Interactive Multi-Pass Programmable Shading

Mark S. Peercy, Marc Olano, John Airey; P. Jeffrey Ungar

SGI

Abstract

Programmable shading is a common technique for production an-
imation, but interactive programmable shading is not yet widel
available. We support interactive programmable shading on vir-
tually any 3D graphics hardware using a scene graph library on
top of OpenGL. We treat the OpenGL architecture as a general
SIMD computer, and translate the high-level shading descniptio
into OpenGL rendering passes. While our system uses OpenGL,
the techniques described are applicable to any retained mede in
terface with appropriate extension mechanisms and hardware API
with provisions for recirculating data through the graphics pieel

constructs familiar from general purpose programming languages
such a<C, including loops, conditionals, and functions. The most
common is the RenderMan Shading Language [32].

The power of shading languages for describing intricate light-
ing and shading computations been widely recognized sino&’'€o
seminal shade tree research [7]. Programmable shading has played
a fundamental role in digital content creation for motion picsure
and television for over a decade. The high level of abstragtion
programmable shading enables artists, storytellers, and ¢loginit
cal collaborators to translate their creative visions into iesagore
easily. Shading languages are also used for visualizationiefis

We present two demonstrations of the method. The first is tific data. Speciatiata shaderiave been developed to support the
a constrained shading language that runs on graphics hardwarelepiction of volume data [3, 8], and a texture synthesis langbag

supporting OpenGL 1.2 with a subset of the ARB imaging exten-
sions. We remove the shading language constraints by miyimall
extending OpenGL. The key extensions aotor range (support-
ing extended range and precision data types)mxel texture(us-

been used for visualizing data fields on surfaces [9]. Image process
ing scripting languages [22, 31] also share much in common with
programmable shading.

Despite its proven usefulness in software rendering, hardware

ing framebuffer values as indices into texture maps). Our second &cceleration of programmable shading has remained elusive. Mos
demonstration is a renderer supporting the RenderMan Interfacenardware supports a parametric appearance model, such as Phong
and RenderMan Shading Language on a software imp|ememaﬂonllght|ng evaluated per vertex, with one or more texture maps ap-

of this extended OpenGL. For both languages, our compitgr-te
nology can take advantage of extensions and performance charac
teristics unique to any particular graphics hardware.

CR categories and subject descriptors. 1.3.3 [Computer
Graphics]: Picture/Image generation; 1.3.7 [Image Processing]: En-
hancement.

Keywords: Graphics Hardware, Graphics Systems, lllumina-
tion, Languages, Rendering, Interactive Rendering, Non-Riealis

Rendering, Multi-Pass Rendering, Programmable Shading, Proce-

dural Shading, Texture Synthesis, Texture Mapping, OpenGL.

1 INTRODUCTION

Programmable shading is a means for specifying the appearance o
objects in a synthetic scene. Programs in a special purpose lan
guage, known ashaders describe light source position and emis-
sion characteristics, color and reflective properties of surfames
transmittance properties of atmospheric media. Concepttizdiye
programs are executed for each point on an object as it is being ren
dered to produce a final color (and perhaps opacity) as seen from
a given viewpoint. Shading languages can be quite generahdha

*Now at Intrinsic Graphics

plied after Gouraud interpolation of the lighting results [29].eTh
general computational nature of programmable shading, anethe u
bounded complexity of shaders, has kept it from being supported
widely in hardware. This paper describes a methodology to stippo
programmable shading in interactive visual computing by cémpi
ing a shader into multiple passes through graphics hardware. We
demonstrate its use on current systems with a constrained ghadin
language, and we show how to support general shading languages
with only two hardware extensions.

1.1 Related Work

Interactive programmable shading, with dynamically changing
Ehader and scene, was demonstrated on the PixelFlow systém [26
ixelFlow has an array of general purpose processors that can ex-

ecute arbitrary code at every pixel. Shaders written in a language
based on RenderMan'’s are translated it programs with em-
bedded machine code directives for the pixel processors. Aiirappl
cation accesses shaders through a programmable interface exten-

sion to OpenGL. The primary disadvantages of this approach are
the additional burden it places on the graphics hardware and drive
software. Every system that supports a built-in programmable in-
terface must include powerful enough general computing units to
execute the programmable shaders. Limitations to these comgput
units, such as a fixed local memory, will either limit the shrade
that may be run, have a severe impact on performance, or cause the
system to revert to multiple passes within the driver. Further, e
ery such system will have a unique shading language comgiler a
part of the driver software. This is a sophisticated piece of sufw
which greatly increases the complexity of the driver.

Our approach to programmable shading stands in contrast to
the programmable hardware method. Its inspiration is a long line of
interactive algorithms that follow a general theme: treat thetgrap
ics hardware as a collection of primitive operations that carske u

12-11

to build up afinal solution in multiple passes. Early exampfahis
model include multi-pass shadows, planar reflections, tggtgion
top of texture, depth of field, and light maps [2, 10]. There hasbee | +
a dramatic surge of research in this area over the past few years Pixel Operations (lookup table,
Sophisticated appearance computations, which had preyibesh color matrix, minmax)
available only in software renderers, have been mapped to generic F
graphics hardware. For example, lighting per pixel, generédt bid [R_cerizaton (color Y
rectional reflectance distribution functions, and bump mappovg interpolation, texturing, fog) L_,mmory
run in real-time on hardware that supports none of those effects na- +

Fragment Operations (depth,

alpha test, stencil, blending) Framebuffer

Vertex Operations (transforms,
tex coord generation, lighting)

tively [6, 17, 20, 24].

