
Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

Abstract
Over the years, there have been two main branches of computer
graphics image-synthesis research; one focused on interactivity,
the other on image qualit y. Procedural shading is a powerful tool,
commonly used for creating high-qualit y images and production
animation. A key aspect of most procedural shading is the use of
a shading language, which allows a high-level description of the
color and shading of each surface. However, shading languages
have been beyond the capabiliti es of the interactive graphics
hardware community. We have created a parallel graphics multi-
computer, PixelFlow, that can render images at 30 frames per
second using a shading language. This is the first system to be
able to support a shading language in real-time. In this paper, we
describe some of the techniques that make this possible.

CR Categories and Subject Descriptors: D.3.2 [Language
Classifications] Speciali zed Appli cation Languages; I.3.1
[Computer Graphics] Hardware Architecture; I.3.3 [Computer
Graphics] Picture/Image Generation; I.3.6 [Computer Graphics]
Methodologies and Techniques; I.3.7 [Computer Graphics]
Three-dimensional Graphics and Realism.

Additional Keywords: real-time image generation, procedural
shading, shading language.

1 INTRODUCTION
We have created a SIMD graphics multi computer, PixelFlow,
which supports procedural shading using a shading language.
Even a small (single chassis) PixelFlow system is capable of
rendering scenes with procedural shading at 30 frames per sec-
ond or more. Figure 1 shows several examples of shaders that
were written in our shading language and rendered on PixelFlow.

In procedural shading, a user (someone other than a system
designer) creates a short procedure, called a shader, to determine
the final color for each point on a surface. The shader is respon-

† Now at Silicon Graphics, Inc., 2011 N. Shoreline Blvd., M/S #590,
Mountain View, CA 94043 (email: olano@engr.sgi.com)
‡ UNC Department of Computer Science, Sitterson Hall, CB #3175, Chapel
Hill, NC 27599 (email: lastra@cs.unc.edu)

sible for color variations across the surface and the interaction of
li ght with the surface. Shaders can use an assortment of input
appearance parameters, usuall y including the surface normal,
texture coordinates, texture maps, light direction and colors.

Procedural shading is quite popular in the production industry
where it is commonly used for rendering in feature films and
commercials. The best known examples of this have been ren-
dered using Pixar’s PhotoReali stic RenderMan software
[Upstill 90]. A key aspect of RenderMan is its shading language.
The shading language provides a high-level description of each
procedural shader. Shaders written in the RenderMan shading

A Shading Language on Graphics Hardware:

The PixelFlow Shading System

Marc Olano† Anselmo Lastra‡

University of North Carolina at Chapel Hill

 �� ��

a b
 �� ��

c d ��
 ��

e f

Figure 1: Some PixelFlow surface shaders. a) brick. b)
mirror with animated ripple. c) wood planks. d) a vol-
ume-based wood. e) light shining through a paned win-
dow. f) view of a bowling scene.

3 - 1

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

language can be used by any compliant renderer, no matter what
rendering method it uses.

There are several reasons to provide procedural shading in-
stead of just image texturing on a real-time graphics system:

� It is easy to add noise and random variabilit y to make a
surface look more realistic.

� It can be easier to create a procedural shader for a compli-
cated surface than to try to eliminate the distortions caused
by wrapping a flat, scanned texture over the surface.

� It is easier to “ tweak” a procedural shader than to rescan or
repaint an image texture.

� It is often easier to create detail on an object using a proce-
dural shader instead of modifying the object geometry.

� A procedurall y shaded surface can change with time, dis-
tance, or viewing angle.

Usuall y procedural shading is associated with images that take a
while to generate – from a few minutes to a day or so. Recently,
graphics hardware reached the point where image texture map-
ping was not just possible, but common; now hardware is reach-
ing the point where shading languages for interactive graphics
are possible.

We have produced a shading language and shading language
compiler for our high-end graphics machine, PixelFlow. This
language is called pfman (pf for PixelFlow, man because it is
similar to Pixar’s RenderMan shading language). One of the
great advantages of a shading language for procedural shading,
particularly on a complex graphics engine, is that it effectively
hides the implementation detail s from the shader-writer. The
specifics of the graphics architecture are hidden in the shading
language compiler, as are all of the tricks, optimizations, and
special adaptations required by the machine. In this paper, we
describe shading on PixelFlow, the pfman language, and the
optimizations that were necessary to make it run in real-time.

Section 2 is a review of the relevant prior work. Section 3 cov-
ers features of the pfman shading language, paying particular
attention to the ways that it differs from the RenderMan shading
language. Section 4 describes our extensions to the OpenGL API
[Neider93] to support procedural shading. Section 5 gives a brief
overview of the PixelFlow hardware. Section 6 covers our im-
plementation and the optimizations that are done by PixelFlow
and the pfman compiler. Finally, Section 7 has some conclusions.

2 RELATED WORK
Early forms of programmable shading were accomplished by
rewriting the shading code for the renderer (see, for example,
[Max81]). Whitted and Weimer specificall y allowed this in their
testbed system [Whitted81]. Their span buffers are an imple-
mentation of a technique now called deferred shading, which we
use on PixelFlow. In this technique, the parameters for shading
are scan converted for a later shading pass. This allowed them to
run multiple shaders on the same scene without having to re-
render. Previous uses of deferred shading for interactive graphics
systems include [Deering88] and [Ellsworth91].

More recently, easier access to procedural shading capabilit ies
has been provided to the graphics programmer. Cook’s shade
trees [Cook84] were the base of most later shading works. He
turned simple expressions, describing the shading at a point on
the surface, into a parse tree form, which was interpreted. He
introduced the name appearance parameters for the parameters
that affect the shading calculations. He also proposed an or-
thogonal subdivision of types of programmable functions into
displacement, surface shading, light, and atmosphere trees.

Perlin’s image synthesizer extends the simple expressions in
Cook’s shade trees to a full l anguage with control structures
[Perlin85]. He also introduced the powerful Perlin noise func-

tion, which produces random numbers with a band-limited fre-
quency spectrum. This style of noise plays a major role in many
procedural shaders.

The RenderMan shading language [Hanrahan90][Upstill 90]
further extends the work of Cook and Perlin. It suggests new
procedures for transformations, image operations, and volume
effects. The shading language is presented as a standard, making
shaders portable to any conforming implementation.

In addition to the shading language, RenderMan also provides
a geometry description li brary (the RenderMan API) and a geo-
metric fil e format (called RIB). The reference implementation is
Pixar’s PhotoReali stic RenderMan based on the REYES render-
ing algorithm [Cook87], but other implementations now exist
[Slusallek94][Gritz96].

The same appli cation will run on all of these without change.
RenderMan effectively hides the detail s of the implementation.
Not only does this allow multiple implementations using com-
pletely different rendering algorithms, but it means the user
writi ng the appli cation and shaders doesn’ t need to know any-
thing about the rendering algorithm being used. Knowledge of
basic graphics concepts suffices.

Previous efforts to support user-written procedural shading on
a real-time graphics system are much more limited. The evolu-
tion of graphics hardware is only just reaching the point where
procedural shading is practical. The only implementation to date
was Pixel-Planes 5, which supported a simple form of procedural
shading [Rhoades92]. The language used by this system was
quite low level. It used an assembly-li ke interpreted language
with simple operations li ke copy, add, and multiply and a few
more complex operations li ke a Perlin noise function. The hard-
ware limitations of Pixel-Planes 5 limited the complexity of the
shaders, and the low-level nature of the language limited its use.

Lastra et. al. [Lastra95] presents previous work on the Pix-
elFlow shading implementation. It analyzes results from a Pix-
elFlow simulator for hand-coded shaders and draws a number of
conclusions about the hardware requirements for procedural
shading. At the time of that paper, the shading language compiler
was in its infancy, and we had not addressed many of the issues
that make a real-time shading language possible. [Lastra95] is
the foundation on which we built our shading language.

3 SHADING LANGUAGE
A surface shader produces a color for each point on a surface,

taking into account the color variations of the surface itself and
the lighting effects. As an example, we will show a shader for a
brick wall . The wall i s rendered as a single polygon with texture
coordinates to parameterize the position on the surface.

The shader requires several additional parameters to describe
the size, shape, and color of the brick. These are the width and
height of the brick, the width of the mortar, and the colors of the
mortar and brick (Figure 2). These parameters are used to wrap

width

height

mortar

mortar

Figure 2: Example bricks and the size and shape pa-
rameters for the brick shader.

3 - 2

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

the texture coordinates into brick coordinates for each brick.
These are (0,0) at the lower left corner of each brick, and are
used to choose either the brick or mortar color. A portion of the
brick shader is shown in Figure 3. The brick image in Figure 2
was generated with this shader.

One advantage of procedural shading is the ease with which
shaders can be modified to produce the desired results. Figure 1a
shows a more reali stic brick that resulted from small modifica-
tions to the simple brick shader. It includes a simple proce-
durall y-defined bump map to indent the mortar, high-frequency
band-limited noise to simulate grains in the mortar and brick,
patches of color variation within each brick to simulate swirls of
color in the clay, and variations in color from brick to brick.

The remainder of this section covers some of the detail s of the
pfman shading language and some of the differences between it
and the RenderMan shading language. These differences are

1. the introduction of a fixed-point data type,
2. the use of arrays for points and vectors,
3. the introduction of transformation attributes,
4. the explicit listing of all shader parameters, and
5. the ability to link with external functions.

Of these changes, 1 and 2 allow us to use the faster and more
eff icient fixed-point math on our SIMD processing elements. The
third covers a hole in the RenderMan standard that has since
been fixed. The fourth was not necessary, but simpli fied the im-
plementation of our compiler. Finall y, item 5 is a result of our
language being compiled instead of interpreted (in contrast to
most off-line renderer implementations of RenderMan).

3.1 Types
As with the RenderMan shading language, variables may be
declared to be either uniform or varying. A varying vari-
able is one that might vary from pixel to pixel – texture coordi-
nates for example. A uniform variable is one that will never
vary from pixel to pixel. For the brick shader presented above,
the width, height and color of the bricks and the thickness and
color of the mortar are all uniform parameters. These control the
appearance of the brick, and allow us to use the same shader for
a variety of different styles of brick.

RenderMan has one representation for all numbers: floating-
point. We also support floating-point (32-bit IEEE single preci-
sion format) because it is such a forgiving representation. This
format has about 10–7 relative error for the entire range of num-
bers from 10-38 to 1038. However, for some quantiti es used in
shading this range is overkill (for colors, an 8 to 16 bit fixed-
point representation can be suff icient [Hill 97]). Worse, there are
cases where floating-point has too much range but not enough
precision. For example, a Mandelbrot fractal shader has an insa-
tiable appetite for precision, but only over the range [–2,2]
(Figure 4). In this case, it makes much more sense to use a fixed-

point format instead of a 32 bit floating-point format: the float-
ing-point format wastes one of the four bytes for an exponent that
is hardly used. In general, it is easiest to prototype a shader using
floating-point, then change to fixed-point as necessary for mem-
ory usage, precision, and speed. Our fixed-point types may be
signed or unsigned and have two parameters: the size in bits and
an exponent, written fixed<size,exponent>. Fixed-point
behaves li ke floating-point where the exponent is a compile-time
constant. Small exponents can be interpreted as the number of
fractional bits: a two byte integer is fixed<16,0>, while a two
byte pure fraction is fixed<16,16>.

