
2 Ð 1

Ignoring Hardware Differences
Marc Olano

University of Maryland, Baltimore County

One of the great promises of real-time shading is the potential to have a single shading

program that can run across a wide range of graphics hardware. While we donÕt yet have

a single cross-platform shading language to satisfy everyone, there is ample evidence that

it is possible. In this chapter, we discuss what is necessary to create a cross-platform

shading language, how shading languages allow us to ignore hardware differences, what

range of hardware can reasonably be represented by a single shading language, and what

evidence exists now that it will really work.

1. The key to cross-platform shading
The key to a cross-platform shading language is to work with a common model of

shading hardware rather than specifics of the hardware itself. The model is a mental

picture of whatÕs going on that shader-writers use to make sense of the code they write.

The further you get into hardware specifics, the less general your model becomes.

Designing a good model for shading is the balance of three competing goals. The

model should be simple enough for novice users to understand. It should be a good model

of the problem domain, accurately describing what the shader is trying to do rather than

exactly how to do it. This will allow the shading language compiler to map the shader

onto the hardware in the way that is best for the specific hardware platform. Of course, it

should also be possible to map it efficiently onto all the desired platforms.

The second goal is particularly important Ñ the purpose of shading code (or any code)

is to describe what you want done. The compiler can and will made different choices

about how (within limits Ñ it canÕt change the algorithms you use, but it can rearrange

the execution order, unroll loops, decide if a certain operation should be computed or

looked up in a texture, etc.).

1.1. Single Program, Multiple Data

Shading is inherently a very parallel task. Whether we are talking about vertices in an

object, a surface diced into micropolygons, ray-traced intersection points, or screen

pixels, there is always some relatively common set of operations being applied to a set of

samples on the surface. It is this parallel nature that makes shading so approachable by

hardware and allows us to even consider real-time shading.

The model that almost every shading system adopts is Single Program/Multiple Data

(SPMD), with no processor-to-processor communication. You write a shader to describe

what happens to a single sample on the surface (single program). That same single

program is run at every sample on the surface (multiple data). SPMD is closely related to

the Single Instruction/Multiple Data (SIMD) model of parallel computation, but SIMD

implies more about how the program will be executed. With SIMD, a set of parallel

processors will runs the same set of instructions in lockstep, but with different data at

2 Ð 2

each processor. SPMD runs the same program, but without any implication of whether

the same path through the program must be taken by all processors. On a pure SIMD

array of processors, conditional code is handled by disabling a subset of the processors,

who must wait while the others process the conditional instructions. Contrast this with the

Multiple Instruction/Multiple Data (MIMD) model, where every processor can be

running a completely different program.

SPMD is sometimes referred to as ÒSIMD on MIMDÓ or Òeffective SIMDÓ, as it is

uses a SIMD style of programming, but can include programs to run on a single

processor, MIMD machine or SIMD machine.

1.2. No communication

One of the aspects of shading that has allowed the explosion of fast shading hardware

is the independence of each shading sample from every other shading sample. One of the

most difficult and expensive aspect of general-purpose parallel machines is the

communication network allowing the processors or nodes to communicate with each

other. If the need for this communication is removed, the need for synchronization

between the processors disappears, as does the need for physical connections between

processors. The processors can be packed much more densely and are free to execute on

batches of samples, samples in a pipeline, samples one at a time Ñ whatever is most

efficient.

Communication costs are also generally so high relative to computational costs, and so

dependent on the machine architecture, that introducing processor to processor

communication into a SPMD model greatly reduces the kinds of hardware a program can

use effectively. The longer we can avoid communication, the more general our shaders

will be.

Shaders donÕt need sample to sample communication because shaders are typically

restricted to computing only local lighting models. Anything that makes the appearance

of one point on the surface depend on points elsewhere on the surface introduces the need

a sample to sample communication. Shadows, global illumination and subsurface

scattering are all on the list of effects that break the model to some degree if they are

allowed in a shader.

General purpose computations, on the other hand, often require significant processor to

processor communication. As graphics hardware becomes more powerful and flexible,

there is an increasing desire to use it for other general purpose parallel computation. This

comes at a cost in flexibility of the resulting code. I would argue that we need two

computational models. A model including communication for general purpose

computation on NVIDIA and ATI-style hardware, and a model for shading (possibly

targeting the general model on hardware that supports it) that is task oriented and unifies

vertex and fragment computations.

2. Languages for hardware abstraction
One of the best examples of a shading language for hardware abstraction is the

RenderMan shading language. Shaders written in this language have been successfully

targeted to a huge range of different hardware. PixarÕs PhotoRealistic RenderMan targets

2 Ð 3

a single processor running each step of the shader in a loop over the micropolygons in a

diced-up surface as generated by the REYES algorithm [Cook 1987]. BMRT also

targeted a single processor, but as a ray-tracer it ran each shader in its entirety on one ray-

intersection sample before moving on to the next sample [Gritz and Hahn 1996]. SGI

created a RenderMan implementation targeting multiple rendering passes on graphics

hardware, assuming hardware with a fast render-to-texture/read-from-texture or copy

framebuffer-to-famebuffer [Peercy et al. 2000]. ATI has created a RenderMan language

compiler targeting current shading hardware (see Chapter 12).