Consumer games like ID Software’s Quake 3 make extensive
use of multi-pass effects [19]. Quake 3 recognizes that multi-pass Figure 1: A simplified block diagram of the OpenGL archi-
provides a flexible method for surface design and takes the Impor tecture. Geometric data passes through the vertex oper-
tant step of providing a scripting mechanism for rendering passes ations, rasterization, and fragment operations to the frame-
including control of OpenGL blending mode, alpha test funio puffer. Pixel data (either from the host or the framebuffer)
and vertex texture coordinate assignment. In its current form, this passes through the pixel operations and on to either texture
scripting language does not provide access to all of the OpenGL memory or through the fragment pipeline to the framebuffer.
state necessary to treat OpenGL as a general SIMD machine.

A team at Stanford has been investigating real-time pro-
grammable shading. Their focus is a framework and language thatplementation of this extended OpenGL. We close the papér avit

explicitly divides operations into those that are executeti@ver- discussion (Section 5) and conclusion (Section 6).
tex processing stage in the graphics pipeline and those thexere
cuted at the fragment processing stage [25]. 2 THE SHADING FRAMEWORK

The hardware in all of these cases is being used as & COM-rqre s great diversity in modern 3D graphics hardware. Each

putlnr?_ ma;]chlc?e rathher tT)an a spe(;:lal purp(l)se accelﬁra_ttor. dndei raphics system includes unique features and performance charac-
graphics hardware has been used to accelerate techniques such dgyissics. Countering this diversity, all modern graphics haréwa

back-p_rojec_tion for tomographic recgnstruction [5] and radiosity 4, supports the basic features of the OpenGL API standard.
approximations [21]. Itis now recognized that some new hardware While itis possible to add shading extensions to graphics-hard

features, such as multi-texture [24, 29], pixel texture [17], andrcolo OpenGL i ful h hadi ith
matrix [23], are particularly valuable for supporting these advdnce ware, pentsL IS powerlul enoug to suppor_t shading with no ex-
' tensions at all. Building programmable shading on top of stethd

computations interactively. OpenGL decouples the hardware and drivers from the language,
1.2 Our Contribution and enables shading on every existing and future OpenGL-based

In this paper, we embrace and extend previous multi-pass tech_graphlcs sys.tem.
niques. We treat the OpenGL architecture as a SIMD computer. A compiler turns shading computations into multiple passes
OpenGL acts as an assembly language for shader execution. Thdnrough the OpenGL rendering pipeline (Figure 1). This compiler
challenge, then, is to convert a shader into an efficient set of ¢an Produce a general set of rendering passes, or it can use knowl-
OpenGL rendering passes on a given system. We introduce a com-£dge of the target hardware to pick an optimized set of passes.
iler between the application and the graphics library that t

ghaders to differentpﬁardware implementgtions. Y e 2.1 OpenGL as an Assembly Language

This philosophy of placing the shading compiler above the One key observation allows shaders to be translated into mags-p
graphics API is at the core of our work, and has a number of OpenGL: a single rendering pass is also a general SIMD instruction
advantages. We believe the number of languages for integactiv — the same operations are performed simultaneously for all pixels
programmable shading will grow and evolve over the next sev- in an object. At the simplest level, the framebuffer is an accumu
eral years, responding to the unique performance and feature dedator, texture or pixel buffers serve as per-pixel memory storage,
mands of different application areas. Likewise, hardware will in blending provides basic arithmetic operations, lookup tables
crease in performance and many new features will be introduced. port function evaluation, the alpha test provides a variety of co
Our methodology allows the languages, compiler, and hardtgare ditionals, and the stencil buffer allows pixel-level conalital exe-
evolve independently because they are cleanly decoupled. cution. A shader computation is broken into pieces, each @twh

This paper has three main contributions. First, we formalize can be evaluated by an OpenGL rendering pass. In this way, we
the idea of using OpenGL as an assembly language into which pro build up a final result for all pixels in an object (Figure 2). There
grammable shaders are translated, and we show how to apply dy-are typically several ways to map shading operations into OpenG
namic tree-rewriting compiler technology to optimize the magpi ~ We have implemented the following:
between shading languages and OpenGL (Section 2). Second, we DataTypes. Data with the same value for every pixel in an ob-
demonstrate the immediate application of this approach bg-int ject are calleduniform while data with values that may vary from
ducing a constrained shading language that runs interactbrely pixel to pixel are calledrarying Uniform data types are handled
most current hardware systems (Section 3). Third, we describe theoutside the graphics pipeline. The framebuffer retains interatedi
color range and pixel texture OpenGL extensions that are neces-varying results. Its four channels may hold one quadruple (such as
sary and sufficient to accelerate fully general shading language a homogeneous point), one triple (such as a vector, normal,, point
(Section 4). As a demonstration of the viability of this solatio or color) and one scalar, or four independent scalars. We hage ma
we present a complete RenderMan renderer including full support no attempt to handle varying data types with more than four chan-
of the RenderMan Shading Language running on a software im- nels. The framebuffer channels (and hence independent scalars or

12-12

#include "marble.h”
surface marble()

varying color a;
uniform string tx;
uniform float x; x = 1/2

tx = "noisebw.tx";

FB = texture(tx,scale(x,x,x));
repeat(3) {

X =X*.5;

FB*=5;

FB += texture(tx,scale(x,x,x)); |

}
FB = lookup(FB,tab);

a=FB;
FB = diffuse;

FB*=a;
FB += environment("env");

Figure 2:5IMD Computation of a Shader. Some of the different
passes for the shader written in ISL listed on the left are shown

as thumbnails down the right column. The result of the com-
plete shader is shown on the lower left.

the components of triples and quadruples) can be updated selec
tively on each pass by setting the write-mask vgttCol or Mask.
Variables: Varying global, local, and temporary variables
are transferred from the framebuffer to a named texture using
gl CopyTexSubl mage2D, which copies a portion of the frame-
buffer into a portion of a texture. In our system, these texturas ca

a component-wise multiplication followed by a pixel copy with
color matrix that sums the resulting three components together
Mathematical and Shader Functions. Mathematical func-
tions with a single scalar operand (e.g. sin or reciprocal) uke co
or texture lookup tables during a framebuffer-to-framebuffer pixel
copy. Functions with more than one operand (e.g. atan2) or a sin-
gle vector operand (e.g. normalize or color space conversion) are
broken down into simpler monadic functions and arithmetic opera
tions, each of which can be supported in a pass through the @QpenG
pipeline. Some shader functions, such as texturing and difiuse
specular lighting, have direct correspondents in OpenGL. QOften
complex mathematical and shader functions are simply trauslat
to a series of simpler shading language functions.