Like recent versions of the RenderMan shading language
[Pixar97], pfman supports arrays of its basic types. However,
where RenderMan uses separate types for points, vectors, nor-
mals, and colors, pfman uses arrays with transformation attrib-
utes. By making each point be an array of floating-point or fixed-
point numbers, we can choose the appropriate representation
independently for every point. A transformation attribute indi-
cates how the point or vector should be transformed. For exam-
ple, points use the regular transformation matrix, vectors use the
same transformation but without translation, and normals use the
adjoint or inverse without translation. We also include a trans-
formation attribute for texture coordinates, which are trans-
formed by the OpenGL texture transformation matrix.

3.2 Explicit Shader Parameters
RenderMan defines a set of standard parameters that are im-
pli citl y available for use by every surface shader. The surface
shader does not need to declare these parameters and can use
them as if they were global variables. In pfman, these parameters
must be expli citl y declared. This allows us to construct a transfer
map (discussed later in Section 6) that contains only those pa-
rameters that are actually needed by the shader.

In retrospect, we should have done a static analysis of the
shader function to decide which built -in parameters are used.
This would have made pfman that much more li ke RenderMan,
and consequently that much easier for new users already famili ar
with RenderMan.

3.3 External Linking
Compili ng a pfman shader is a two-stage process. The pfman
compiler produces C++ source code. This C++ code is then com-
piled by a C++ compiler to produce an object fil e for the shader.
The function definiti ons and call s in pfman correspond directly to
C++ function definiti ons and call s. Thus, unli ke most Render-
Man implementations, we support calli ng C++ functions from
the shading language and vice versa. This facilit y is limited to
functions using types that the shading language supports.

Compili ng to C++ also provides other advantages. We ignore
certain optimizations in the pfman compiler since the C++ com-

// figure out which row of bricks this is (row is 8-bit integer)
fixed<8,0> row = tt / height;

// offset even rows by half a row
if (row % 2 == 0) ss += width/2;

// wrap texture coordinates to get “brick coordinates”
ss = ss % width;
tt = tt % height;

// pick a color for the brick surface
float surface_color[3] = brick_color;
if (ss < mortar || tt < mortar)

surface_color = mortar_color;

Figure 3: Code from a simple brick shader

 �� ��

a b

Figure 4: Fixed-point vs. floating-point comparison.
a) Mandelbrot set computed using floating-point.
b) Mandelbrot set computed using fixed-point

3 - 3

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

piler does them. One could also use the generated C++ code as a
starting point for a hand-optimized shader. Such a hand-
optimized shader would no longer be portable, and performing
the optimization would require considerable understanding of the
PixelFlow internals normall y hidden by the shading language.
Not surprisingly, no one has done this yet.

4 API
The RenderMan standard [Upstill 90] defines not only the shad-
ing language, but also a graphics appli cation program interface
(API). This is a li brary of graphics functions that the graphics
appli cation can call to describe the scene to the renderer. We
elected to base our API on OpenGL [Neider93] instead of Ren-
derMan. OpenGL is a popular API for interactive graphics appli-
cations, supported on a number of graphics hardware platforms.
It provides about the same capabiliti es as the RenderMan API,
with a similar collection of functions, but with more focus on
interactive graphics. By using OpenGL as our base we can easil y
port applications written for other hardware.

We extended OpenGL to support procedural shading
[Leech98]. We required that the procedural shading extensions
have no impact on appli cations that do not use procedural shad-
ing. We also endeavored to make them fit the framework and
philosophy of OpenGL. Our efforts to extend OpenGL should be
readily usable by future real-time shading language systems.

Following the OpenGL standard, all of our extensions have the
suff ix EXT. We will follow that convention here to help clarify
what is already part of OpenGL and what we added. OpenGL
functions also include suff ix letters (f, i, s, etc.) indicating the
operand type. For brevity, we omit these in the text.

4.1 Loading Functions
Procedural surface shaders and lights are written as pfman func-
tions. The new API call , glLoadExtensionCodeEXT, loads
a shader. Currently, we do not support dynamic li nking of surface
or li ght functions, so this call j ust declares which shaders will be
used. In the future, we do plan to dynamically load shaders.

4.2 Shading Parameters
On PixelFlow, the default shader implements the OpenGL
shading model. Appli cations that do not “use” procedural shad-
ing use this default OpenGL shader without having to know any
of the shading extensions to OpenGL.

We set the values for shading parameters using the
glMaterial call , already used by OpenGL to set parameters
for the built -in shading model. Parameters set in this fashion go
into the OpenGL global state, where they may be used by any
shader. Any shader can use the same parameters as the OpenGL
shader simply by sharing the same parameter names, or it can
define its own new parameter names.

OpenGL also has a handful of other, parameter-specific, call s.
glColor can be set to change any of several possible color
parameters, each of which can also be changed with
glMaterial. We created similar parameter name equivalents
for glNormal and glTexCoord. Other shaders may use these
names to access the normals set with glNormal and texture
coordinates from glTexcoord.

4.3 Shader Instances
The RenderMan API allows some parameter values to be set
when a shader function is chosen. Our equivalent is to allow
certain bound parameter values. A shading function and its
bound parameters together make a shader instance (or some-
times just shader) that describes a particular type of surface.
Because the character of a shader is as much a product of its
parameter settings as its code, we may create and use several
instances of each shading function. For example, given the brick
shading function of Figure 3, we can define instances for fat red
bricks and thin yellow bricks by using different bound values for
the width, height, and color of the bricks (Figure 5).

To set the bound parameter values for an instance, we use a
glBoundMaterialEXT function. This is equivalent to gl-
Material, but operates only on bound parameters.

We create a new instance with a glNewShaderEXT, gl-
EndShaderEXT pair. This is similar to the way OpenGL de-
fines other objects, for example display li st definiti ons are brack-
eted by call s to glNewList and glEndList. glNewSha-
derEXT takes the shading function to use and returns a shader
ID that can be used to identify the instance later. Between the
glNewShaderEXT and glEndShaderEXT we use glSha-
derParameterBindingEXT, which takes a parameter ID
and one of GL_MATERIAL_EXT or GL_BOUND_MATER-
IAL_EXT. This indicates whether the parameter should be set
by call s to glMaterial (for ordinary parameters) or gl-
BoundMaterialEXT (for bound parameters).

To choose a shader instance, we call glShaderEXT with a
shader ID. Primiti ves drawn after the glShaderEXT call will
use the specified shader instance.

4.4 Lights
OpenGL normall y supports up to eight lights, GL_LIGHT0
through GL_LIGHT7. New light IDs beyond these eight are
created with glNewLightEXT. Lights are turned on and off
through call s to glEnable and glDisable. Parameters for
the li ghts are set with glLight, which takes the li ght ID, the
parameter name, and the new value. As with surface shaders, we
have a built -in OpenGL light that implements the OpenGL
lighting model. The eight standard li ghts are pre-loaded to use
this function.

The OpenGL lighting model uses multiple colors for each
light, with a different color for each of the ambient, diffuse and
specular shading computations. In contrast, the RenderMan
lighting model has only one color for each light. We allow a mix
of these two styles. The only constraint is that surface shaders
that use three different light colors can only be used with li ghts
that provide three light colors. Surface shaders that follow the
RenderMan model will use only the diffuse light color from
lights that follow the OpenGL model.

5 PIXELFLOW
We implemented the pfman shading language on PixelFlow, a
high-performance graphics machine. The following sections give

 �� ��

Figure 5: Instances of a brick surface shader.

3 - 4

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

a brief overview of PixelFlow. For more detail s, refer to
[Molnar92] or [Eyles97]

5.1 Low-level View
A typical PixelFlow system consists of a host, a number of ren-
dering nodes, a number of shading nodes, and a frame buffer
node (Figure 6a). The rendering nodes and shading nodes are
identical, so the balance between rendering performance and
shading performance can be decided for each appli cation. The
frame buffer node is also the same, though it includes an addi-
tional daughter card to produce video output. The host is con-
nected through a daughter card on one of the rendering nodes.

The pipelined design of PixelFlow allows the rendering per-
formance to scale li nearly with the number of rendering nodes
and the shading performance to scale li nearly with the number of
shading nodes.

Each rendering node is responsible for an effectively random
subset of the primiti ves in the scene. The rendering nodes handle
one 128x64 pixel region at a time. More precisely, the region is
128x64 image samples. When antialiasing, the image samples
are blended into a smaller block of pixels after shading. For
brevity, we will continue to use the word “pixel” , with the un-
derstanding that sometimes they may be image samples instead
of actual pixels.

Since each rendering node has only a subset of the primiti ves,
a region rendered by one node will have holes and missing poly-
gons. The different versions of the region are merged using a
technique called image composition. PixelFlow includes a spe-
cial high-bandwidth composition network that allows image
composition to proceed at the same time as pixel data communi-
cation. As all of the rendering nodes simultaneously transmit
their data for a region, the hardware on each node compares,
pixel-by-pixel, the data it is transmitting with the data from the
upstream nodes. It sends the closer of each pair of pixels down-
stream. By the time all of the pixels reach their destination, one
of the system’s shading nodes, the composition is complete.

Once the shading node has received the data, it does the sur-
face shading for the entire region. In a PixelFlow system with n
shading nodes, each shades every nth region. Once each region
has been shaded, it is sent over the composition network (without
compositing) to the frame buffer node, where the regions are
collected and displayed.

Each node has two RISC processors (HP PA-8000’s), a custom
SIMD array of pixel processors, and a texture memory store.
Each processing element of the SIMD array has 256 bytes of
memory, an 8-bit ALU with support for integer multipli cation,
and an enable flag indicating the active processors. All enabled
processors in the 128x64 array simultaneously compute, on their
own data, the result of any operation. This provides a speedup of
up to 8192 times the rate of a single processing element.

5.2 High-level View
The hardware and basic system software handle the detail s of
scheduling primiti ves for the rendering nodes, compositing pixel
samples from these nodes, assigning them to shading nodes, and
moving the shaded pixel information to the frame buffer. Conse-
quently, it is possible to take the simpli fied view of PixelFlow as
a simple pipeline (Figure 6b). This view is based on the passage
of a single displayed pixel through the system. Each displayed
pixel arrives at the frame buffer, having been shaded by a single
shading node. We can ignore the fact that displayed pixels in
other regions were shaded by different physical shading nodes.
Before arriving at the shading node, the pixel was part of a
primiti ve on just one of the rendering nodes. We can ignore the
fact that other pixels may display different primiti ves from dif-
ferent rendering nodes.

Only the rendering nodes make use of the second RISC proc-
essor. The primiti ves assigned to the node are split between the
processors. We can take the simpli fied view that there is only
one processor on the node, and let the lower level software han-
dle the scheduling between the physical processors. Figure 7 is
simple block diagram of a PixelFlow node with these simpli fica-
tions. Each node is connected to two communication networks.
The geometry network (800 MB/s in each direction), handles
information about the scene geometry, bound parameter values,
and other data bound for the RISC processors. It is 32 bits wide,
operating at 200 MHz. The composition network (6.4 GB/s in
each direction) handles transfers of pixel data from node to node.
It is 256 bits wide, also operating at 200 MHz. Since our simpli-
fied view of the PixelFlow system hides the image composition,
it is reasonable to simply refer to the composition network as a
pixel network.

