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Abstract
Current graphics hardware can render objects using simple
procedural shaders in real-time. However, detailed, high-
quality shaders will continue to stress the resources of hard-
ware for some time to come. Shaders written for film pro-
duction and software renderers may stretch to thousands of
lines. The difficulty of rendering efficiently is compounded
when there is not just one, but a scene full of shaded ob-
jects, surpassing the capability of any hardware to render.
This problem has many similarities to the rendering of large
models, a problem that has inspired extensive research in
geometric level-of-detail and geometric simplification. We
introduce an analogous process for shading,shader simplifi-
cation. Starting from an initial detailed shader, shader sim-
plification produces a new shader with extra level-of-detail
parameters that control the shader execution. The resulting
level-of-detail shader, can automatically adjust its rendered
appearance based on measures of distance, size, or impor-
tance as well as physical limits such as rendering time budget
or texture usage.

CR categories and subject descriptors: I.3.3 [Com-
puter Graphics]: Picture/Image generation — Display al-
gorithms; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Color, shading, shadowing and tex-
ture.

Keywords: Interactive Rendering, Rendering Systems,
Hardware Systems, Procedural Shading, Languages, Multi-
Pass Rendering, Level-of-Detail, Simplification, Computer
Games, Reflectance & Shading Models.

1 INTRODUCTION
Procedural shading is a powerful technique, first explored
for software rendering in work by Cook and Perlin [10, 35],
and popularized by the RenderMan Shading language [20].
A shader is a simple procedure written in a special purpose
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Figure 1:LOD shader upholstering a Le Corbusier chair.

high-level language that controls some aspect of the appear-
ance of an object to which it is applied. The termshaderis
used generically to refer to procedures that compute surface
color, attenuation of light through a volume (as with fog),
light color and direction, fine changes to the surface posi-
tion, or transformation of control points or vertices.

Recent graphics hardware can render simple procedural
shaders in real-time [4, 5, 31, 33, 34, 36]. Shaders that ex-
ceed the hardware’s abilities for rendering of a single object
must be rendered using multiple passes through the graph-
ics pipeline. The resulting multi-pass shaders can achieve
real-time performance, but many complex shaders in a single
scene can easily overwhelm any graphics hardware. Even for
shaders that execute in a single rendering pass, the number
of textures or combiner stages used can affect overall perfor-
mance [31].

Consider a realistic shader for a leather chair. Features of
this shader may include an overall leather texture or bump
map, a couple of measured BRDFs (bidirectional reflectance
distribution functions) for worn and unworn areas on the
seat, bumps for the stitching, with dust collected in the
crevices, scuff marks, changes in color due to variations in
the leather, and potentially even more. Such a shader can
provide a satisfying interactive rendering of the seat for de-
tailed examination, but is overkill as you move away to see
the rest of the room and all the other, buildings, trees and
pedestrians using shaders of similar complexity. Figure 1
does not have all the features described, but with a bump
map and measured leather BRDF it still exceeds current sin-
gle pass rendering capabilities.

In this paper, we introduce level-of-detail shaders (LOD
shaders) to solve the problem of providing both interactive
performance and convincing detailed shading of many ob-
jects in a scene. A level-of-detail shader automatically ad-
justs the shading complexity based on one or more input pa-
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rameters, providing only the detail appropriate for the current
viewing conditions and resource limits. We present a general
framework for creating a level-of-detail shader from a de-
tailed source shader which could be used for automatic LOD
shader generation. Finally, we provide details and results
from our building-block based level-of-detail shader tools,
where the general framework for shader simplification has
been manually applied to building-block functions used for
writing complex shaders.

1.1 Background
This work is directly inspired by the body of research on
geometric simplification. Specifically, many of our shader
simplification operations are modeled after operations from
the topology-preserving geometric level-of-detail literature.
Schroeder and Turk both performed early work in auto-
matic mesh simplification using a series of local operations,
each resulting in a smaller total polygon count for the entire
model [39, 41]. Hoppe used the collapse of an edge to a sin-
gle vertex as the basic local simplification operation. He also
introduced progressive meshes, where all simplified versions
of a model are stored in a form that can reconstructed to any
level at run-time [24]. These ideas have had a large influence
on more recent polygonal simplification work ([16, 22, 25]
and many others).