Flow Control: Stenciling, set bygl St enci | Func and
gl St enci | Op, limits the effect of all operations to only a subset
of the pixels, with other pixels retaining their original framéfer
values. We use one bit of the stencil to identify pixels in the o
ject, and additional stencil bits to identify subsets of thpixels
that pass varying conditional#-then-elseconstructs and loops).
One stencil bit is devoted to each level of nesting. Loop# witi-
form control and conditionals with uniform relations do not need a
stencil bit to control their influence because they affectiak|g.

A two step process is used to set the stencil bit for a varying
conditional. First, the relation is computed with normal arigtic
operations, such that the result ends up in the alpha chanttet of
framebuffer. The value is zero where the condition is true and one
where itis false. Next, a pixel copy is performed with the alph#®
test enabled (set bgl Al phaFunc). Only fragments that pass
the alpha test are passed on to the stenciling stage of theGDpen
pipeline. A stencil bit is set for all of these fragments. Thesile
remains unchanged for fragments that failed the alpha test. la som
cases, the first operation in the body of the conditional canrdoc
the same pass that sets the stencil.

The passes corresponding to the different blocks of shader
code at different nesting levels affect only those pixels ttaateh
the proper stencil mask. Because we are executing a SIMD compu-
tation, it is necessary to evaluate both branchesthien-elsecon-

be one channel (intensity) or four channels (RGBA), depending on structs whose relation varies across an object. The stencilaemp
the data type they hold. Variables are used either by drawing-ate for theelseclause simply uses the complement of the stencil bit for
tured copy of the object bounding box or by drawing the objeet ge the thenclause. Similarly, it is necessary to repeat a loop with a

ometry using a projective texture. The relative speed of theee tw
methods will vary from graphics system to graphics system. In-
tensity textures holding scalar variables are expanded ihfoial

varying termination condition until all pixels within the @ujt exit
the loop. This requires a test that examines all of the pixetlsimi
the object. We use theinmaxfunction from the ARB imaging

channels during rasterization and can therefore be restored into anyextension as we copy the alpha channel to determine if anyaalph

framebuffer channel.

Arithmetic Operations. Most arithmetic operations are per-
formed with framebuffer blending. They have two operands: the
framebuffer contents and an incoming fragment. The incom-
ing fragment may be produced either by drawing geometry (ob-
ject color, a texture, a stored variable, etc.) or by copying pix
els from the framebuffer and through the pixel operations with
gl CopyPi xel s. Data can be permutedswyizzled from one
framebuffer channel to another or linearly combined more gen-
erally using the color matrix during a copy. The framebuffer
blending mode, set byl Bl endEquat i on, gl Bl endFunc,
andgl Logi cOp, supports overwriting, addition, subtraction, mul-
tiplication, bit-wise logical operations, and alpha blemgditunex-
tended OpenGL does not have a divide blend mode. We handle di-
vide using multiplication by the reciprocal. The reciprocalése
puted like other mathematical functions (see below). More com-
plicated binary operations are reduced to a combination of these
primitive operations. For example, a dot product of two vectsrs i

values are non-zero (signifying they still pass the looping condi
tion). If so, the loop continues.

2.2 OpenGL Encapsulation

We encapsulate OpenGL instructions in three kinds of rendering
passes: GeomPassesCopyPassesand CopyTexPasses Geom-
Passes draw geometry to use vertex, rasterization, and fragment
operations. CopyPasses copy a subregion of the framebuffer (via
gl CopyPi xel s) back into the same place in the framebuffer to
use pixel, rasterization, and fragment operations. A stencivall

the CopyPass to avoid operating on pixels outside the olfjiexqty-
TexPasses copy a subregion of the framebuffer into a texturetobjec
(viagl CopyTexSubl mage2D) and also utilize pixel operations.
There are two subtypes of GeomPass. The first draws the object
geometry, including normal vectors and texture coordinates. The
second draws a screen-aligned bounding rectangle that covers the
object using stenciling to limit the operations to pixels be bb-

ject. Each pass maintains the relevant OpenGL state for its pat

12 - 13

through the pipeline. State changes on drawing are minimized by hardware. In addition, shaders need to be associated with sibject

only setting the state in each pass that is not default anceoirm
ately restoring that state after the pass.

2.3 Compiling to OpenGL

The key to supporting interactive programmable shading is a com-

piler that translates the shading language into OpenGL ddgem

describe their appearances, and the shaders and objects rmed to
translated into OpenGL passes to render an image. Our framework
supports these operations in a scene graph used by an applicatio
through the addition of new scene graph containers and new-traver
sals.

In our implementation, we have extended the Cosmo3D scene

This is a CISC-like compiler problem because OpenGL passes aregraph library [30]. Cosmo3D uses a familiar hierarchical scene

complex instructions. The problem is somewhat simplified due t

graph. Internal nodes describe coordinate transformations, while

constraints in the language and in OpenGL as an instruction set the leaves ar8hapenodes, each of which contains a list@&éome-

For example, we do not have to worry about instruction scheglulin
since there is no overlap between rendering passes.

Our compiler implementation is guided by a desire to retarget
the compiler to easily take advantage of unique features arorpe
mance and to pick the best set of passes for each target aratetec
We also want to be able to support multiple shading languaggs a
adapt as languages evolve. To help meet these goals, webuilt
compiler using an in-house tool inspired by the iburg code gen-
eration tool [11], though we use it for all phases of compilation.
This tool finds the least-cost covering of a tree representatitmeof
shader based on a text file of patterns.