6 IMPLEMENTATION
Implementation of a shading language on PixelFlow requires
optimizations. Some are necessary to achieve the targeted inter-
active rates of 20-30 frames per second, whereas others are nec-
essary just to enable shaders to run on PixelFlow. The three
scarce resources impact our PixelFlow implementation: time,
communication bandwidth, and memory. In this section, we pres-
ent optimizations to address each.

6.1 Execution Optimizations
Our target frame rate of 30 frames per second translates to 33 ms
per frame. The system pipelining means that most of this time is
actuall y available for shading. Each shading node can handle one
128x64 region at a time and a 1280x1024 screen (or 640x512
screen with 4-sample antialiasing) contains 160 such regions. On
a system with four shading nodes, each is responsible for 40
regions and can take an average of 825 � s shading each region.
On a larger system with 16 shading nodes, each is responsible for

frame buffer
node

shading
node

rendering
node

ge
om

et
ry

 n
et

w
or

k

co
m

po
si

ti
on

 n
et

w
or

k

rendering
node

shading
node

frame buffer
node

a b

Figure 6: PixelFlow: a) machine organization.
b) simplified view of the system.

ge
om

et
ry

 n
et

w
or

k

pi
xe

l n
et

w
or

k

RISC
processor

texture/
frame buffer

memory

SIMD
array

Figure 7: Simple block diagram of a PixelFlow node.

3 - 5

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

10 regions and can spend an average of 3.3 ms shading a region.
Table 1 shows per-region execution times fore some sample
shaders. The first four shaders appear in Figure 1. The other
shaders were written by the UNC nanoManipulator project for
surface data visualization.

6.1.1 Deferred Shading
Deferred shading is the technique of performing shading compu-
tations on pixels only after the visible pixels have been deter-
mined [Whitted81][Deering88][Ell sworth91]. It provides several
advantages for the execution of surface shading functions. First,
no time is wasted on shading computations for pixels that will
not be visible. Second, our SIMD array can simultaneously
evaluate a single surface shader instance on every primiti ve that
uses it in a 128x64 region. Finall y, it decouples the rendering
performance and shading performance of the system. To handle
more complex shading, add more shading hardware. To handle
more complex geometry, add more rendering hardware.

6.1.2 Uniform and Varying
RenderMan has uniform and varying types (Section 3.1), in part
for the eff iciency of their software renderer. A uniform expres-
sion uses only uniform operands and has a uniform result; a
varying expression may have both uniform and varying operands
but has a varying result. As Pixar’s prman renderer evaluates the
shading on a surface, it computes uniform expressions only once,
sharing the results with all of the surface samples, but loops over
the surface samples to compute the varying expressions.

We can use a similar division of labor. The microprocessor on
each PixelFlow node can compute the result of a single operation
much faster than the SIMD array; but the microprocessor pro-
duces one result, while the SIMD array can produce a different
result on each of the 8K pixel processing elements. If the value is
the same everywhere, it is faster for the microprocessor to com-
pute and broadcast the result to the pixel processors. If the value
is different at different pixel processors, it is much faster to al-
low the SIMD array to compute all of the results in parallel.

Since uniform expressions do not vary across the pixels, it is
much more eff icient to compute them using the microprocessor
and store them in microprocessor memory. In contrast, varying
expressions are the domain of the pixel processors. They can
potentiall y have different values at every pixel, so must exist in
pixel memory. They are fast and eff icient because their storage
and operations are repli cated across the SIMD array. This same
distinction between shared (uniform) and SIMD array (varying)
memory was made by Thinking Machines for the Connection

Machine [ThinkingMachines89], though they called them mono
and poly, and by MasPar for the MP-1 [MasPar90], though their
terms were singular and plural.

6.1.3 Fixed-point
We can achieve significant speed improvements by using fixed-
point operations for varying computations instead of floating-
point. Our pixel processors do not support floating-point in
hardware: every floating-point operation is built from basic inte-
ger math operations. These operations consist of the equivalent
integer operation with bitwise shifts to align the operands and
result. Fixed-point numbers may also require shifting to align the
decimal points, but the shifts are known at compile-time. The
timings of some fixed-point and floating-point operations are
shown in Table 2. These operations may be done by as many as
8K pixel processors at once, yet we would still li ke them to be as
fast as possible.

6.1.4 Math Functions
We provide floating-point versions of the standard math li brary
functions. An eff icient SIMD implementation of these functions
has slightly different constraints than a serial implementation.
Piece-wise polynomial approximation is the typical method to
evaluate transcendental math functions.

This approach presents a problem on PixelFlow due to the
handling of conditionals on a SIMD array. On a SIMD array, the
condition determines which processing elements are enabled.
The true part of an if/else is executed with some processing
elements enabled, the set of enabled processors is fli pped and the
false part is executed. Thus the SIMD array spends the time to
execute both branches of the if.

This means that using a table of 32 polynomials takes as much
time as a single polynomial with 32 times as many terms cover-
ing the entire domain. Even so, a polynomial with, say, 160
terms is not practical. For each PixelFlow math function, we
reduce the function domain using identiti es, but do not reduce it
further. For example, the log of a floating-point number, m*2e, is
e*log(2)+log(m). We fit log(m) with a single polyno-
mial. Each polynomial is chosen to use as few terms as possible
while remaining accurate to within the floating-point precision.
Thus, we still do a piece-wise fit, but fit a single large piece with
a polynomial of relatively high degree.

While we provide accurate versions of the math functions, of-
ten shaders do not reall y need the “true” function. With the rip-
ple reflection shader in Figure 1b, it is not important that the
ripples be sine waves. They just need to look like sine waves.
For that reason, we also provide faster, visuall y accurate but
numericall y poor, versions of the math functions. The fast ver-
sions use simpler polynomials, just matching value and first de-
rivative at each endpoint of the range fit by the more exact ap-
proximations. This provides a function that appears visuall y cor-

shader bytes free execution time
brick 46 613.15 � s
ripple reflection 59 1058.07 � s
planks 105 532.30 � s
bowling pin 86 401.96 � s
nanoManipulator 1 75 567.95 � s
nanoManipulator 2 1 2041.44 � s
nanoManipulator 3 51 1638.67 � s

 Table 1: Memory and performance summary.

Operation 16-bit fixed 32-bit fixed 32-bit float
+ 0.07 � s 0.13 � s 3.08 � s
* 0.50 � s 2.00 � s 2.04 � s
/ 1.60 � s 6.40 � s 7.07 � s
sqrt 1.22 � s 3.33 � s 6.99 � s
noise 5.71 � s — 21.64 � s

Table 2: Fixed-point and floating-point execution times
for 128x64 SIMD array.

function exact fast
sin 81.36 � s 45.64 � s
cos 81.36 � s 48.77 � s
tan 93.25 � s 52.65 � s
asin, acos 78.52 � s 47.50 � s
atan 66.41 � s 35.34 � s
atan2 66.17 � s 35.15 � s
exp 53.37 � s 37.86 � s
exp2 51.09 � s 35.58 � s
log 57.76 � s 21.57 � s
log2 57.68 � s 21.49 � s

Table 3: Execution times for floating-point math
functions on 128x64 SIMD array.

3 - 6

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

rect but executes in about half the time.
6.1.5 Combined Execution

Many shading functions have similar organizations. Combin-
ing the execution of the common sections of code in multiple
shaders can lead to large gains in performance. In the next few
sections, we will discuss some of these methods. The easiest and
most automatic of this class of optimizations is combined execu-
tion of li ghts for all surface shaders. For some of the more tradi-
tional surface shaders, involving image texture lookups and
Phong shading, we can do further overlapped computation.

6.1.5.1 Lights
One of the jobs of a surface shader is to incorporate the effects

of each light in the scene. As in the RenderMan shading lan-
guage, this is accompli shed through the illuminance con-
struct, which behaves li ke a loop over the active li ghts (Figure
8). This means that each surface shader effectively includes a
loop over every li ght. For m shaders and n li ghts, this results in
m*n li ght executions. This can be quite expensive since the
lights themselves are procedural, and could be arbitraril y com-
plex. Since the li ghts are the same for each of the m shaders, we
compute each light just once and share its results among all of
the shaders, resulting in only n li ght executions. We do this by
interleaving the execution of all of the lights and shaders.

We accomplish this interleaving by having each surface shader
generate three instruction streams for the SIMD array. The first
stream, which we call pre-illum, contains only the setup code
(until the illuminance in Figure 8). The second stream con-
tains the body of the illuminance construct. We call this the
illum stream. Finall y, the post-illum stream contains eve-
rything after the illuminance. The lights themselves create
their own stream of SIMD commands. The interleaving pattern of
these streams is shown in Figure 9.

The SIMD memory usage of the surfaces and lights must be
chosen in such a way that each has room to operate, but none
confli ct. The surface shaders will not interfere with each other
since any one pixel can only use one surface shader. Different
surface shaders already use different pixel memory maps. Lights,
however, must operate in an environment that does not disturb
any surface shader, but provides results in a form that all surface

shaders can use. The results of the li ghting computation, the
color and direction of the li ght hitti ng each pixel, are stored in a
special communications area to be shared by all surface shaders.
The light functions themselves operate in the SIMD memory left
over by the retained result of the greediest of the surface shader
pre-illum stages. Above this high water mark, the li ght can
freely allocate whatever memory it needs. The illum, and
post-illum streams of all shaders can use all available mem-
ory without interfering with either the other surfaces or the
lights.

6.1.5.2 Surface Position
For image composition, every pixel must contain the Z-buffer

depth of the closest surface visible at that pixel. This Z value,
along with the position of the pixel on the screen, is suff icient to
compute where the surface sample is in 3D. Since the surface
position can be reconstructed from these pieces of information,
we do not store the surface position in pixel memory during ren-
dering or waste composition bandwidth sending it from the ren-
dering nodes to the shading nodes. Instead, we compute it on the
shading nodes in a phase we call pre-shade, which occurs
before any shading begins. Thus, we share the execution time
necessary to reconstruct the surface position. We also save mem-
ory and bandwidth early in the graphics pipeline, helping with
the other two forms of optimization, to be mentioned later.

6.1.5.3 Support for Traditional Shaders
Some optimizations have been added to assist in cases that are

common for forms of the OpenGL shading model. Unli ke the
earlier execution optimizations, these special-purpose optimiza-
tions are only enabled by setting flags in the shader.

Surface shaders that use only the typical Phong shading model
can use a shared illum stream. This allows shaders to set up
different parameters to the Phong shader, but the code for the
Phong shading model runs only once.

Surface shaders that use a certain class of texture lookups can
share the lookup computations. These shaders know what texture
they want to look up in the pre-illum phase, but don’ t require
the results until the post-illum phase. The PixelFlow hard-
ware does not provide any significant improvement in actual
lookup time for shared lookups, but this optimization allows the
SIMD processors to perform other operations while the lookup is
in progress. To share the lookup processing, they place their
texture ID and texture coordinates in special shared “magic”
parameters. The results of the lookup are placed in another
shared magic parameter by the start of the post-illum stage.