Many shader simplifications involve generating textures to
stand in for one or more other shading operations. Guenter,
Knoblock and Ruf replaced static sequences of shading op-
erations with pre-generated textures [19]. Heidrich has an-
alyzed texture sizes and sampling rates necessary for accu-
rate evaluation of shaders into texture [32]. In a related vein,
texture-impostor based simplification techniques replace ge-
ometry with pre-rendered textures, either for indoor scenes
as has been done by Aliaga [2] or outdoor scenes as by Shade
et al. [40].

We also draw on the body of BRDF approximation meth-
ods. Like shading functions, BRDFs are positive every-
where. Fournier used singular value decomposition (SVD) to
fit a BRDF to sums of products of functions of light direction
and view direction for use in radiosity [13]. Kautz and Mc-
Cool presented a similar method for real-time BRDF render-
ing, computing functions of view, light, or other bases as tex-
tures using either SVD or a simpler normalized integration
method [27]. McCool, Ang and Ahmad’s homomorphic fac-
torization uses only products of 2D texture lookups, fit using
least-squares [29]. In a related area, Ramamoorthi and Han-
rahan used a common set of spherical harmonic basis tex-
tures for reconstructing irradiance environment maps [37].

This work is also directly derived from efforts to antialias
shaders. The primary form of antialiasing provided in the
RenderMan shading language is a manual transformation of
the shader, relying on the shader-writer’s knowledge to ef-
fectively remove high-frequency components of the shader
or smooth the sharp transitions from anif, by instead us-
ing a smoothstep (cubic spline interpolation between two
values) orfilterstep (smoothstep across the current sam-

ple width) [11]. Perlin describes automatic use of blending
whereif is used in the shading code [11]. Heidrich and
his collaborators also did automatic antialiasing, using affine
arithmetic to compute the shading results and estimate the
frequency and error in the results [23].

Finally, there have been several researchers who have done
more ambitious shader transformations. Goldman described
multiple versions of a fur shader used in several movies,
though switches betweenrealfur andfakefurwere only done
between shots [18]. Kajiya was the first to pose the problem
of converting large-scale surface characteristics to a bump
map or BRDF representation [26]. Along this line, Fournier
used nonlinear optimization to fit a bump map to a sum of
several standard Phongpeaks[12]. Cabral, Max and Spring-
meyer addressed the conversion from bump map to BRDF
through a numerical integration pre-process [7], and Becker
and Max solved it for conversion from RenderMan-based
displacement maps to bump maps and then to a BRDF rep-
resentation [6]. More recently, Apodaca and Gritz manu-
ally created a hierarchy of filtered level-of-detail textures [3],
while Kautz approached the problem in reverse, creating
bump maps to statistically match a chosen fractal micro-facet
BRDF [28].

This work is set within the context of recent advances
in interactive shading languages, motivating the need for
shaders that can transition smoothly from high quality to fast
rendering. The first such system by Rhoades et al. was a
relatively low-level language for the Pixel-Planes 5 machine
at UNC [38]. This was followed by Olano and collabora-
tors with a full interactive shading language on UNC’s Pix-
elFlow system [33]. Peercy and coworkers at SGI created a
shading language that runs using multiple OpenGL Render-
ing passes [34]. The work presented here uses their OpenGL
Shader ISL language as the format for both input shaders and
LOD shader results.

There are many emerging options for assembler-level in-
terfaces to hardware accelerated shading, including offerings
by NVIDIA and ATI as well as a shading interface within Di-
rectX [4, 5, 30, 31]. The shading group at Stanford, led by
Kekoa Proudfoot and Bill Mark, created another high-level
real-time shading language that can be compiled into either
multiple rendering passes or a single pass using NVIDIA or
ATI hardware extensions [36]. A group at 3DLabs, led by
Randi Rost, is also spearheading an effort to create a high-
level shading language for OpenGL version 2.0.

2 USING LOD SHADERS
Using a single LOD shader that encapsulates the progression
of levels of detail provides many of the advantages for sim-
plified shaders that progressive meshes provide for geome-
try. The following directly echos the points from Hoppe’s
original progressive mesh paper [24].