A simple example can show how the tree-matching tool op-

try and anAppearanceTraversals of the scene graph are known as
actions A DrawAction for example, is applied to the scene graph
to render the objects into a window.

We have implemented a new appearance class that contains
shaders. When included in a shape node, this appearance com-
pletely describes how to shade the geometry in the shape. The
shaders may include a list of active light shaders, a displanem
shader, a surface shader, and an atmosphere shader. In addition
we have implemented a new traversal, known &hadeActionA
ShadeAction converts a scene graph containing shapes witlethe
appearance into another Cosmo3D scene graph describing the mul
tiple passes for all of the objects in the original scene graphe (T

erates and how it allows us to take advantage of extensions totransformation of scene graphs is a powerful, general techniqtie tha
OpenGL. Part of a shader might be matched by a pair of tex- has been proposed to address a variety of problems [1].) The key

ture lookups, each with a cost of one, or by a single multi-textu
lookup, also with a cost of one. In this case, multi-texture eager
because it has a total cost of one instead of two. Using gimila
matching rules and semantic actions, the compiler can makefus
fragment lighting, light texture, noise generation, divide ondi-
tional blends, or any other OpenGL extension [16, 27].

The entire shader is matched at once, giving the set of match-

ing rules that cover the shader with the least total cost. kame
ple, the computations surrounding the above pair of textulaijo®
expand the set of possible matching rules. Given operatioe, t
ture lookup B, texture lookup C, and operation D, it may be pos-
sible to do all of the operations in four separate passes (A,B,C,D

element of the ShadeAction is the shading language contpéer
converts the shaders into multiple passes. A ShadeActionmeaty t
multiple objects that share the same shader as a single, wedbi
object to minimize overhead. A DrawAction applied to this seto
scene graph renders the final image.

The scene graph passes information to the compiler including
the matrix to transform from the object’s coordinate system into
camera space and the screen space footprint for the geometry. The
footprint is computed during the ShadeAction by projecting a 3D
bounding box of the geometry into screen space and computing an
axis-aligned 2D bounding box of the eight projected pointslyOn
pixels within the 2D bounding box are copied on a CopyPass or

to do the surrounding operations separately while combining the drawn on the quad-GeomPass to minimize unnecessary data move-

texture lookups into one multi-texture pass for a total cost feth
(A,BC,D), or to combine one computation with each texture Igoku
for a cost of two (AB,CD). By considering the entire shader we can
choose the set of matching rules with the least overall cost.

ment when shading each object.

We provide support for debugging at the single-step, pass-
by-pass level through special hooks inserted into the DrawActio
Each pass is held in an extended Cosmd&@Dup node, which in-

When we use the tool for final OpenGL pass generation, we vokes the debugging hook functions when drawn. Each pasis als
currently use the number of passes as the cost for each matchingagged with the line of source code that generated it, so ewegyth
rule. For performance optimization, the costs should correspond from shader source-level debugging to pass-by-pass image dumps
to predicted rendering speed, so the cost for a GeomPass would bés possible. Hooks at the per-pass level also let us moniteser

different from the cost for a CopyPass or a CopyTexPass.
The pattern matching happens in two phatsslingandre-
ducing Labeling is done bottom-up through the abstract syntax

tree, using dynamic programming to find the least-cost set of pat-

timate performance. At the coarsest level, we can find the number
of passes executed, but we can also examine each pass to record
details like pixels written or time to draw.

tern match rules. Reducing is done top-down, with one semantic 3 EXAMPLE: INTERACTIVE SL
action run before the node’s children are reduced and one after.We have developed a constrained shading language, called ISL (fo

The iburg-like label/reduce tool proved useful for more than just
final pass selection. We use it for shader syntax checkingstanh
folding, and even memory allocation (although most of the memory
allocation algorithm is in the code associated with a smathioer

Interactive Shading Language) [25] and an ISL compiler to demon-
strate our method on current hardware. ISL is similar in spirit to the
RenderMan Shading Language in that it provideS-like syntax
to specify per-pixel shading calculations, and it supportsusep

of rules). The ease of changing costs and creating new matchinglight, surface, and atmosphere shaders. Data types includegary

rules allows us to achieve our goal of flexible retargeting f th
compiler for different hardware and shading languages.

2.4 Scene Graph Support

colors, and uniform floats, colors, matrices, and strings. Logal va

ables can hold both uniform and varying values. Nestable flow con
trol structures include loops with uniform control, and uniform and
varying conditionals. There are built-in functions for diffuse and

Since objects may be rendered multiple times, it is necessary tospecular lighting, texture mapping, projective texturesirenvnent
retain geometry data and to deliver it repeatedly to the graphics mapping, RGBA one-dimensional lookup tables, and per-pixel m

12 - 14

surface celtic() {
varying color a;
FB = diffuse;
FB *= color(.5,.2,0.,1.);
a=FB;
FB = specular(30.);
FB +=a;
FB *= texture("celtic");
a=FB;
FB =1,
FB —= texture("celtic");
FB *= texture("silk");
FB *=.15;
FB +=ga;

}
distantlight leaves(uniform string
map = "leaves”, ...) {
uniform float tx;
uniform float ty;
uniform float tz;
tx = frame*speedx+phasex;
ty = frame*speedy+phasey;
tz = frame*speedz+phasez;
FB = project(map,
scale(sx,sx,sx)*
rotate(0,0,1,rx)*
translate(ax*sin(tx),0,0)*
shadermatrix);
FB *= project(map,
scale(sy,sy,sy)*...);

uniform matrix It = (0,0,0,0,
0,0,0,0,1,1,1,0,0,0,0,1);
surface bump(uniform string b="";
uniform string tx = ™) {
uniform matrix m;
FB = texture(b);
m = objectmatrix;
m[0][3] = m[1][3] = m[2][3]
m(3][3] = m[3][0] = m[3][1]
m[3][2] =0,
m = [t*m*translate(-1,-1,-1)*
scale(2,2,2);
FB = transform(FB,m);
FB *= texture(tx);