6.1.6 Cached Instruction Streams
On PixelFlow, the microprocessor code computes the uniform
expressions and all of the uniform control flow (if’ s with uni-
form conditions, while’ s, for’ s, etc.), generating a stream of
SIMD processor instructions. This SIMD instruction stream is
buffered for later execution. The set of SIMD instructions for a
shader only changes when some uniform parameter of the shader
changes, so we cache the instruction stream and re-use it. Any
parameter change sets a flag that indicates that the stream must
be regenerated. For most non-animated shaders, this means that
the uniform code executes only once, when the application starts.

6.2 Bandwidth Optimizations
Communication bandwidth is another scarce resource on Pix-
elFlow. As mentioned in Section 5, there are two communication
paths between nodes in the PixelFlow system, the geometry net

// setup, compute base surface color
illuminance() {

// add in the contribution of one light
}
// wrap-up

Figure 8: Outline of a typical surface shader.

— time (not to scale) �
shader stage setup add light 1add light 2wrap-up

pre-illum

Surface 1 illum

post-illum

pre-illum

Surface 2 illum

post-illum

pre-illum

Surface 3 illum

post-illum

Light 1
Light 2

Figure 9: Interleaving of surface shaders and lights.

3 - 7

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

and composition net. We are primaril y concerned with the com-
position net bandwidth. While its total bandwidth is 6.4 GB/s,
four bytes of every transfer are reserved for the pixel depth, giv-
ing an effective bandwidth of 5.6 GB/s.

Since PixelFlow uses deferred shading, the complete set of
varying shading parameters and the shader ID must be trans-
ferred across the composition network. The final color must also
be transferred from the shader node to the frame buffer. How-
ever, the design of the composition network allows these two
transfers to be overlapped, so we reall y only pay for the band-
width to send data for each visible pixel from the rendering
nodes to shading nodes. At 30 frames per second on a 1280x1024
screen, the maximum communication budget is 142 bytes per
pixel. To deal with this limited communication budget, we must
perform some optimizations to reduce the number of parameters
that need to be sent from renderer node to shader node.

6.2.1 Shader-Specific Maps
Even though each 128x64 pixel region is sent as a single trans-
fer, every pixel could potentiall y be part of a different surface.
Rather than use a transfer that is the union of all the parameters
needed by all of those surface shaders, we allow each to have its
own tailored transfer map. The first two bytes in every map con-
tain the shader ID, which indicates what transfer map was used
and which surface shader to run.

6.2.2 Bound Parameters
The bound parameters of any shader instance cannot change from
pixel to pixel (Section 4.3), so they are sent over the geometry
network directly to the shading nodes. Since the shader nodes
deal with visible pixels without any indication of when during
the frame they were rendered, we must restrict bound parameters
to only change between frames. Bound uniform parameters are
used directly by the shading function running on the microproc-
essor. Any bound varying parameters must be loaded into pixel
memory. Based on the shader ID stored in each pixel, we identify
which pixels use each shader instance and load their bound
varying parameters into pixel memory before the shader exe-
cutes.

Any parameter that is bound in every instance of a shader
should probably be uniform, since this gives other memory and
execution time gains. However, it is occasionall y helpful to have
bound values for varying shading parameters. For example, our
brick shader may include a dirtiness parameter. Some brick
wall s will be equall y dirty everywhere. Others will be dirtiest
near the ground and clean near the top. The instance used in one
wall may have dirtiness as a bound parameter, while the
instance used in a second wall allows dirtiness to be set
using glMaterial with a different value at each vertex.

However, the set of parameters that should logicall y be bound
in some instances and not in others is small . Allowing bound
values for varying parameters would be only a minor bandwidth
savings, were it not for another impli cation of deferred shading.
Since bound parameters can only change once per frame, we find
parameters that would otherwise be uniform are being declared
as varying solely to allow them to be changed with
glMaterial from primiti ve to primiti ve (instead of requiring
hundreds of instances). This means that someone writi ng a Pix-
elFlow shader may make a parameter varying for flexibilit y even
though it will never actuall y vary across any primiti ves. Allowing
instances to have bound values for all parameters helps counter
the resulting explosion of pseudo-varying parameters.

6.3 Memory Optimizations
The most limited resource when writi ng shaders on PixelFlow is
pixel memory. The texture memory size (64 megabytes) affects
the size of image textures a shader can use in its computations,
but does not affect the shader complexity. The microprocessor
memory (128 megabytes), is designed to be suff icient to hold
large geometric databases. For shading purposes it is effectively
unlimited. However, the pixel memory, at only 256 bytes, is
quite limited. From those 256 bytes, we further subtract the
shader input parameters and an area used for communication
between the li ght shaders and surface shaders. What is left is
barely enough to support a full -fledged shading language. The
memory limitations of Pixel-Planes 5 were one of the reasons
that, while it supported a form of procedural shading, it could not
handle a true shading language. In this section we highlight some
of the pfman features and optimizations made by the pfman com-
piler to make this limited memory work for real shaders.

6.3.1 Uniform vs. Varying
We previously mentioned uniform and varying parameters in

the context of execution optimizations. Bigger gains come from
the storage savings: uniform values are stored in the large main
memory instead of the much more limited pixel memory.

6.3.2 Fixed-point
PixelFlow can only allocate and operate on multiples of single
bytes, yet we specify the size of our fixed-point numbers in bits.
This is because we can do a much better job of limiting the sizes
of intermediate results in expressions with a more accurate idea
of the true range of the values involved. For example, if we add
two two-byte integers, we need three bytes for the result. How-
ever, if we know the integers reall y only use 14 bits, the result is
only 15 bits, which still fits into two bytes.

A two-pass analysis determines the sizes of intermediate
fixed-point results. A bottom-up pass determines the sizes neces-
sary to keep all available precision. It starts with the sizes it
knows (e.g. from a variable reference) and combines them ac-
cording to simple rules. A top-down pass limits the fixed-point
sizes of the intermediate results to only what is necessary.

6.3.3 Memory Allocation
The primary feature that allows shaders to have any hope of
working on PixelFlow is the memory allocation done by the
compiler. Since every surface shader is running different code,
we use a different memory map for each. We spend considerable
compile-time effort creating these memory maps.

Whereas even the simplest of shaders may define more than
256 bytes of varying variables, most shaders do not use that
many variables at once. We effectively treat pixel memory as one
giant register pool, and perform register allocation on it during
compilation. This is one of the most compelli ng reasons to use a
compiler when writi ng surface shaders to run on graphics hard-
ware. It is possible to manuall y analyze which variables can co-
exist in the same place in memory, but it is not easy. One of the
authors did just such an analysis for the Pixel-Planes 5 shading
code. It took about a month. With automatic allocation, it sud-
denly becomes possible to prototype and change shaders in min-
utes instead of months.

The pfman memory allocator performs variable li fetime analy-
sis by converting the code to a static single assignment (SSA)
form [Muchnick97][Briggs92] (Figure 10). First, we go through
the shader, creating a new temporary variable for the result of
every assignment. This is where the method gets its name: we do

3 - 8

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

a static analysis, resulting in one and only one assignment for
every variable. In some places, a variable reference will be am-
biguous, potentiall y referring to one of several of these new tem-
poraries. During the analysis, we perform these references using
a � -function. The � -function is a pseudo-function-call i ndicating
that, depending on the control flow, one of several variables
could be referenced. For example, the value of i in the last line
of Figure 10b, could have come from either i2 or i3. In these
cases, we merge the separate temporaries back together into a
single variable. What results is a program with many more vari-
ables, but each having as short a lifetime as possible.

Following the SSA li fetime analysis, we make a li near pass
through the code, mapping these new variables to free memory as
soon as they become li ve, and unmapping them when they are no
longer li ve. Variables can only become li ve at assignments and
can only die at their last reference. As a result of these two
passes, variables with the same name in the user’s code may
shift from memory location to memory location. We only allow
these shifts when the SSA name for the variable changes. One of
the most noticeable effects of the this analysis is that a variable
that is used independently in two sections of code does not take
space between execution of the sections.

Table 4 shows the performance of the memory allocation on an
assortment of shaders. Table 1 shows the amount of memory left
after the shading parameters, shader, li ght, and all overhead have
been factored out.

7 CONCLUSIONS
We have demonstrated an interactive graphics platform that sup-
ports procedural shading through a shading language. With our
system, we can write shaders in a high-level shading language,
compile them, and generate images at 30 frames per second or
more. To accomplish this, we modified a real-time API to sup-
port procedural shading and an existing shading language to
include features beneficial for a real-time implementation.

Our API is based on OpenGL, with extensions to support the
added flexibilit y of procedural shading. We believe the decision
to extend OpenGL instead of using the existing RenderMan API
was a good one. Many existing interactive graphics appli cations
are already written in OpenGL, and can be ported to PixelFlow
with relative ease. Whereas the RenderMan API has better sup-
port of curved surface primiti ves important for its user commu-
nity, OpenGL has better support for polygons, triangle strips and
display lists, important for interactive graphics hardware.

Our shading language is based on the RenderMan shading
language. Of the differences we introduced, only the fixed-point
data type was reall y necessary. We expect that future hardware-
assisted shading language implementations may also want simi-
lar fixed-point extensions. The other changes were either done
for implementation convenience or to fill holes in the Render-
Man shading language definiti on that have since been addressed
by more recent versions of RenderMan. If we were starting the

project over again today, we would just add fixed-point to the
current version of the RenderMan shading language.

We have only addressed surface shading and procedural li ghts.
RenderMan also allows other types of procedures, all of which
could be implemented on PixelFlow, but have not been. We also
do not have derivative functions, an important part of the Ren-
derMan shading language. Detail s on how these features could
be implemented on PixelFlow can be found in [Olano98]

We created a shading language compiler, which hides the de-
tail s of our hardware architecture. The compiler also allows us to
invisibly do the optimizations necessary to run on our hardware.
We found the most useful optimizations to be those that happen
automaticall y. This is consistent with the shading language phi-
losophy of hiding system details from the shader writer.

Using a compiler and shading language to mask detail s of the
hardware architecture has been largely successful, but the hard-
ware limitations do peek through as shaders become short on
memory. Several of our users have been forced to manuall y con-
vert portions of their large shaders to fixed-point to allow them to
run. Even after such conversion, one of the shaders in Table 1
has only a single byte free. If a shader exceeds the memory re-
sources after it is converted to fixed-point, it cannot run on Pix-
elFlow. If this becomes a problem, we can add the capabilit y to
spill pixel memory into texture memory, at a cost in execution
speed.

Any graphics engine capable of real-time procedural shading
will require significant pixel-level paralleli sm, though this par-
alleli sm may be achieved through MIMD processors instead of
SIMD as we used. For the near future, this level of paralleli sm
will i mply a limited per-pixel memory pool. Consequently, we
expect our memory optimization techniques to be directly useful
for at least the next several real-time procedural-shading ma-
chines. Our bandwidth optimization techniques are somewhat
specific to the PixelFlow architecture, though should apply to
other deferred shading systems since they need to either transmit
or store the per-pixel appearance parameters between rendering
and shading. Deferred shading and our experience with function
approximation will be of interest for future SIMD machines. The
other execution optimizations, dealing with tasks that can be
done once instead of multiple times, will be of lasting appli ca-
bility to anyone attempting a procedural shading machine.