• Shader simplification: The LOD shader can be gener-
ated automatically from an initial complex shader using
automatic tools (though as in the early days of mesh
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simplification, these tools are not yet as automatic as
we would like).

• LOD approximation: Like a progressive mesh, an LOD
shader contains all levels of detail. Thus it can in-
clude the shader equivalent of Hoppe’sgeomorphsto
smoothly transition from one level to the next.

• Progressive transmission and compression: The rep-
resentation of a shader is much smaller than that of a
mesh. Even relatively complex RenderMan shaders are
typically only a few thousand lines of code. Shaders for
real-time are seldom more complex than several tens
of lines of code. Yet a scene with thousands of LOD
shaders may still benefit by first storing and sending the
simplest levels followed by transmission of the more
complex levels.

• Selective Refinement: Selective refinement for meshes
refers to simplifying some portions of the mesh more
than others based on current viewing conditions, en-
compassing both variation across the object and a
guided decision on which of the stored simplifications
to apply. For an LOD shader these aspects are treated
independently. Current hardware does not realize any
benefit from shading variations across a single object,
but a single LOD shader will present a high quality ap-
pearance on some surfaces while using a lower quality
for others, based on distance, viewing angle or other
factors. The LOD shader may also apply certain sim-
plifications and not others based on pressure from hard-
ware resource limits. For example, if available texture
memory is low, texture-reducing simplification steps
may be applied in one part of the shader while leav-
ing more computation-heavy portions of the shader to
be rendered at full detail.

Many of these points depend on the storage of an LOD
shader. Starting from a complex shader we create a series
of simplification operations to produce the most simplified
shader, represented as another shader in the source shading
language. This combined shader includes all of the levels
within a single shading function with additional level con-
trol parameters. This provides several practical advantages
as the LOD shader is indistinguishable, beyond its additional
parameters, from a non-LOD shader. Since OpenGL Shader
(and most other shading systems) set shader parameters by
name, with default values for unset parameters, LOD shaders
are easily interchanged with other shaders. For example, this
can allow easy drop in replacement of the covering on a car
seat, from a simple stand-in to a non-LOD vinyl shader, an
LOD leather shader, or an LOD fabric shader.

The set of level-control parameters are the one aspect
that distinguishes the interface to an LOD shader from other
shaders. For interchangeable use the parameter set should be
agreed upon by both the application and shader simplifier.
These parameters are used within the LOD shader to switch

FB=diffuse();

FB*=texture("tex");

a) basic block

FB=diffuse();

if (time<10)

FB*=texture("tex");

b) split blocks

Figure 2: Candidate blocks. a) a single basic block that could be

simplified. b) blocks split by a conditional — will not be merged to-

gether

and blend between different levels as well as to define the
ranges where each level is valid. As with geometric level-of-
detail, parameter choices may include distance to the object,
approximate screen size of the rendered object, importance
of the object, or available time budget. For shading, we may
also add budgets for hardware resource limits such as texture
memory availability. Many of these parameters could instead
be collected into a single aggregate parameter, or controlled
through an optimization function as done by Funkhouser and
Séquin [15]. All examples in this paper use a single parame-
ter set using a distance metric.

3 SIMPLIFICATION FRAMEWORK
Shader simplification creates an LOD shader from an arbi-
trary source shader. We describe the simplification process
in terms of four stages. First, identify candidate blocks of
shader code. Second, produce a set of simplified versions of
the candidate blocks. Third, associate level parameters with
the simplified blocks, and finally assemble the result into an
LOD shader. These stages can be repeated to achieve fur-
ther simplification, where two or more simplified blocks can
be combined into a single larger candidate block for another
simplification run.

3.1 Finding Candidate Blocks
The first step toward creating an LOD shader is identifying
blocks of shader code that are candidates for simplification.
These are like edges for edge-collapse based polygonal sim-
plification. Finding the set of candidate blocks in a shader is
slightly more complicated than finding the set of edges in a
model, but can be done with a static analysis of the original
shader code.