RenderMan may not turn out to be the best language for hardware shading, but it has

done an admirable job at being adaptable to a wide range of hardware. In the model

presented by RenderMan, the shader writer tags data as being either uniform or varying.

Uniform data is the same across a set of samples being shaded at once1. Varying data may

change from sample to sample.

For compilation of RenderMan shaders, the most important uniform and varying

designations are for the inputs to the shader. The shading compiler must derive for itself

which intermediate results within an expression are uniform and which are varying.

Expressions using only uniform arguments will have uniform results; expressions with

any varying arguments will have a varying result. The compiler can use similar logic to

decide whether any local variable in a shader is really uniform or varying regardless of

how it was specified in the shading code.

Given an accurate idea of exactly which quantities vary across the shaded surface and

which donÕt, the shading compiler can make several choices for actual execution. It can

decide to still evaluate every computation at every sample (not using the uniform/varying

distinction). It can evaluate the uniform computations once for a set of samples and for

each varying computation, loop over the samples to evaluate it. It can execute the varying

computations as SIMD instructions across a parallel array of processors. It can execute

the entire shader or just the varying computations across a set of MIMD processors. It can

create a pipeline of stream processors, each executing one or a few varying instructions

on one sample before passing that sample on to the next.

3. Where should we break the portability?
There are several facets of the RenderMan shading language that are not well suited for

graphics hardware. We can expect several of these to be the foundation of differences

between real-time languages and the RenderMan shading language, or limitations of

hardware-accelerated RenderMan implementations.

Since PRMan version 3.8, the RenderMan shading language has included the ability to

call arbitrary code from within a shader. This code can do anything, from compute a

specialized noise function to spawn a different style of renderer to download an image

from a live camera on the south pole. Until graphics hardware has the ability to run

arbitrary code, this wonÕt really be an option for real-time shading.

1 One RenderMan trick that will tell you something about how many samples are shaded

at once, breaking the illusion that all hardware is the same, is to assign a random color

into a uniform variable in a RenderMan shader.

2 Ð 4

RenderManÕs has just one scalar data type, float. Graphics hardware supporting

floating point data is now ubiquitous, but the size and precision of the floating point

numbers vary. Fixed point or reduced-precision floating point numbers are also provided

as a faster option than pure 32-bit floating point. With no way to indicate the range or

precision of computations, a RenderMan compiler cannot know when to use these faster

operations. Many of the candidates for a real-time shading language include some

reduced precision types for efficiency: the OpenGL Shading Language [Kessenich et al.

2003], Direct3D HLSL [Microsoft 2002], and Cg [Mark et al. 2003].

RenderMan shaders have two computational frequencies (how often a computation

happens), uniform and varying. Shading hardware has at least three Ñ compute on the

CPU, compute per vertex and compute per fragment, with no interleaving of computation

between the levels. All of the languages mentioned above have chosen to break shading

computation into separate procedures executing at each of these levels. That choice

restricts makes those shaders a poor fit to any hardware or software rendering system that

does not follow the CPU/Vertex/Fragment breakdown. However, any alternative

language that targeted all three stages must include new types for the new types of

computation [Proudfoot et al. 2001].

The RenderMan shading language also includes no real means of communication from

sample to sample. This is one of the strengths that allow RenderMan shaders to run on

such a wide range of rendering systems, but is a serious restriction for the general

computations that are becoming popular on graphics hardware. Communication between

processors in current hardware seems best supported by rendering partial results to a

texture then using the random access provided by the texturing hardware to find values

from other processors in a later pass. This form of communication is currently limited to

fragment shaders and comes at a very high price of communication to instructions.

Because users want to write algorithms that use communication, facilities will appear in

real-time shading languages, but as they do they will limit the applicability of those

shaders to the class of similar hardware.

4. Predictions
I believe that within at most a year or two, we will see one or two languages, split

along the Vertex/Fragment lines and supporting some simple communication model for

general purpose computation. This will satisfy many users and course participants who

have been crying out for a common high-level language for using graphics hardware.

Following that, I believe we will see compilers for shading-specific languages like

RenderMan so those who want to do shading can use the same shader on both hardware

and software renderers. For the same reason that C or C++ is not a satisfying interface for

writing shaders on software renderers and the RenderMan shading language isnÕt a

satisfying interface for writing general purpose CPU code, we will see a specialization of

languages for graphics hardware. General-purpose but targeted to a specific class of

hardware for general-purpose programming and shading-specific but usable anywhere for

shading use.