There is future work to be done extending some of our optimi-
zation techniques. In particular, we have barely scratched the
surface of automatic combined execution of portions of different
shaders. We do only the most basic of these optimizations auto-
maticall y. Some others we do with hints from the shader-writer,
whereas other possible optimizations are not done at all . For
example, we currently run every shader instance independently.
It would be relatively easy to identify and merge instances of the
same shader function that did not differ in any uniform parame-
ters. For a SIMD machine li ke ours, this would give li near speed
improvement with the number of instances we can execute to-
gether. Even more interesting would be to use the techniques of
[Dietz92] and [Guenter95] to combine code within a shader and
between shader instances with differing uniform parameter val-
ues.

shader total
(uniform +

varying)

varying
only

varying
with

allocation
simple brick 171 97 16
fancy brick 239 175 101
ripple reflection 341 193 137
wood planks 216 152 97

 Table 4: Shader memory usage in bytes.

i = 1;
i = i + 1;
if (i > j)

i = 5;
j = i;

i1 = 1;
i2 = i1 + 1;
if (i2 > j1)

i3 = 5;
j2 = � (i2,i3);

i1 = 1;
i2_3 = i1 + 1;
if (i2_3 > j1)

i2_3 = 5;
j2 = i2_3;

a b c

 Figure 10: Example of lifetime analysis using SSA. a)
original code fragment. b) code fragment in SSA form.
Note the new variables used for every assignment and
the use of the � -function for the ambiguous assignment.
c) final code fragment with � -functions merged.

3 - 9

Proceedings of SIGGRAPH 98 (Orlando, Florida, July 19–24, 1998)

Creating a system that renders in real-time using a shading
language has been richly rewarding. We hope the experiences we
have outlined here will benefit others who attempt real-time
procedural shading.

8 ACKNOWLEDGMENTS
PixelFlow was a joint project of the University of North Carolina
and Hewlett-Packard and was supported in part by DARPA order
numbers A410 and E278, and NSF grant numbers MIP-9306208
and MIP-9612643.

The entire project team deserves recognition and thanks; this
work exists by virtue of their labors. We would li ke to single out
Voicu Popescu for his work on pfman memory allocation as well
as the other project members who worked on the pfman com-
piler, Peter McMurry and Rob Wheeler. Thanks to Steve Molnar
and Yulan Wang for their early work on programmable shading
on PixelFlow. Thanks to Jon Leech for his work on the OpenGL
extensions. We would also li ke to express special thanks to the
other people who worked on the PixelFlow shading system and
the API extensions: Dan Aliaga, Greg Allen, Jon Cohen, Rich
Holloway, Roman Kuchkuda, Paul Layne, Carl Mueller, Greg
Pruett, Brad Ritter, and Lee Westover.

Finall y, we would li ke to gratefull y acknowledge the help and
patience of those who have used pfman, and provided several of
the shaders used in this paper. They are Arthur Gregory, Chris
Wynn, and members of the UNC nanoManipulator project, under
the direction of Russ Taylor (Alexandra Bokinsky, Chun-Fa
Chang, Aron Helser, Sang-Uok Kum, and Renee Maheshwari).

References

[Briggs92] Preston Briggs, Register Allocation via Graph Coloring, PhD
Dissertation, Department of Computer Science, Rice University,
Houston, Texas, 1992.

[Cook84] Robert L. Cook, “Shade Trees” , Proceedings of SIGGRAPH 84
(Minneapolis, Minnesota, July 23–27, 1984). In Computer Graphics,
v18n3. ACM SIGGRAPH, July 1984. pp. 223–231.

[Cook87] Robert L. Cook, “The Reyes Image Rendering Architecture” ,
Proceedings of SIGGRAPH 87 (Anaheim, Cali fornia, July 27–31,
1987). In Computer Graphics, v21n4. ACM SIGGRAPH, July 1987.
pp. 95–102.

[Deering88] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy
and Neil Hunt, “The Triangle Processor and Normal Vector Shader: A
VLSI System for High Performance Graphics” , Proceedings of SIG-
GRAPH 88 (Atlanta, Georgia, August 1–5, 1988). In Computer
Graphics, v22n4, ACM SIGGRAPH, August 1988. pp. 21–30.

[Dietz92] Henry G. Dietz, “Common Subexpression Induction” , Proceedings
of the 1992 International Conference on Parallel Processing (Saint
Charles, Illinois, August 1992). pp. 174–182.

[Ellsworth91] David Ellsworth, “Parallel Architectures and Algorithms for
Real-time Synthesis of High-quality Images using Deferred Shading” .
Workshop on Algorithms and Parallel VLSI Architectures (Pont-á-
Mousson, France, June 12, 1990).

[Eyles97] John Eyles, Steven Molnar, John Poulton, Trey Greer, Anselmo
Lastra, Nick England and Lee Westover, “PixelFlow: The Realiza-
tion” , Proceedings of the 1997 SIGGRAPH/Eurographics Workshop
on Graphics Hardware (Los Angeles, Cali fornia, August 3–4, 1992).
ACM SIGGRAPH, August 1997. pp. 57–68.

[Gritz96] Larry Gritz and James K. Hahn, “BMRT: A Global Illumination
Implementation of the RenderMan Standard” , Journal of Graphics
Tools, v1n3, 1996. pp. 29–47.

[Guenter95] Brian Guenter, Todd B. Knoblock and Erik Ruf, “Specializing
Shaders” , Proceedings of SIGGRAPH 95 (Los Angeles, Cali fornia,
August 6–11, 1995). In Computer Graphics Proceedings, Annual
Conference Series, ACM SIGGRAPH, 1995. pp. 343–348.

[Hanrahan90] Pat Hanrahan and Jim Lawson, “A Language for Shading and
Lighting Calculations” , Proceedings of SIGGRAPH 90 (Dallas, Texas,
August 6–10, 1990). In Computer Graphics, v24n4. ACM SIG-
GRAPH, August 1990. pp. 289–298.

[Hill 97] B. Hill , Th. Roger and F. W. Vorhagen, “Comparative Analysis of
the Quantization of Color Spaces on the Basis of the CIELAB Color-
Difference Formula”, ACM Transactions on Graphics, v16n2. ACM,
April 1997. pp. 109–154.

[Lastra95] Anselmo Lastra, Steven Molnar, Marc Olano and Yulan Wang,
“Real-time Programmable Shading” , Proceedings of the 1995 Sympo-
sium on Interactive 3D Graphics (Monterey, Cali fornia, April 9–12,
1995). ACM SIGGRAPH, 1995. pp. 59–66.

[Leech98] Jon Leech, “OpenGL Extensions and Restrictions for PixelFlow” ,
Technical Report TR98-019, Department of Computer Science, Uni-
versity of North Carolina at Chapel Hill.

[MasPar90] MasPar Computer Corporation, MasPar Parallel Application
Language (MPL) User Guide, 1990.

[Max81] Nelson L. Max, “Vectorized Procedural Models for Natural Ter-
rain: Waves and Islands in the Sunset” , Proceedings of SIGGRAPH 81
(Dallas, Texas, July 1981). In Computer Graphics, v15n3. ACM
SIGGRAPH, August 1981. pp. 317–324.

[Molnar92] Steven Molnar, John Eyles and John Poulton, “PixelFlow: High-
speed Rendering Using Image Composition” , Proceedings of SIG-
GRAPH 92 (Chicago, Illi nois, July 26–31, 1992). In Computer
Graphics, v26n2. ACM SIGGRAPH, July 1992. pp. 231–240.

[Muchnick97] Steven Muchnick, Compiler Design and Implementation.
Morgan Kaufmann, San Francisco, CA, 1997.

[Neider93] Jackie Neider, Tom Davis and Mason Woo, OpenGL Program-
ming Guide: the official guide to learning OpenGL release 1., Addi-
son-Wesley, 1993.

[Olano98] Marc Olano, A Programmable Pipeline for Graphics Hardware,
PhD Dissertation, Department of Computer Science, University of
North Carolina at Chapel Hill, 1998.

[Perlin85] Ken Perlin, “An Image Synthesizer” , Proceedings of SIGGRAPH
85 (San Francisco, Cali fornia, July 22–26, 1985). In Computer
Graphics, v19n3. ACM SIGGRAPH, July 1985. pp. 287–296.

[Pixar97] Pixar Animation Studios, PhotoRealistic RenderMan 3.7 Shading
Language Extensions. Pixar animation studios, March 1997.

[Rhoades92] John Rhoades, Greg Turk, Andrew Bell , Andrei State, Ulrich
Neumann and Amitabh Varshney, “Real-time procedural textures” ,
Proceedings of the 1992 Symposium on Interactive 3D Graphics
(Cambridge, Massachusetts, March 29–April 1, 1992). In Computer
Graphics special issue. ACM SIGGRAPH, March 1992. pp. 95–100.

[Slusallek94] Phili pp Slusallek, Thomas Pflaum and Hans-Peter Seidel,
“ Implementing RenderMan–Practice, Problems and Enhancements” ,
Proceedings of Eurographics ’94. In Computer Graphics Forum,
v13n3, 1994. pp. 443–454.

[ThinkingMachines89] Thinking Machines Corporation, Connection Ma-
chine Model CM-2 Technical Summary. Thinking Machines Corpo-
ration, Version 5.1, May 1989.

[Upstill 90] Steve Upstill , The RenderMan Companion, Addison-Wesley,
1990.

[Whitted81] T. Whitted and D. M. Weimer, “A software test-bed for the
development of 3-D raster graphics systems” , Proceedings of SIG-
GRAPH 81 (Dallas, Texas, July 1981). In Computer Graphics,
v15n3. ACM SIGGRAPH, August 1981. pp. 271–277.

3 - 10

Graphics Hardware (2003)
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

Automatic Shader Level of Detail

Marc Olano,∗ Bob Kuehne† and Maryann Simmons†

∗ University of Maryland, Baltimore County
† SGI

Abstract

Current graphics hardware can render procedurally shaded objects in real-time. However, due to resource and
performance limitations, interactive shaders can not yet approach the complexity of shaders written for film pro-
duction and software rendering, which may stretch to thousands of lines. These constraints limit not only the
complexity of a single shader, but also the number of shaded objects that can be rendered at interactive rates.
This problem has many similarities to the rendering of large models, the source of extensive research in geometric
simplification and level of detail. We introduce an analogous process for shading : shader simplification. Starting
from an initial detailed shader, shader simplification automatically produces a set of simplified shaders or a single
new shader with extra level-of-detail parameters that control the shader execution. The resulting level-of-detail
shader can automatically adjust its rendered appearance based on measures of distance, size, or importance, as
well as physical limits such as rendering time budget or texture usage. We demonstrate shader simplification with
a system that automatically creates shader levels of detail to reduce the number of texture accesses, one common
limiting factor for current hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image generation
I.3.6 [Computer Graphics]: Methodology and Techniques I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism
Keywords: Interactive Rendering, Rendering Systems, Hardware Systems, Procedural Shading, Languages, Multi-
Pass Rendering, Level of Detail, Simplification, Computer Games, Reflectance & Shading Models

1. Introduction

Procedural shading is a powerful technique, first explored
for software rendering in work by Cook11 and Perlin35,
and popularized by the RenderMan Shading Language19. A
shader is a procedure written in a special purpose high-level
language that controls some aspect of the appearance of an
object to which it is applied. The term shader is used gener-
ically to refer to any such procedures, whether they compute
surface color, attenuation of light through a volume (as with
fog), light color and direction, fine changes to the surface
position, transformation of control points or vertices, or any
combination of these factors.