A static analysis is one done before actual execution; it
only has access to what can be inferred from the source code
itself. In particular, results for conditionals and loops involv-
ing compile-time constants are known (uniform in ISL par-
lance), but not ones that might change at run-time (param-
eter in ISL). As a result, choosing a static analysis restricts
simplification possibilities to what can be done within a ba-
sic block, without crossing a run-time loop or conditional
(Figure 2).

Each block within the shader has some variables that are
input to the computations within the block and others that
are results computed by the block. Expressions within the
block form a dependence graph with operations represented
as nodes in the graph and variables as edges linking operation
to operation. This graph can be partitioned into subgraphs
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Figure 3: Removal of operations as contributions become imper-

ceptible. Top row, left to right: Close-up of torus mapped with detail

dust and scratch textures, with dust and scratches removed, with

specular mask removed. Bottom row, left to right: image sequence

of the wood applied to a cone with each removal displayed at it’s

expected switching distance.

where each subgraph computes one block output or interme-
diate result. These subgraphs are the candidate blocks for
simplification. Any basic block can be partitioned in many
ways, and the choice of block partitioning is somewhat anal-
ogous to choosing edges for mesh simplification.

3.2 Simplifications
Each of the candidate blocks described above computes one
result based on a set of inputs. The simplification operations
on this block perform a local substitution of a simpler form
in place of the original, producing equivalent output while
keeping the form of the total shader the same. Simplifica-
tions that are not lossy are handled by the shading compiler
optimization [19, 33, 34, 36].

Simplifications are chosen by matching a set of heuristic
rules. While logically separate, the selection of simplifica-
tion rules and partitioning of the basic block can be done at
the same time using a tool likeiburg [14]. Iburg is a com-
piler tools designed for use in code generation. Given a piece
of code represented as an expression tree, it finds the least
cost cover by a set of rules through a bottom-up dynamic
programming algorithm.

Finding simplification rule costs for use byiburg requires
analysis of input textures as well as the shader itself, and
application of a rule may require generating a new derived
texture as part of the LOD shader generation pre-process.

We classify these rule-based substitutions into one of four
forms.

Remove: A candidate block that doesn’t contribute
enough anymore, or that consists of only high-frequency ele-
ments above the Nyquist frequency is replaced by a constant.
This effectively removes the effect of portions of the shader
that are no longer significant (Figures 3,4).

Collapse: A candidate block consisting of several opera-

Figure 4:Band-limited Perlin noise texture, noise at a distance, and

noise replaced with average value

Figure 5: Collapsing two texture operations into a single texture.

Left to right, the two initial textures, the two textures transformed

and overlaid, the collapsed texture result, and an example of the col-

lapsed texture in use as dust and scratch wood detail.

tions may be merged into a single new operation. For exam-
ple, a coarse texture and a rotated and repeated detail texture
can be combined into a single merged texture of a new size
(Figure 5).

Substitute: A candidate block identified as implement-
ing a known shading method may be replaced by a simpler
method with similar appearance. For example, a bump map
can be replaced by a gloss map to modulate the highlight
intensity, or a simple texture map (Figure 6). A texture in-
dexed by the surface normal is probably part of a lighting
model, and depending on the contents of the texture, may
be replaced by the built-in diffuse lighting model. Similarly,
a texture indexed by the half angle vector (norm(V + L) for
view vectorV and light vectorL) is a candidate for replace-
ment by one or more applications of the built-in Phong spec-
ular model. A texture can be replaced by a smaller low-pass
filtered version of the texture and a constant representing the
removed high-frequency terms.

Approximate: Approximation rules treat the candidate
block as a general function to be approximated. They can
theoretically be applied to any block, though not always as
effectively as the application-specific rules.

While a variety of function approximation methods are
possible, we have focused on ones developed for BRDF ap-
proximation [27, 29]. As these methods are texture-based,
they are most useful when total texture usage is not the limit-
ing factor. Two issues prevent our approximation rules from
being more generally useful, though we believe they are as-
pects of the approximations we chose to explore and not all
applicable function approximation methods.
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Figure 6: Replacing a bump map with a texture. Left to right, the

original bump map, the bump texture at full scale, and the bump map

and texture at the expected switching distance.