0.;
0.;

}

#include "threshtab.h"

surface shipRockRot(...) {
varying color a, b, c;
FB = texture(rot); FB *=.5;
FB += .32*(1-cos(.08*frame));
FB = lookup(FB,mtab); ¢ = FB;
FB = color(1,1,1,1); FB —=c;
FB *= texture(tl); a = FB;
FB = texture(t2);
FB *= texture(rot);
FB = diffuse;
FB *= color(.5,.2,0,1); b = FB;
FB = specular(30.);
FB += b; FB *= texture(t2);
FB*=c; FB +=a;

#include "swizzle.h"
table greentable = { {0,.2,0,1},
{0,.4,0,1) };
surface toon(uniform float do = 1.;
uniform float edge = .25) {
FB = environment("park.env");
if (do > .5) {
FB += edge;

FB =transform(FB,rgba_rrra);

FB =lookup(FB,greentable);
FB += environment("sun");
}
}

trix transformations. In addition, ISL supports uniform shader pa-
rameters and a set of uniform global variables (shader spacet objec
space, time, and frame count).

We have intentionally constrained ISL in a number of ways.
First, we only chose primitive operations and built-in functions
that can be executed on any hardware supporting base OpenGL 1.2
plus the color matrix extension. Consequently, many curremt-ha
ware systems can support ISL. (If the color matrix transformation
is eliminated, ISL should run anywhere.) This constraint pravide
the shader writer with insight into how limited precision ofi@nt
commercial hardware may affect the shader. Second, the syntax
does not allow varying expressions of expressions, which esisure
that the compiler does not need to create any temporary storage
not already made explicit in the shader. As a result, the writer o
a shader knows by inspection the worst-case temporary storage re-
quired by the shading code (although the compiler is free to gse le
storage, if possible). Third, arbitrary texture coordinate computa
tion is not supported. Texture coordinates must come either from
the geometry or from the standard OpenGL texture coordinate gen-
eration methods and texture matrix.

One consequence of these design constraints is that ISL shad-
ing code is largely decoupled from geometry. For example, since
shader parameters are uniform there is no need to attach them di-
rectly to each surface description in the scene graph. As a result,
ISL and the compiler can migrate from application to application
and scene graph to scene graph with relative ease.

3.1 Compiler

We perform some simple optimizations in the parser. For instance
we do limited constant compression by evaluating at parse time
all expressions that are declared uniform. When parameters or the
shader code change, we must reparse the shader. In our current sys-
tem, we do this every time we perform a ShadeAction. A more so-
phisticated compiler, such as the one implemented for thel®&®en

Man Shading Language (Section 4) performs these optimizations
outside the parser.

We expand the parse trees for all of the shaders in an appear-
ance (light shaders, surface shader, and atmosphere shadex) into
single tree. This tree is then labeled and reduced using the tree
matching compiler tool described in Section 2.3. The costénfied
the labeler instruct the compiler to minimize the total numbe
passes, regardless of the relative performance of the differerg kind
of passes.

The compiler recognizes and optimizes subexpressions such
as a texture, diffuse, or specular lighting multiplied by astant.

The compiler also recognizes when a local variable is assigned
value that can be executed in a single pass. Rather thantigcu
the pass, storing the result, and retrieving it when referenced, the
compiler simply replaces the local variable usage with thglsin
pass that describes it.

3.2 Demonstration

We have implemented a simple viewer on top of the extendatesce
graph to demonstrate ISL running interactively. The viewer sup-
ports mouse interaction for rotation and translation. Users G al
modify shaders interactively in two ways. They can edit shagidr t
files, and their changes are picked up immediately in the iewe
Additionally, they can modify parameters by dragging sliders, ro-
tating thumb-wheels, or entering text in a control panel. Teever

Figure 3:1SL Examples. ISL shaders are shown to the right of
each image. Ellipses denote where parameters and state-
ments have been omitted. Some tables are in header files.

creates the control panel on the fly for any selected shader.géban
to the parameters are seen immediately in the window. Examples
of the viewer running ISL are given in Figures 2 and 3.

12 - 15

4 EXAMPLE: RENDERMAN SL

RenderMan is a rendering and scene description interface standard
developed in the late 1980s [14, 28, 32]. The RenderMan stan-
dard includes procedural and bytestream scene description inter
faces. It also defines the RenderMan Shading Language, which
is the de factostandard for programmable shading capability and
represents a well-defined goal for anyone attempting to acoelerat
programmable shading.

The RenderMan Shading Language is extremely general, with
control structures common to many programming languages, rich
data types, and an extensive set of built-in operators and geome
ric, mathematical, lighting, and communication functioneeTan-
guage originally was designed with hardware acceleration ilmin
so complicated or user-defined data types that would makéescce
ation more difficult are not included. Itis a large but straightfarsv
task to translate the RenderMan Shading Language into musi-pa
OpenGL, assuming the following two extensions:

Extended Range and Precision Data Types. Even the sim-
plest RenderMan shaders have intermediate computations that re

quire data values to extend beyond the range [0-1], to which e ™~ 3
OpenGL fragment color values are clamped. In addition, they | 4
need higher precision than is found in current commercial hard- % .- ﬁ E
ware. With thecolor range extension, color data can have an o
. . . S . —
implementation-specific range to which it is clamped duringerast ‘-q'_l‘t;"?
ization and framebuffer operations (including color interpolati ‘;*.f
texture mapping, and blending). The framebuffer holds colors of g

the new type, and the conversion to a displayable value happen
only upon video scan-out. \We have used the color range extensio
with an IEEE single precision floating point data type or a subse

thereof to support the RenderMan Shading Language.