Recent graphics hardware can render procedurally shaded
objects in real-time, through shaders defined in a low-
level assembly language4, 30, 40 or a high-level shading
language27, 33, 34, 36. Even though the hardware is capable of
rendering these shaders interactively, the number of tex-

ture units, total texture memory used, number of instruc-
tions, or other factors can affect overall performance or pre-
vent a shader from running at all. Even on programmable
PC graphics hardware, it is easy to exceed the hardware’s
abilities for rendering of a single object. Such shaders may
be rendered using multiple passes through the graphics
pipeline, but choosing the partitioning into passes is a dif-

Figure 1: Shader simplification applied to a leather shader.

c© The Eurographics Association 2003.

3 - 11

Olano et al. / Automatic Shader Level of Detail

ficult compilation task and the final number of passes has a
direct impact on performance5, 8, 34.

Consider the leather shader in Figure 1. With a bump
map requiring three texture accesses per light and homomor-
phic BRDF factorization28 requiring two texture accesses
per light plus one additional texture access, it is complex
enough to benefit from the several automatically generated
simplification steps shown. An even more realistic leather
shader might include multiple measured BRDFs for worn
and unworn areas, bumps for the stitching, dust collected in
the crevices, scuff marks, and changes in color due to varia-
tions in the leather. The options are limited only by the imag-
ination and skill of the shader writer. But even though such a
complex shader might look good applied to a single closely
examined chair, it is overkill as you move away to see the
rest of the room, all the other furniture in the room, other
buildings, trees, cars and pedestrians — all using shaders of
similar or greater complexity.

In this paper, we introduce the automatic generation of
level-of-detail shaders (LOD shaders) from arbitrarily com-
plex shaders. Our examples use SGI OpenGL Shader run-
ning on an SGI Octane41. From each input shader, our sys-
tem automatically creates a single parameterized level-of-
detail shader that can adjust the shading complexity (and
thus number of rendering passes produced) based on a level-
of-detail input parameter. The application sets the level pa-
rameter to control detail for the current viewing conditions
and resource limits, thus allowing both interactive perfor-
mance and high-quality shading of many objects in the same
scene. The methods described in this paper could also be
applied to produce a series of shaders for an application to
select, or could be adapted for simplification of shaders on
commodity graphics hardware as suggested by Vlachos45.

1.1. Background

Automatic transformation of non-procedural surface appear-
ance has been explored by a number of researchers. Ka-
jiya was the first to pose the problem of converting large-
scale surface characteristics to a bump map then lighting
model22. Fournier used nonlinear optimization to fit a bump
map to a sum of several standard Phong peaks13. Cabral,
et al. addressed the conversion from bump map to BRDF
through a numerical integration pre-process7, and Becker
and Max solved it for conversion from RenderMan-based
displacement maps to bump maps and then to a BRDF
representation6. Kautz approached the problem in reverse,
creating bump maps to statistically match a chosen fractal
micro-facet BRDF24.

Fewer researchers have attempted to tackle automatic an-
tialiasing of arbitrary shading language code. The primary
form of antialiasing provided in the RenderMan shading lan-
guage is manual transformation of the shader, relying on
the shader-writer’s knowledge to effectively remove high-
frequency components of the shader or smooth the sharp

transitions from an if, by instead using a smoothstep (cu-
bic spline interpolation between two values) or filterstep
(smoothstep across the current sample width)12. Perlin de-
scribes automatic use of blending wherever if is used in the
shading code12. Heidrich et al. also did automatic antialias-
ing, using affine arithmetic to estimate the frequency and er-
ror while computing shading results20.

Thus far, creation of shaders at multiple levels of detail for
rendering speed or computational efficiency has been pri-
marily a manual process. Goldman manually created mul-
tiple independently written level-of-detail versions of a fur
shader for movie production17. Apodaca and Gritz describe
several general options for manually creating shaders with
multiple complexity levels3. Olano and Kuehne provided a
set of building block functions with manually created levels
of detail, so shaders using these building blocks inherit those
levels of detail32. Guenter et al. automatically created spe-
cialized shaders, when only some shader parameters were
expected to vary18. Expressions using other parameters were
evaluated into textures.

While most of this prior work is in the context of off-line
rendering systems like RenderMan, our work is set specif-
ically within the context of recent advances in interactive
shading languages. The first interactive shading system was
a low-level assembly-like language for the Pixel-Planes 5
machine at UNC38. Later work at UNC developed a full in-
teractive shading language on UNC’s PixelFlow system33.
Peercy and coworkers at SGI created a shading language
that runs using multiple OpenGL Rendering passes34. The
Real-Time Shading group at Stanford has created another
high-level shading language, RTSL, that can be compiled
into one or more rendering passes on SGI, NVIDIA, or
ATI hardware8, 36. Many aspects of these research efforts
appear in the several recent commercial shading languages
and compilers, NVIDIA’s Cg language, Microsoft’s HLSL,
ATI’s Ashli, and the OpenGL shading language27, 29, 5, 25.

Several aspects of interactive shading languages moti-
vate the need for shader simplification and level-of-detail
shaders. The languages they use share some features with
traditional shading languages like RenderMan, but tend to be
simpler, with operations that graphics hardware can and can-
not do a major factor in their design. Hardware limits bound
shader complexity and encourage the use of results precom-
puted into textures. Both of these factors make the simpli-
fication problem more tractable. Additionally, the desire to
have the appearance of high-quality shaders on every ob-
ject creates the need for shaders that can transition smoothly
from high quality to fast rendering while maintaining inter-
active frame rates.

2. Automatic Simplification

Shader simplification automatically creates multiple levels
of detail from an arbitrary source shader. Our simplification

c© The Eurographics Association 2003.

3 - 12

Olano et al. / Automatic Shader Level of Detail

process draws on two major areas of prior work — geometric
simplification and compiler optimization.

Specifically, our shader simplification strategy is mod-
eled after operations from the topology-preserving geomet-
ric level-of-detail literature. Schroeder and Turk both per-
formed early work in automatic mesh simplification using a
series of local operations, each resulting in a smaller total
polygon count for the entire model39, 44. Hoppe used the col-
lapse of an edge to a single vertex as the basic local simpli-
fication operation. He also introduced progressive meshes,
where all simplified versions of a model are stored in a form
that can be reconstructed to any level at run-time21. These
ideas have had a large influence on more recent polygonal
simplification work26.

From this work we take several desired properties for our
shader simplification algorithm. It should perform only local
simplification operations for computational efficiency. Each
operation should move monotonically toward the goal. Each
simplification operation has an associated cost and the sim-
plification of lowest remaining cost should be chosen at each
step. The outline of our algorithm becomes:

for each candidate simplification site
find simplification cost

while (simplifications remain)
choose site with lowest remaining cost
perform simplification
re-compute costs for area local to site

The second area we draw on in developing our simplifi-
cation algorithm is classic compiler peephole optimization1.
Peephole optimization occurs toward the end of the compila-
tion process when the program has already been reduced to
blocks of simple instructions. The optimizer looks at small
windows of instructions for certain patterns to replace.

Peephole optimization performs only local operations. If
several optimizations overlap the optimizer will choose be-
tween them based on a set of costs. The golden rule for op-
timizations is to never change the program output. Shader
simplification is in effect an optimization process but is one
that may or may not break this rule. We can classify the sim-
plifications into three categories:

Lossless: Obeying the strict compiler definition of opti-
mization. This can be expanded to include some specializ-
ing shader-like optimizations18 where certain non-constant
parameters are assumed to be constant for the simplification.
The geometric level of detail equivalent is simplification of
highly tessellated, but flat regions of a model.

Resolution-specific lossless: Producing numerically or
visually identical results but only at a specific resolution.
This would include the majority of specializing shader sim-
plifications and any others that evaluate results into tex-
tures. The equivalence is dependent on the texture resolu-
tion and minimum viewing distance. It also includes simpli-
fications that replace textures with computed results, where

Figure 2: Band-limited noise texture, noise almost blended
away at a distance, and noise replaced with average value.

the computed results fit a specific MIP-level of the texture.
In geometric simplification, the equivalent is Simplification
Envelopes or Appearance Preserving Simplification, with
strong guarantees on geometric deviation9, 10

Lossy: Not identical, but not noticeably or objectionably
different. This includes many approximations that would
never be considered for traditional optimization, but produce
visually similar results at lower cost. Most geometric simpli-
fications would fall in this category, as they minimize visual
impact without making any guarantees, and assume slight
changes in shape for distant objects are acceptable in ex-
change for interactive performance.

2.1. Simplifications

One of the most severe restrictions of current hardware is the
cost of each texture access, with limits on either accesses or
active textures per rendering pass in the tens at most.

Shaders that make heavy use of textures for precomputed
expressions, for math and shading functions, and as actual
textures can easily exceed these limits8. We have chosen the
reduction of texture accesses as our simplification goal. Re-
duction by multiples of the single-pass hardware texturing
limit provides an obvious speedup by reducing the number
of passes required, but reductions by less than the single pass
limit can also be beneficial as some hardware has higher ren-
dering rates if fewer texture units are used, and fewer texture
accesses indirectly leads to fewer operations and fewer ac-
tive textures.

Many geometric simplifications use a single simplifica-
tion rule, for example collapsing an edge to a point. We pro-
ceed using a choice of two simplification rules. The first is
a lossy simplification that replaces a texture access with a
simple non-texture-based approximation (Figure 2); the sec-
ond is a lossless simplification that replaces one or more
textures accesses and other operations with a single texture
(Figure 3).

Texture Removal: Our first simplification rule clearly
moves us toward the goal as it results in the direct removal
of one texture access at each application. Our measure of

c© The Eurographics Association 2003.

3 - 13

Olano et al. / Automatic Shader Level of Detail

error for this simplification is the least-squares difference
between the texture and non-texture approximation at each
MIP-MAP level. The use of scale-based MIP filtering in-
troduces a frequency and distance factor, while the least-
squares error provides a measure of the contrast between
pre- and post-simplification representations.

In the work presented here, we only approximate a tex-
ture by its average color. The most blurred level of a MIP
map is just the average color, so applying this simplification
switches to this constant color earlier than would be done by
standard MIP filtering. For example, replacing

FB *= texture("marble.tx");

with

FB *= color(.612,.618,.607,1);

The least-squares error between texture and average color
is the standard deviation of the texture, but we prefer the
least-squares error interpretation since it generalizes more
easily for future approximations. For example, an environ-
ment map may be well approximated by one or more light
sources using the built-in Phong model, with light sources
located at peaks of the environment map. The least-squares
error between environment map and Phong lighting mea-
sures the error in this approximation, with lower error ex-
pected at larger MIP levels due to the closer fit of the ap-
proximation to the texture.