First, these approximations are based on a factorization
into products or sums of products of functions of two vari-
ables that can be stored in a texture. In the right coordinate
system, BRDFs are well suited to this factorization, usually
requiring only one or two terms. Automatic simplification
calls for automatic determination of a coordinate system.
Arbitrary shading expressions can also be poorly suited to
such a factorization in any coordinate system, allowing no
acceptable approximation by the homomorphic factorization
method, or needing so many SVD terms as to become more
expensive than the original expression.

Second, the least squares or singular value decomposi-
tion problems are stated in terms of matrices with a num-
ber of rows and columns equal to the total number of tex-
els in each approximating texture. Computing these textures
rapidly scales to gigabytes, even for modest component tex-
ture sizes. Worse, we want to speculatively compute the
approximations to evaluate their fitness. The original ap-
plication to BRDFs limited the component texture sizes to
32x32 or 64x64 resulting in computations with 1024x1024
to 4096x4096 matrices.

3.3 Level Parameters
Selection of simplified verses unsimplified blocks is based
on one or several level parameters. For example, switching
from a band-limited noise texture to a constant value should
happen when the changes in the noise texture are no longer
visible (Figure 4). That point can be approximated based ei-
ther on the distance or screen size of the object. The same
transition can also be triggered by a lack of available render-
ing time, or a lack of available texture memory to store the
noise texture.

To manage these different level parameters, we can asso-
ciate a range for each parameter with each simplified block.
Using the noise example above, a constant should be used
instead of the noise texture whenever the available texture
memory is less than the size of the texture, or there is not
enough time to render another texture, or the expected map-
ping to screen pixels will blur the band-limited noise away.

3.4 Assemble
Given the simplified blocks and level parameter ranges, it
is straightforward to assemble them with appropriate condi-
tionals into an LOD shader. Rendering-metric level parame-

Shader Level 1 Level 2 Level 3
Plastic (Collapse) 36.4, 27.6 44.5, 34.4 —, —
Wood (Remove) 18.4, 11.6 18.9, 11.9 19.1, 64.3
Leather (Replace) 25.4, 14.1 43.7, 25.3 79.8, 64.3

Table 1: Result times for test LOD shaders on the 1772 triangle

chair model performed on an SGI Octane MXE. Each table entry in-

cludes frames-per-second for a small window size, and a large win-

dow size with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3
Plastic (Collapse) 52.9, 33.8 68.2, 42.1 —, —
Wood (Remove) 20.7, 9.2 23.0, 10.0 25.2, 10.7
Leather (Replace) 30.7, 12.3 55.2, 22.8 140.9, 80.3

Table 2: Result times for test LOD shaders on a 3280 triangle

draped cloth model consisting of 40 length-82 triangle strips, per-

formed on an SGI Octane MXE. Each table entry includes frames-

per-second for a small window size, and a large window size with 4x

the rendered pixels.

ters, like distance or screen coverage, are shared by all blocks
in the shader, each emitting a statement of the form

if(distance < low_threshold)

do_simplified_block

else if(distance < high_threshold)

do_transition_block

else

do_original_block

For resource-accounting level parameters (e.g. available
time or texture memory) the blocks are prioritized, and com-
parisons are emitted for the total consumed by this block and
all higher priority blocks.

4 RESULTS
We have described a general theory of shader simplification.
Our current results are a modest start within this framework.
Specifically, we have produced a set of LOD-aware build-
ing block functions for shader construction. This style of
shader writing is similar to Abram and Whitted’s graphical
building-block shader system [1]. Example building-blocks
include bump map, a BRDF model, Fresnel reflectance,
or noise or turbulence textures with a lookup as used by
Hart [21].

Our LOD blocks were created by manually following the
steps described in our simplification framework: identify
candidate blocks within a building block function, apply one
of the simplification rules described in Section 3.2, associate
it with a range of an aggregate level parameter, and cre-
ate conditional blocks for the original code, transition code
and simplified code. Despite the manual simplification, we
call this semi-automatic because any shaders written using
the building blocks, either knowing about level-of-detail or
not, become LOD shaders by switching to the LOD building
blocks.
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Shader Level 1 Level 2 Level 3
Plastic (Collapse) 9.2, 11.2 11.8, 14.0 —, —
Wood (Remove) 3.6, 5.3 4.1, 5.8 4.5, 6.5
Leather (Replace) 6.4, 8.8 14.7, 18.7 27.7, 35.7

Table 3: Result times for test LOD shaders on the 1772 triangle

chair model performed on an SGI O2. Each table entry includes

frames-per-second for a small window size, and a large window size

with 4x the rendered pixels.

