates are done
lazily. When coordinating Sh with a graphics API, an update function must
be called once all parameters have been modified. Lazy update is especially
important for large parameters that are expensive to download, such as tex-
tures. Sh also shadows textures and streams on both the host and the GPU

8 – 22

(or other target processor) and keeps track of which is the most recently
modified version.

The optimizer is a crucial component of Sh. As of the April 2004 release,
it supports move elimination, dead code removal, and constant propagation.
We plan for the August 2004 release to also support common subexpres-
sion elimination and domain-specific optimizations. These are not just nice
features, they are essential. For instance, dead code elimination is used for
virtualization and specialization. Common subexpression elimination and
domain-specific optimizations also have a major impact on modularity. For
instance, we plan for Sh to track the use of the normalize library func-
tion. If it can prove that normalize is being applied to an object which
is always guaranteed to already be normalized, the redundant computation
will be removed. This means that library functions like reflect can include
normalization of their arguments. If you pass in normalized values, then the
redundant normalizations inside the reflect function will be removed. The
reflect function also marks its output as being normalized, so extra normal-
izations applied to its result can also be removed. On the other hand, if you
do call reflect with an unnormalized vector, it will still work. Similarily,
without common subexpression elimination, data abstraction tends to create
a lot of redundant computation. Consider the homomorphic factorization ex-
ample used in this tutorial. If we iterated over several light sources, we will
end up calling p(parabolic(vs)) several times, even though vs is the same
each time. This not only takes extra computation, it also takes extra texture
lookups. Common subexpression elimination will find this redundancy and
eliminate it without breaking the abstraction in the source code. Finally, the
beta release of Sh should be able to lift computations in shaders that depend
only on uniform parameters to the host, creating a set of hidden, dependent
uniform parameters. Common subexpression elimination is also useful here,
since it can be used to merge dependent computations that are used in more
than one shader together.

The backends map the intermediate representation to a particular target
platform, and provide runtime support. In order to support stream process-
ing and data-dependent control flow, we may have to decompose shaders into
multiple parts and schedule these parts over multiple passes. The backends
also do detailed buffer management, automatically using appropriate graph-
ics API extensions for this purpose when available. Multiple GPU backends
are available that support different runtime strategies or programming inter-
faces. For example, we might use ARB assembly, NV assembly, Cg, or the

8 – 23

OpenGL Shading Language to program a GPU internally. In this tutorial,
we have only used the default GPU and CPU compilation targets, but a more
detailed syntax is available for selecting alternatives. A CPU backend is also
available that supports the dynamic compilation and linking of vectorized
host code.

Some development and test tools are available for use with Sh. One
example is shrike, shown in Figure 5. The shrike application provides
a class framework for shaders and a browser interface to compare multiple
shaders. It uses introspection to determine the parameters used for each
shader and uses the metadata for each parameter to build a user interface
for those parameters. We also support visual debugging of shaders, including
computation and visualization of intermediate values in shaders, and a visual
programming language is under development.

Figure 5: Glass and silhouetted Gooch shaders, demonstrated inside shrike.

7 License, History, Status, and Access

Sh is a free Open Source project, distributed under a license which reads as
follows:

Permission is granted to anyone to use this software for any pur-
pose, including commercial applications, and to alter it and re-
distribute it freely, subject to the following restrictions:

8 – 24

1. The origin of this software must not be misrepresented; you
must not claim that you wrote the original software. If you
use this software in a product, an acknowledgment in the
product documentation would be appreciated but is not re-
quired.

2. Altered source versions must be plainly marked as such, and
must not be misrepresented as being the original software.

3. This notice may not be removed or altered from any source
distribution.

Sh was developed in the Computer Graphics Lab at the School of Com-
puter Science at the University of Waterloo. The SMASH API [2, 7] was a
conceptual predecessor to Sh, but targetted a simulated GPU, since no GPUs
were available at the time that supported the necessary features. This sys-
tem has since been factored into two projects: a GPU simulator component
called Sm (which Sh can still target, but which it does not depend on) and
a high-level programmable API/language component called Sh. The proto-
type of the current design of Sh was implemented as part of Zheng Qin’s
M.Math thesis. The current version of Sh was significantly reengineered
by Stefanus Du Toit, now a graduate student at the University of Water-
loo. Other contributors include Kevin Moule (just-in-time CPU backend),
Tiberiu Popa (multipass scheduler), Bryan Chan (kernel library and util-
ity functions), Jack Wang (matrix and quaternion library), and Zaid Mian
(noise functions). Michael McCool is the team leader and is responsible for
the design of the language (he even occasionally gets to write some code).

Sh is under active development and as of April 2004 was in a alpha state.
The core of the language is stable but we are working on improving perfor-
mance and standard library support. We plan to do a beta release in August
2004 with a completed standard library and more powerful optimizer. It will
continue to improve in performance and capabilities, but it is the intent of
the developers that all further extensions to the language will be backward
compatible with the beta version, and that the core of the implementation
will always be platform and graphics API independent, vendor neutral, and
available under Open Source. Sh requires a floating-point capable GPU such
as an NVIDIA GeForceFX 5200 (or better) or an ATI Radeon 9600 (or bet-
ter).

The most recent version of Sh may be downloaded from http://libsh.

sourceforge.net/. Mailing lists for news related to Sh and documentation

8 – 25

http://libsh.sourceforge.net/
http://libsh.sourceforge.net/

may also be accessed at this site. Online documentation includes an up to
date version of this tutorial, an HTML version of the reference manual, links
to papers on Sh [4, 6], internal documentation generated from structured
comments, and various other propaganda. A book on Sh called Metapro-
gramming GPUs with Sh [5] will also be available in August 2004 from AK
Peters (although it is a bit misnamed, since Sh can also be used to metapro-
gram CPUs).

References

[1] E. Lafortune, S.-C. Foo, K. Torrance, and D. Greenberg. Non-linear
approximation of reflectance functions. In Proc. SIGGRAPH, pages 117–
126, August 1997.

[2] Michael McCool. SMASH: A Next-Generation API for Programmable
Graphics Accelerators. Technical Report CS-2000-14, University of Wa-
terloo, April 2001. API Version 0.2. Presented at SIGGRAPH 2001
Course #25, Real-Time Shading .

[3] Michael McCool, Jason Ang, and Anis Ahmad. Homomorphic Factor-
ization of BRDFs for High-Performance Rendering. In Proc. ACM SIG-
GRAPH, pages 171–178, August 2001.

[4] Michael McCool, Zheng Qin, and Tiberiu Popa. Shader Metaprogram-
ming. In Proc. of SIGGRAPH/Eurographics Graphics Hardware, pages
57–68, September 2002.

[5] Michael McCool and Stefanus Du Toit. Metaprogramming GPUs with Sh.
AK Peters, 2004.

[6] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader Algebra. In Proc. ACM SIGGRAPH, August 2004.

[7] Marc Olano, John C. Hart, Wolfgang Heidrich, and Michael McCool.
Real-Time Shading. AK Peters, 2002.

[8] Karl Sims. Particle animation and rendering using data parallel computa-
tion. Computer Graphics (Proceedings of SIGGRAPH 90), 24(4):405–413,
August 1990.

8 – 26

	Introduction
	Tuples, Matrices, Operators, and Functions
	Programs, Parameters, and Attributes
	Arrays and Textures
	Channels and Streams
	Tools and Engineering
	License, History, Status, and Access