Pixel Texture: RenderMan allows texture coordinates to be
computed procedurally. In this case, texture coordinates cannot
be expected to change linearly across a geometric primitive-as re
quired in unextended OpenGL. This general two-dimension& ind

rection mechanism can be supported with the OpenGL pixelr@xtu
extension [17, 18, 27]. This extension allows the (possiblytfloa
ing point) contents of the framebuffer to be used as texture ésdic
when pixels are copied from the framebuffer. The red, green, blue,
and alpha channels are used as texture coordinates s, t, r, and q,
respectively. We use pixel texture not only to index two dimen-
sional textures but also to index extremely wide one-dimeiasion
textures. These wide textures are used as lookup tables for math-_)
ematical functions such as sin, reciprocal, and sqrt. Theseean b F19Ure 4:RenderMan SL Examples. The fop and boffom im-
simple piecewise linear approximations, starting points fewton ages of eo(?h pair were rendlered with PhotoRealistic Render-
iteration, components used to construct the more complex mathe Man from Pixar and our mulfi-pass OpenGL renderer, respec-

matical functions, or even direct one-to-one mappings for a retluce 11Vely. No shaders use image maps, except for the reflection
floating point format. and depth shadow maps generated on the fly. The wood

floor, blue marble, red apple, and wood block print textures
4.1 Scene Graph Support all are generated procedurally. The velvet and brushed metal

The RenderMan Shadmg Language demands greater support fronshaders use sophisticated i1l um nance blocks for their re-
the scene graph library than ISL because geometry and shaders ariective properties. The specular highlight differences are due
more t|ght|y Coup|ed_Varying parametergan be supp"ed as four to Pixar’s proprieTory speculor function; we use the definition
values that correspond to the corners of a surface patch, and théfom the RenderMan specification. The blue marble, wood
parameter over the surface is obtained through bilinear inerpo floor, and apple do not match because of differences in in the
tion. Alternatively, one parameter value may be supplied per ¢~ NOi se function. Other discrepancies typically are due fo lim-
trol point for a bicubic patch mesh or a NURBS patch, and the ifed precision lookup tables used fo help evaluate mathemat-
parameter is interpolated using the same basis functions ¢hat d ical functions. (Credit: LGParquetPlank by Larry Gritz, SHWvel-
fine the surface. We associate a (possibly empty) list of naraed p vet and SHWbrushedmetal by Stephen Westin, DPBlueMarble
rameters with each surface to hold any parameters provided whenPy Darwin Peachey, eroded from the RenderMan compan-
the surface is defined. When the surface geometry is tessellatedon. JMredapple by Jonathan Merritt, and woodblockprint
to form GeoSetgtriangle strip sets and fan sets, etc.), its parame- Py Scott Johnston. Courtesy of the RenderMan Repository
ters are transferred to the GeoSets so that they may be reference8it t p: // www. r ender nman. or g.)

12 - 16

and drawn as vertex colors by the passes produced by the compiler

Similarly, a shader may require derivatives of surface properties,
such as the partial derivatives of the positiai{du and dP/dv)
either as global variables or through a differential functionhsuc
ascal cul at enormal . A shader may also use derivatives of
user-supplied parameters. The compiler can request from the scen
graph any of these quantities evaluated over a surface at e sa
points used in its tessellation. As with any other paramétey, are
computed on the host and stored in the vertex colors for the surface
Where possible, lazy evaluation ensures that the user dogmyot

in time or space for this support unless requested.

4.2 Compiler

Our RenderMan compiler is based on multiple phases of the tree-
matching tool described in Section 2.3. The phases include:

Parsing: convert source into an internal tree representation.

Phase0: detect errors

Phasel: perform context-sensitive typing (e.g. noise, texture)

Phase2: detect and compress uniform expressions

Phase3: compute “difference trees” for Derivatives

Phased: determine variable usage and live range information

Phaseb: identify possible OpenGL instruction optimizations

Phase6: allocate memory for variables

Phase7: generate optimized, machine specific OpenGL

The mapping of RenderMan to OpenGL follows the method-
ology described in Section 2.1. Texturing and some lightimgyca
over directly; most math functions are implemented with lookup
tables; coordinate transformations are implemented with thar col
matrix; loops with varying termination condition are supportethw
minmax; and many built-in functions (including illuminance|a,
and illuminate) are rewritten in terms of simpler operations.-Fea
tures whose mapping to OpenGL is more sophisticated include:

Noisee The RenderMan SL provides band-limiteshi se
primitives that include 1D, 2D, 3D, and 4D operands and single
or multiple component output. We use floating point arithmatid
texture tables to support all of these functions.

Derivatives: The RenderMan SL provides access to surface-
derivative information through functions that includa, Dv,
Deri v, ar ea,andcal cul at enor mal . We dedicate a compiler
phase to fully implement these functions using a techniquéaim
that described by Larry Gritz [12].

A number of optimizations are supported by the compiler.
Uniform expressions are identified and computed once for all pix-
els. If texture coordinates are linear functionss@ndt or vertex
coordinates, they are recognized as a single pass with some com
bination of texture coordinate generation and texture matrix- Te
ture memory utilization is minimized by allocating storagedshs
on single-static assignment and live-range analysis [4].

4.3 Demonstration

We have implemented a RenderMan renderer, complete with shad-

ISL Image celtic | leaves| bump | rot | toon
M Pix Filled 2.8 4.3 12 | 22| 19
Frames/Second 6.8 7.3 9.6 | 125| 4.6
RSL Image teapots| apple | print
MPix Filled 500 280 144

Table 1: Performance for 512x512 images on Silicon Graphics
Octane/MXI

The RenderMan bytestream interface was implemented on top
of the RenderMan procedural interface. When data is passed to the
procedural interface, it is incorporated into a scene graph. IlHighe
order geometric primitives not native to Cosmo3D, such as trichme
quadrics and NURBS patches are accommodated by extending the
scene graph library with parametric surface types, which are tes-
sellated just before drawing. At the WorldEnd procedural cal thi
scene graph is rendered using a ShadeAction that invokes the Ren
derMan shading language compiler followed by a DrawAction.