Shader Level 1 Level 2 Level 3
Plastic (Collapse) 13.6, 15.9 18.2, 20.4 —, —
Wood (Remove) 4.9, 6.9 5.4, 7.6 6.0, 8.5
Leather (Replace) 8.1, 10.3 19.8, 23.9 40.3, 52.3

Table 4: Result times for test LOD shaders on the 3280 triangle

draped cloth model performed on an SGI O2. Each table entry in-

cludes frames-per-second for a small window size, and a large win-

dow size with 4x the rendered pixels.

Tables 1–4 show LOD shader timing in frames per second
for several sample LOD shaders. Each shader demonstrates
several transitions of specific LOD simplification operations.
The Wood shader used in these tests first removes an over-
lay scratch texture, then removes a specular masking opera-
tion, creating three levels-of-detail. Figure 3 shows the re-
moval LOD sequence. The Plastic shader demonstrates the
collapse simplification by taking two textures, each applied
with its own transformation, and merging these two separate
texture passes in a third texture. This resultant texture is then
used to shade the object in a single texture for lower levels-
of-detail as shown in Figures 5 and 7. The Leather shader
demonstrates the replace simplification in the first level-of-
detail by replacing a true bump map with a simple texture.
The second level in the Leather removes the texture with a
simple constant color. Results of this operation sequence are
seen in Figure 9.

An overview of the performance results shows much what
we would expect — that less detailed shaders result in faster
overall rendering. However, as the different results indicate,
the shading operations are not purely fill-limited, and render-
ing nearly 4x fewer pixels in certain cases results in only a
modest performance improvement. As certain passes occur,
the object’s geometry is also re-rendered, yielding a coupling
between type of rendering passes constructed for a particular

Figure 7:Plastic shader and cloth model.

Figure 8:Two replace simplifications in a bumpy leather shader.

shader and that shader’s. This implies that LOD shaders can
accomplish only part of the task, and should also be accom-
panied by geometric simplification.

5 CONCLUSIONS AND FUTURE WORK
We have presented LOD shaders: procedural shaders that au-
tomatically adjust their level of shading detail for interactive
rendering. We also presented a general framework for shader
simplification — the process of creating LOD shaders from
an ordinary shader. This framework is sufficiently general
to serve as a guide for manual shader simplification or as a
basis for automatic simplification. Finally, we presented our
results for semi-automatic shader simplification using man-
ually generated shading function building blocks for SGI’s
OpenGL Shader. These LOD shader building blocks imple-
ment the same functions as building blocks already provided
with OpenGL Shader, but with added level-of-detail param-
eters to control aspects of their shading complexity.

In the future, we would like to create tools for fully au-
tomatic shader simplification. Our current simplification
framework also only considers a static analysis of the shader
for simplification. Following the lead of texture-based sim-
plification researchers like Aliaga and Shade et al., we could
generate new textures on the fly warping them for use over
several frames or updating when they become too differ-
ent [2, 40].

Logically, it should be possible to generalize our remove,
collapse and substitution rules into a more widely applica-
ble approximation rule form. Other function fitting methods
should be tried to make the approximation rules more useful.

Since rendering with LOD shaders will usually be accom-
panied by geometric level-of-detail, they should be more
closely linked. Cohen et al. Garland and Heckbert and
others have shown that geometric simplification can be af-
fected by appearance [8, 17]. Shader simplification should
also be affected by geometric level-of-detail (e.g. whether
per-vertex Phong shading is a good substitute for a texture-
based illumination depends on how the object is tessellated).

Finally, we provide no guarantees on the fidelity of our
simplifications. Many geometric simplification algorithms
have been successful without providing exact error metrics
or bounds. However, algorithms such as simplification en-
velopes by Cohen et al. provide hard bounds on the amount
of error introduced by a simplification [9], guarantees that
are important for some users. Further investigation is neces-
sary to bound the error introduced by shader simplification.
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