While the texture removal operation alone is theoretically
sufficient to eventually remove all texturing operations from
any complex shader, it does not always reduce texture uses
as quickly as should be possible. The problem is not the lo-
cal error metric, but with the global effect of the introduced
error. Subsequent operations using the removed texture may
amplify or attenuate the computed error. Directly computing
this propagation of error can be done, as was shown in the
sampling of RenderMan shaders by Heidrich et al.20. In our
experience, global error measures were not necessary, even
for shaders that did have fairly significant amplification of
texture results like the watermelon in Plate 2(a). We attribute
this to the common practice of writing complex shaders in
layers3.

Texture Collapse: Our second simplification rule is the
collapse of one or more textures and the operations per-
formed onto them into a single new texture. We guarantee
to never increase the total texture accesses by including at
least one existing texture in any set of collapsed operations.

Transformation of textures within a collapse, as illustrated
in Figure 3, introduces resolution-specific error through re-
sampling of the source textures into the collapse texture. In
our current version, we support only lossless collapse (with
no relative rotation or scaling of either texture).

By limiting ourselves to lossless collapse, texture collapse
operations will happen immediately, at no additional cost.

Figure 3: An illustration of the collapse of two textures and
the associated computations into a single texture. Left to
right: the original dust (top) and scratch (bottom) textures;
the textures as transformed and overlaid by the shader (the
scratch texture is compressed, rotated and repeated, only
two copies of the repeated texture are shown); the collapsed
single-texture result; and an example of the collapsed texture
in use as dust and scratch wood detail.

However, texture removals at one scale may enable further
collapses. For example:

FB = texture("silk.tx");
FB *= texture("cone.tx");
FB += color(0.1,0,0,0);
FB *= environment("flowers.env");

is reduced first by texture collapse creating a new temporary
texture loctx 0 silk.tx (naming of generated textures is
explained in Section 3.1), producing

FB = texture("loctx_0_silk.tx");
FB *= environment("flowers.env");

then by texture removal to

FB = texture("loctx_0_silk.tx");
FB *= color(.264,.238,.279,1);

then by a second collapse creating new temporary texture
loctx 1 loctx 0 silk.tx producing

FB = texture("loctx_1_loctx_0_silk.tx");

and finally by texture removal to

FB = color(.111,.076,.090,1);

2.2. LOD Shader Representation

While each simplified block could be provided as a single
stand-alone unit, we assemble all simplified blocks for a
shader into a single unit, the LOD shader. We replace the
full shader with an if. The true branch is the original shader
while the false branch is the shader after one step of sim-
plification. We iterate the simplification process on this false
branch producing an LOD shader of the following form:

if(autoLOD < threshold0)
original_shader

else

c© The Eurographics Association 2003.

3 - 14

Olano et al. / Automatic Shader Level of Detail

if(autoLOD < threshold1)
simplified_once

else
simplified_twice

Within OpenGL Shader, such parameter-based condition-
als control which portions of the shader are executed by the
hardware. The threshold levels monotonically increase with
each level of simplification and provide a simple means to
choose between levels of detail within the shader itself. The
resulting LOD shader can be directly substituted as a re-
placement for the original shader. If autoLOD is not set, the
original shader will be executed every time, but if autoLOD
is set the appropriate level of detail will be used instead.

The existence of level-control parameters are the one as-
pect that distinguishes the interface to an LOD shader from
other shaders. We control our LOD levels through the single
parameter, autoLOD. This parameter represents the degree
of texture scaling and is a function of object size, object pa-
rameterization, and object distance. As with geometric level
of detail, other parameter choices are possible, including ob-
ject importance, distance, size, time budget, or any of the
hardware resources mentioned above. Several of these pa-
rameters could be combined into more complex conditionals
selecting simplified blocks, collected into a single aggregate
parameter, or controlled through an optimization function as
done by Funkhouser and Séquin15.

3. System Design

The bulk of this paper has focused on shader simplification
and creation of levels of detail for arbitrary shaders. These
capabilities must fit into the larger context of a shading sys-
tem. In this section of the paper we will explore how our
shading system architecture has been modified to allow both
generation and usage of automatic level of detail.

3.1. Compile and Simplify

The first step for using any interactive shader is to compile it
into a form executable by the graphics hardware. During the
compilation we also perform any simplifications. Simplifica-
tions are only performed on shaders that define an autoLOD
parameter. The existence of this parameter triggers use of the
simplifier.

The simplification process also needs to know the size and
contents of each texture, information not normally needed
during shader compilation. Our system leaves the applica-
tion in control of all aspects of texture loading and paging,
so we require an application-provided image data callback
function to get this data. The simplifier may call the image
data callback during compilation to get a copy of texture data
to analyze. Textures are identified to this callback by their
string name. The callback can return the texture data or an
error code indicating that the texture is unknown or dynamic
and cannot be removed or simplified.

Texture collapse operations may require new textures to
hold the combined textures and operations. Since the ap-
plication is in charge of texture allocation and paging, we
ask for image data for a local texture with a name begin-
ning loctx %d . For example loctx 1 stone would be a
copy of a texture named stone that the simplifier is free
to write and replace. Later requests for loctx 1 stone
should return the modified data (for analysis for tex-
ture removal or further collapse). Since a texture collapse
may build on a previous collapse, these names may also
build, so loctx 5 loctx 1 stone is a writable copy of
loctx 1 stone.

3.2. Between Frames

The LOD shader may use different active textures on dif-
ferent frames depending on which level of detail is in use.
This is not inconsistent with our goal of reducing texture ac-
cesses rather than global texture memory use, but many ap-
plications already use enough textures to require some form
of texture paging. Adding an additional set of generated tex-
tures to that burden may be a problem for these applications.

We provide an optional snapshot function that an appli-
cation can call between frames. The snapshot evaluates all
run-time parameters and conditionals in the shader to pro-
vide a frozen version the application can store and use. In
the process of building the snapshot, the application can find
out exactly which textures will be used for a given set of
run-time parameters, including the autoLOD setting. The ap-
plication does not need to use the frozen shader that results
if it only wants to know future texture usage. It can take a
snapshot just one frame in advance or compute several spec-
ulatively to page textures for possible future views.

3.3. Draw and Shade

The final shaded object is drawn by the same mechanisms
as any unsimplified object. If the application does not set
the autoLOD parameter, it assumes the default value which
triggers the full unsimplified shader. If the application does
set an autoLOD value, the appropriate level of detail will be
selected and executed. Applications using frozen snapshots
must set their autoLOD values before taking the snapshot.

During the drawing of the shaded object, different textures
may need to be loaded and bound to texture units for ren-
dering. The draw action indicates which textures to load by
calling an application provided texture bind callback func-
tion. Like the image data function, this function identifies
textures by their string name. The texture bind callback also
indicates the texture unit to bind to the texture (if the hard-
ware supports multiple textures in each rendering pass). It
is then the application’s responsibility to load or page in the
texture if necessary and prepare it for use. The texture names
may be one of the names from the original shader source
code or one of the generated loctx textures.

c© The Eurographics Association 2003.

3 - 15

Olano et al. / Automatic Shader Level of Detail

LOD Active Accesses Reduction Speedup

0 14 45 0.00 1.0
1 11 23 0.49 1.8
2 5 9 0.80 1.9
3 0 0 1.00 2.3

Table 1: Results for test scene: LOD: A selection of sim-
plification levels for this scene, from most detailed (0) to
all constant colors (3). Active: number of active, unique
textures. Accesses: number of texture accesses. Reduction:
percentage of texture accesses removed. Speedup: framerate
speedup factor.

4. Results

We ran the automatic simplification on a number of shaders,
all of which were written independently from our work on
shader LOD. Once the user enables simplification by includ-
ing the autoLOD parameter, the process is entirely automatic.

Results are shown in Plates 1 and 2, with performance re-
sults for Plate 1(a) shown in Table 1. As these results show,
the automatically generated levels of detail are visually com-
parable to the fully detailed version at the appropriate view-
ing distances, at a significant reduction in texture accesses.
Even further reductions could be achieved within the current
framework by allowing more aggressive texture collapse.

5. Discussion

Using a single LOD shader that encapsulates the progression
of levels of detail provides many of the advantages for sim-
plified shaders that progressive meshes provide for geome-
try. In this section, we directly echo the points from Hoppe’s
original progressive mesh paper21. Not only does this place
our current system in context, but it also suggests some log-
ical extensions and more ambitious future work.

• Shader simplification: The LOD shader can be generated
automatically from an initial complex shader using auto-
matic tools. Our shader simplifier operates with the sole
goal of reducing the number of texture accesses. Other
valid simplification goals may include texture memory
used, instruction count, balance between direct textures
and dependent textures, or a weighted combination of
these. Reducing texture accesses also indirectly reduces
the number of active textures and instruction count, and
so is relevant across a wide range of hardware.

• LOD approximation: Like a progressive mesh, an LOD
shader contains all levels of detail. Thus it could include
the shader equivalent of Hoppe’s geomorphs to smoothly
transition from one level to the next. Within OpenGL
Shader, we have implemented continuous, per-pixel LOD
at the cost of an additional pass that renders the object

texture-mapped with a special MIP LOD texture that ap-
proximates the sampling rate of the shader43. The result is
read back and used to set a per-pixel LOD level, that can
also be used to smoothly blend between levels.

• Selective Refinement: Selective refinement for meshes
refers to simplifying some portions of the mesh more
than others based on current viewing conditions, encom-
passing both variation across the object and a guided de-
cision on which of the stored simplifications to apply.
Within OpenGL Shader, we can treat per-pixel LOD as
noted above43. Programmable PC hardware does not real-
ize any benefit from shading variations across a single ob-
ject, but a single LOD shader will present a high quality
appearance on some surfaces while using a lower qual-
ity for others, based on distance, viewing angle or other
factors. The LOD shader could also apply certain sim-
plifications and not others based on pressure from hard-
ware resource limits, though our current implementation
does not. For example, if available texture memory is low,
texture-reducing simplification steps may be applied in
one part of the shader while leaving more computation-
heavy portions of the shader to be rendered at full detail.

• Retargetability: Retargetability is not found in mesh sim-
plification. Since shading simplification can be built into
a shading compiler, it gains the advantages of the com-
piler framework. Compilers consist of a sequence of mod-
ules that perform a simple operation on an intermediate
representation of the shader. Since simplification can be
dropped in as one or more modules in the chain, it is easy
to add to existing shading compilers and easy to add new
simplification modules. Further, since the shading com-
piler can be retargeted through multiple compiler back-
ends to different shading hardware, it is easy to create
simplifications for one hardware platform and use them
on another.

Many of these points depend on the storage of an LOD
shader. Our choice to combine all levels into a single LOD
shader would work well for most of the points mentioned,
with the added advantage that LOD shaders can easily be
dropped in as replacements for their non-LOD counterparts.

6. Conclusions and Future Work

We have presented a method for automatic simplification
of complex procedural shaders designed for use on graph-
ics hardware. The resulting LOD shaders automatically ad-
just their level of shading detail for interactive rendering. We
presented a general strategy for shader simplification, a spe-
cific example for reducing texture accesses, and a system
that provides a shader compiler and shader simplification to
an application.

6.1. Other Simplification Goals

The two simplifications discussed are specific to our goal
to reduce the number of texture accesses. Future work may

c© The Eurographics Association 2003.