To establish that the implementation was correct, over 2000
shading language tests, including point-feature tests, @ylalvail-
able shaders, and more sophisticated shaders were written or ob-
tained. The results of our renderer were compared to Pixar's com-
mercially available PhotoRealistic RenderMan renderer. While
never bit-for-bit accurate, the shading is typically compardble
the eye (with expected differences due, for instance, tothiese
function). A collection of examples is given in Figure 4. We fo-
cused primarily on the challenge of mapping the entire langt@age
OpenGL, so there is considerable room for further optimization.

There are a few notable limitations in our implementation.
Displacement shaders are implemented, but treated as bump map-
ping shaders; surface positions are altered only for the cailonlat
of normals, not for rasterization. True displacement would have
to happen during object tessellation and would have performance
similar to displacement mapping in traditional software impée-
tations. Transparency is not implemented. It is possible, but re
quires the scene graph to depth-sort potentially transparentsarfa
Pixel texture, as it is implemented, does not support textues-fil
ing, which can lead to aliasing. Our renderer also does not diyren
support high quality pixel antialiasing, motion blur, andotle of
field. One could implement all of these through the accundati
buffer as has been demonstrated elsewhere [13].

5 DISCUSSION

We measured the performance of several of our ISL and RenderMan
shaders (Table 1). The performance numbers for millions of pixels
filled are conservative estimates since we counted all piretsa
object’s 2D bounding box even when drawing object geometry tha
touched fewer pixels.

5.1 Drawbacks

ing language, bytestream, and procedural interfaces on a softwareOur current system has a number of inefficiencies that impact ou

implementation of OpenGL including color range and pixel-tex
ture. We experimented with subsets of IEEE single precision-float
ing point. An interesting example was a 16 bit floating point farm
with a sign bit, 10 bits of mantissa and 5 bits of exponent.sThi
format was sufficient for most shaders, but fell short when com-
puting derivatives and related difference-oriented function$ suc
ascal cul at enor nal . Our software implementation supported
other OpenGL extensions (cube environment mapping, fragment
lighting, light texture, and shadow), but they are not stricéges-
sary as they can all be computed using existing features.

performance. First, since we do not use deferred shading, we may
spend several passes rendering an object that is hidden in ghe fin
image. There are a variety of algorithms that would help (for ex-
ample, visibility culling at the scene graph level), but we dhaot
implemented any of them.

Second, the bounding box of objects in screen space is used
to define the active pixels for many passes. Consequentlyspixe
within the bounding box but not within the object are moved un-
necessarily. This taxes one of the most important resourcesdn ha
ware: bandwidth to and from memory.

12 - 17

Third, we have only included a minimal set of optimization [2]
rules in our compiler. Many current hardware systems share frame-
buffer and texture memory bandwidth. On these systems, stor-
age and retrieval of intermediate results bears a particularly high [3]
price. This is a primary motivation for doing as many operations
per pass as possible. Our iburg-like rule matching works well for 4]
the pipeline of simple units found in standard OpenGL, but more 5
complex units (as found in some new multitexture extensions, for
example) require more powerful compiler technology. Two possi- (6]
bilities are surveyed by Harris [15].

5.2 Advantages 7]
Our methodology allows research and development to proceed in [g]
parallel as shading languages, compilers, and hardware indepen i

dently evolve. We can take advantage of the unique feature and
performance needs of different application areas through special- [10]
ized shading languages.

The application does not have to handle the complexities of
multipass shading since the application interface is a sgeayeh.

This model is a natural extension of most interactive appboat
which already have a retained mode interface of some sort toeenabl
users to manipulate their data. Applications still retain dtteer
advantages of having a scene graph, like occlusion culliddee!

of detail management.

As mentioned, we have only implemented a few of the many
possible compiler optimizations. As the compiler improvesy
performance will improve, independent of language or hardware.

Finally, the rapid pace of graphics hardware development has
resulted in systems with a diverse set of features and relativeréeat
performance. Our design allows an application to use a shading
language on all of the systems, and still take advantage ofro&
their unique characteristics. Hardware vendors do not need tiecrea
the shading compiler and retained data structures since tleegitep
above the level of the drivers. Further, since complex effectdea (18]
supported on unextended hardware, designers are free to create fast,
simple hardware without compromising on capabilities.

6 CONCLUSION

We have created a software layer between the application and the [20]
hardware abstraction layer to translate high-level shadingigesc
tions into multi-pass OpenGL. We have demonstrated this approa
with two examples, a constrained shading language that rtes in
actively on current hardware, and a fully general shading language [22]
We have also shown that general shading languages, like the Re
derMan Shading Language, can be implemented with only two ad-
ditional OpenGL extensions.

There is a continuum of possible languages between ISL and [24]
the RenderMan Shading Language with different levels of func-
tionality. We have applied our method to two different shadarg
guages in part to demonstrate its generality.

There are many avenues of future research. New compile
technology can be developed or adapted for programmable shadin
There are significant optimizations that we are investigatinguir
compilers. Research is also needed to understand what hardware,
features are best for supporting interactive programmable shading.
Finally, given examples like the scientific visualizatioonstructs
described by Crawfis that are not found in the RenderMan shading
language [9], we believe the wide availability of interactivep
grammable shading will spur exciting developments in newdistza
languages and new applications for them.

References

[1] BIRCH, P., BLYTHE, D., GRANTHAM, B., ES, M., SCHAFER, SE-
GAL, M., AND TANNER, C. An OpenGL++ SpemﬂcatlorSGI March '1997.

[11]

[12]

[13]
[14]
[18]

[16]

[17]

[19]

[21]

[23]

[25]
r [26]

[27]
[28]

[29]

[30]

[31]

[32]

BLYTHE, D., GRANTHAM, B., KILGARD, M. J., MCREYNOLDS, T., NEL-
SON, S. R., PWLER, C., Hul, S.,AND WOMACK, P. Advanced graphics
programming techniques using OpenGL: Course notesPraceedings of
SIGGRAPH '99July 1999).

Bock, D. Tech watch: Volume rendering€omputer Graphics World 25
(May 1999).

BRIGGS, P. Register Allocation via Graph ColoringPhD thesis, Rice Uni-
versity, April 1992.

CABRAL, B., CaM, N., AND FORAN, J. Accelerated volume rendering and
tomographic reconstruction using texture mapping hardwa@94 Sympo-
sium on Volume Visualizatiq@ctober 1994), 91-98. ISBN 0-89791-741-3.

CABRAL, B., OLANO, M., AND NEMEC, P. Reflection space image based
rendering.Proceedings of SIGGRAPH $8ugust 1999), 165-170.

CooK, R. L. Shade treecComputer Graphics (Proceedings of SIGGRAPH
84) 18 3 (July 1984), 223-231. Held in Minneapolis, Minnesota.

8%5@;5 B., AND MACKERRAS, P. Data shadersVisualization '93 1993
CRAWFIS, R. A., AND ALLISON, M. J. A scientific visualization synthe-
sizer. Visualization '91(1991), 262—267.

DIEFENBACH, P. J.,AND BADLER, N. |. Multi-pass pipeline rendering: Re-
alism for dynamic environment8997 Symposium on Interactive 3D Graph-
ics (April 1997), 59-70.

FRASER C. W., HaNSON, D. R., AND PROEBSTING T. A. Engineering
a simple, efficient code generator generatd€M Letters on Programming
Languages and Systems3l(September 1992), 213-226.

GRITZ, L., AND HAHN, J. K. BMRT: A global illumination implementation
of the RenderMan standardournal of Graphics Tools,13 (1996), 29-47.

HAEBERLI, P. E.,AND AKELEY, K. The accumulation buffer; Hardware
support for high-quality renderin@€omputer Graphics (Proceedings of SIG-
GRAPH 90) 244 (August 1990), 309-318.

HANRAHAN, P.,AND LAWSON, J. A language for shading and lighting cal-
culations.Computer Graphics (Proceedings of SIGGRAPH 9QY2#ugust
1990), 289-298.

HARRIS, M. Extending microcode compaction for real architecture®rin
ceedings of the 20th annual workshop on Microprogramn(@@$7), pp. 40—
53.

HART, J. C., @RR, N., KAMEYA, M., TIBBITTS, S. A., AND COLEMAN,

T. J. Antialiased parameterlzed solid texturing S|mpl|f|ed fonsumer-level
hardware implementation1999 SIGGRAPH / Eurographics Workshop on
Graphics HardwargAugust 1999), 45-53.

HEIDRICH, W., AND SEIDEL, H.-P. Realistic, hardware-accelerated shading
and lighting.Proceedings of SIGGRAPH $8ugust 1999), 171-178.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P., AND ERTL, T. Appli-
cations of pixel textures in visualization and realistic irmaynthesis1999
ACM Symposium on Interactive 3D Graphiggoril 1999), 127-134. ISBN
1-58113-082-1.

JAQUAYS, P.,AND HOOK, B. Quake 3: Arena shader manual, revision 10. In
Game Developer's Conference Hardcore Technical SeminsedyBecem-
ber 1999), C. Hecker and J. Lander, Eds., Miller Freeman GamepGro

KauTz, J.,AND McCooL, M. D. Interactive rendering with arbitrary brdfs
using separable approximation&urographics Rendering Workshop 1999
(June 1999). Held in Granada, Spain.

KELLER, A. InstantradiosityProceedings of SIGGRAPH $ARugust 1997),
49-56.

KYLANDER, K., AND KYLANDER, O. S. Gimp: The Official Handboaok
The Coriolis Group, 1999.

Max, N., DEUSSEN O., AND KEATING, B. Hierarchical image-based ren-
dering using texture mapping hardwaRendering Techniques '99 (Proceed-
ings of the 10th Eurographics Workshop on Render{dghe 1999), 57-62.
McCooL, M. D., AND HEIDRICH, W. Texture shaderd999 SIGGRAPH /
Eurographics Workshop on Graphics Hardwgfugust 1999), 117-126.
OLANO, M., HART, J. C., HEIDRICH, W., McCooL, M., MARK, B., AND
PROUDFOOT, K. Approaches for procedural shadmg on graphlcs hardware:
Course notes. IRroceedings of SIGGRAPH 20Q@uly 2000).

OLANO, M., AND LASTRA, A. A shading language on graphics hardware:
The PixelFlow shading systenProceedings of SIGGRAPH 48uly 1998),
159-168.

OPENGL ARB. Extension specification documents. http://wwwiegleorg-
/Documentation/Extensions.html, March 1999.

PIXAR. The RenderMan Interface Specification: Version Rixar Anima-
tion Studios, September 1999.

SEGAL, M., AKELEY, K., FRAZIER, C., AND LEECH, J. The OpenGL
Graphics System: A Specification (Version 1.2.8jlicon Graphics, Inc.,
1999.

SGI TECHNICAL PUBLICATIONS. Cosmo 3D Programmer's GuideSGI

Technical Publications, 1998.

SiMs, K. Particle animation and rendering using data parallel coatjmut.

Computer Graphics (Proceedings of SIGGRAPH 90) 24August 1990),
405-413.

UPsTILL, S. The RenderMan CompanioAddison-Wesley, 1989.

12 - 18