3 - 16

Olano et al. / Automatic Shader Level of Detail

optimize other simplification goals, including the previously
suggested options of reducing total number of instructions
or texture memory used. We have not fully explored simpli-
fication operations appropriate for these other simplification
goals, but some directions inspired by prior research appear
particularly promising.

Texture-based simplification for both shaders and ge-
ometry provides examples of ways to move computations
into an increased number of textures. Guenter, Knoblock
and Ruf18 replaced static sequences of shading operations
with pre-generated textures18. Heidrich has analyzed texture
sizes and sampling rates necessary for accurate evaluation
of shaders into texture31. In a related vein, texture-impostor
based simplification techniques replace geometry with pre-
rendered textures, either for indoor scenes as has been done
by Aliaga2 or outdoor scenes as by Shade et al.42.

The body of BRDF approximation methods also suggests
approaches to reduce computation at the cost of increased
numbers of textures. Like shading functions, BRDFs are
positive everywhere. Fournier used singular value decompo-
sition (SVD) to fit a BRDF to sums of products of functions
of light direction and view direction for use in radiosity14.
Kautz and McCool presented a similar method for real-time
BRDF rendering, computing functions of view direction,
light direction, or other basis as textures using either SVD
or a simpler normalized integration method23. McCool, Ang
and Ahmad’s homomorphic factorization uses only prod-
ucts of 2D texture lookups, fit using least-squares28. In a re-
lated area, Ramamoorthi and Hanrahan used a common set
of spherical harmonic basis textures for reconstructing irra-
diance environment maps37. Many of these could be gen-
eralized to approximate blocks of shading code, which can
be seen as a black-box producing a result from an arbitrary
number of input variables.

6.2. Going Further

There are other promising overall research directions for
shader simplification. Following the lead of texture-based
simplification researchers like Aliaga and Shade et al.,
we could generate new textures for run-time parameter-
dependent texture collapse or other simplification on the fly,
warping them for use over several frames or updating when
they become too different2, 42.

Since rendering with LOD shaders will usually be ac-
companied by geometric level of detail, the two should be
more closely linked. Cohen et al.9, Garland and Heckbert16

and others have shown that geometric simplification can be
driven by appearance. Shader simplification should also be
affected by geometric level of detail, with a trade-off be-
tween performing the same operation per-vertex or per-pixel
depending on object tessellation.

Finally, our error metric measures the actual error in each

replacement but provides no hard guarantees on the percep-
tual fidelity of our simplifications. Many geometric simpli-
fication algorithms have been successful without providing
exact error metrics or bounds. However, algorithms such
as simplification envelopes by Cohen et al.10 provide hard
bounds on the amount of error introduced by a simplifica-
tion — guarantees that are important for some users. Further
investigation is necessary to bound the error introduced by
shader simplification.

7. Acknowledgments

The leather BRDF was fit by homomorphic factorization by
Michael McCool to data from the Columbia-Utrecht Re-
flectance and Texture Database. The car paint BRDF is
also from Michael McCool, fit to data for Dupont Cayman
lacquer from the Ford Motor Company and measured at
Cornell University. The Porsche model was distributed by
3dcafe.com.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

2. D. G. Aliaga. Visualization of complex models using dynamic
texture-based simplification. In IEEE Visualization ’96, pages
101–106, October 1996.

3. A. A. Apodaca and L. Gritz. Advanced RenderMan: Creating
CGI for Motion Pictures. Morgan Kaufmann, first edition,
2000.

4. ATI. ATI OpenGL Extensions Specifications, 2001.

5. ATI. Ashli demo. http://www.ati.com, 2003.

6. B. G. Becker and N. L. Max. Smooth transitions between
bump rendering algorithms. In Proceedings of SIGGRAPH
93, ACM Computer Graphics Proceedings, Annual Confer-
ence Series, pages 183–190, August 1993.

7. B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflec-
tion functions from surface bump maps. In ACM Computer
Graphics (Proceedings of SIGGRAPH 87), pages 273–281,
July 1987.

8. E. Chan, R. Ng, P. Sen, K. Proudfoot, and P. Hanrahan. Effi-
cient partitioning of fragment shaders for multipass rendering
on programmable graphics hardware. In Graphics Hardware
2002. ACM SIGGRAPH / Eurographics, August 2002.

9. J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. In Proceedings of SIGGRAPH 98, ACM Com-
puter Graphics Proceedings, Annual Conference Series, pages
115–122, July 1998.

10. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. P. Brooks Jr., and W. Wright. Simplification
envelopes. In Proceedings of SIGGRAPH 96, ACM Computer
Graphics Proceedings, Annual Conference Series, pages 119–
128, August 1996.

11. R. L. Cook. Shade trees. In ACM Computer Graphics (Pro-
ceedings of SIGGRAPH 84), pages 223–231, July 1984.

c© The Eurographics Association 2003.

3 - 17

Olano et al. / Automatic Shader Level of Detail

12. D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Wor-
ley. Texturing and Modeling: A Procedural Approach. Aca-
demic Press, second edition, 1998.

13. A. Fournier. Normal distribution functions and multiple sur-
faces. In Graphics Interface ’92 Workshop on Local Illumina-
tion, pages 45–52, May 1992.

14. A. Fournier. Separating reflection functions for linear radios-
ity. In Proceedings of Eurographics Workshop on Rendering,
pages 296–305, June 1995.

15. T. A. Funkhouser and C. H. Séquin. Adaptive display algo-
rithm for interactive frame rates during visualization of com-
plex virtual environments. In Proceedings of SIGGRAPH 93,
ACM Computer Graphics Proceedings, Annual Conference
Series, pages 247–254, August 1993.

16. M. Garland and P. S. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. In IEEE Visual-
ization ’98, pages 263–270, October 1998.

17. D. B. Goldman. Fake fur rendering. In Proceedings of SIG-
GRAPH 97, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 127–134, August 1997.

18. B. Guenter, T. B. Knoblock, and E. Ruf. Specializing shaders.
In Proceedings of SIGGRAPH 95, ACM Computer Graphics
Proceedings, Annual Conference Series, pages 343–350, Au-
gust 1995.

19. P. Hanrahan and J. Lawson. A language for shading and light-
ing calculations. In ACM Computer Graphics (Proceedings of
SIGGRAPH 90), pages 289–298, August 1990.

20. W. Heidrich, P. Slusallek, and H. Seidel. Sampling procedural
shaders using affine arithmetic. 17(3):158–176, July 1998.

21. H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH
96, ACM Computer Graphics Proceedings, Annual Confer-
ence Series, pages 99–108, August 1996.

22. J. T. Kajiya. Anisotropic reflection models. In ACM Computer
Graphics (Proceedings of SIGGRAPH 85), pages 15–21, July
1985.

23. J. Kautz and M. D. McCool. Interactive rendering with arbi-
trary BRDFs using separable approximations. In Eurographics
Rendering Workshop, June 1999.

24. J. Kautz and H. Seidel. Towards interactive bump mapping
with anisotropic shift-variant BRDFs. pages 51–58. ACM
SIGGRAPH / Eurographics / ACM Press, August 2000.

25. J. Kessenich, D. Baldwin, and R. Rost. The OpenGL Shading
Language. 3Dlabs, Inc. Ltd., February 2003. Version 1.05.

26. D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson,
and R. Huebner. Level of Detail for 3D Graphics. Morgan
Kaufmann / Elsevier Science, 2003.

27. W. R. Mark, S. Glanville, and K. Akeley. Cg: A system for
programming graphics hardware in a C-like language. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2003),
22(3), August 2003.

28. M. D. McCool, J. Ang, and A. Ahmad. Homomorphic fac-
torization of BRDFs for high-performance rendering. In Pro-
ceedings of SIGGRAPH 2001, ACM Computer Graphics Pro-
ceedings, Annual Conference Series, pages 171–178, August
2001.

29. Microsoft. DirectX Graphics Programmers Guide. Microsoft
Developers Network Library, DirectX 9 edition, 2002.

30. NVIDIA. NVIDIA OpenGL Extensions Specifications, March
2001.

31. M. Olano, J. C. Hart, W. Heidrich, E. Lindholm, M. McCool,
B. Mark, and K. Perlin. Real-time shading. In ACM SIG-
GRAPH 2001 Course Notes, August 2001.

32. M. Olano, J. C. Hart, W. Heidrich, and M. McCool. Real-time
Shading. AK Peters, 2002.

33. M. Olano and A. Lastra. A shading language on graphics hard-
ware: The PixelFlow shading system. In Proceedings of SIG-
GRAPH 98, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 159–168, July 1998.

34. M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar. Interac-
tive multi-pass programmable shading. In Proceedings of SIG-
GRAPH 2000, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 425–432, July 2000.

35. K. Perlin. An image synthesizer. In ACM Computer Graphics
(Proceedings of SIGGRAPH 85), pages 287–296, July 1985.

36. K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A
real-time procedural shading system for programmable graph-
ics hardware. In Proceedings of SIGGRAPH 2001, ACM
Computer Graphics Proceedings, Annual Conference Series,
pages 159–170, August 2001.

37. R. Ramamoorthi and P. Hanrahan. An efficient representa-
tion for irradiance environment maps. In Proceedings of SIG-
GRAPH 2001, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 497–500, August 2001.

38. J. Rhoades, G. Turk, A. Bell, A. State, U. Neumann, and
A. Varshney. Real-time procedural textures. In 1992 Sympo-
sium on Interactive 3D Graphics, pages 95–100. ACM, March
1992.

39. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation
of triangle meshes. In ACM Computer Graphics (Proceedings
of SIGGRAPH 92), pages 65–70, July 1992.

40. M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification. SGI, 2002.

41. SGI. OpenGL shader. http://www.sgi.com/software/shader,
2003. Version 3.0.

42. J. Shade, D. Lischinski, D. H. Salesin, T. D. DeRose, and
J. Snyder. Hierarchical image caching for accelerated walk-
throughs of complex environments. In Proceedings of SIG-
GRAPH 96, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 75–82, August 1996.

43. M. Simmons and D. Shreiner. Per-pixel smooth shader level
of detail. In Computer Graphics (Conference Abstracts and
Applications SIGGRAPH 2003), 2003.

44. G. Turk. Re-tiling polygonal surfaces. In ACM Computer
Graphics (Proceedings of SIGGRAPH 92), pages 55–64, July
1992.

45. A. Vlachos. Designing a portable shader li-
brary for current and future APIs. In Game De-
velopers Conference Presentation, March 2003.
http://www.ati.com/developer/gdc/GDC2003-ShaderLib.pdf.

c© The Eurographics Association 2003.

3 - 18

Olano et al. / Automatic Shader Level of Detail

(a) A selection of LOD Levels for this scene (0-3) at typical viewing distances. Performance numbers in Table 1.

(b) Close-up of level 0: Highest level
of detail.

(c) Close-up of level 1: Various noise
and highlight details have been re-
moved.

(d) Close-up of level 2: Extra de-
tail on wall, bowl, watermelon and
teapot removed.

Plate 1: A simple scene showing the interaction of multiple automatically simplified level-of-detail shaders.

(a) A slightly different watermelon
shader

(b) A car shader (c) A tile shader

Plate 2: Individual examples of shader simplification.

c© The Eurographics Association 2003.

3 - 19

3 - 20

