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 Abstract 
Numerous techniques have been developed to perform advanced 
shading operations in real time. The real-time versions vary greatly 
from their original implementations due to the constraints of existing 
hardware and programming libraries. This paper introduces a grammar 
for articulating these modern real-time shading pipelines. We survey 
the existing techniques, using the grammar to classifies them into a 
taxonomy illustrating the commutations that differentiate the pipelines 
from the classical version and each other. The taxonomy follows a 
natural development that concludes with texture shading, which is 
applied to four advanced shaders to explore its versatility. 

1 Introduction 
The task of presenting a three-dimensional object on a two-dimensional 
display relies largely on perceptual cues the brain has evolved for 
resolving the three-dimensional spatial configuration of a scene from its 
projection onto the eye’s two-dimensional retina. One of these cues is 
shading: the variation in color and intensity of a surface that indicates 
its position and orientation within a scene. 

Consumer computer graphics has finally outgrown the classic lighting 
model composed of Lambertian diffuse and Phong/Blinn specular 
reflection that dominated hardware implementation for the past two 
decades. [Cook & Torrance, 1982] noted that the standard technique of 
matching the diffuse component with the surface material color and the 
specular component with the color of the light source was a good 
model for plastic, which consists of a suspension of diffusing pigments 
covered by a thin clear specular membrane. With the support of 
advanced shaders, consumer computer graphics will finally overcome 
its cliché plastic appearance. 

Procedural shaders generate the color of a point on the surface by 
running a short program. The Renderman system, which contains a 
little language specifically developed for procedural shaders, is the 
current industry standard for procedural shading. Hanrahan suggests 
that Renderman, while adequate for production-quality shading, may 
not be the most appropriate choice for specifying real-time shaders 
[Hanrahan, 1999]. 

Shaders determine the color of light exiting a surface as a function of 
the light entering a surface and the properties of the surface. Shaders 
combine the cues of lighting, which determines how light uniformly 
interacts with the surface, and texturing, which determines how light 
nonuniformly interacts with the surface. We use the stationarity of the 
phenomena as a key differentiator between surface lighting and surface 
texturing. Hence, “texturing” is a feature parameterized in part by 
position whereas “lighting” is not. 

Section 3 surveys current real-time advanced shading strategies. 
Finding information on these topics is not easy. The techniques have 
resulted as much from developers as from researchers, and these 
techniques appear in tutorials, how-to’s, product specifications and 
reports more often than in journals and conference proceedings. This 
survey collects these ideas together in one place and presents the 
techniques in a uniform and organized manner to allow better 
comparison and understanding of their benefits and drawbacks. 

This paper is in part a response to the keynote talk of the 
Eurographics/SIGGRAPH 1999 Graphics Hardware Workshop 
[Hanrahan, 1999]. This talk lamented the fact that there are many 
directions hardware vendors are considering to support advanced 
shading. This situation was best described by the slide in Figure 1. 
Section 3 develops a natural progression from the standard graphics 
pipeline through fragment lighting, multitexturing and multipass 
eventually concluding with texture shading. 

 

Figure 1. Slide 22 of [Hanrahan, 1999] 

Hanrahan recommended that graphics hardware community should 
investigate solutions to this problem by “commuting the graphics 
pipeline.” The grammar introduced in Section 2 provides a 
representation where such commutations can be articulated. analyzed 
and classified. Such grammars are already familiar in the analysis of 
rendering. A grammar associated with the rendering equation [Kajiya, 
1985] has been used to classify the transport of light from its source to 
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the viewer as a sequence of symbols corresponding to emittance, 
occlusion, and specular and diffuse surface reflections. 

This paper also follows up on the ideas of [McCool & Heidrich, 1999], 
which proposed a texture shader built on a multitexturing stack 
machine and a wider variety of texture coordinate generation modes. 
Section 4 begins to look in detail at what kinds of shaders and 
variations are possible using these advanced programmable shader 
techniques. 

2 A Graphics Pipeline Grammar 
This section develops a grammatical representation for the graphics 
shading pipeline. The symbols used in this grammar are listed in Figure 
2. 

 

We denote a two-dimensional surface parameterization as u = (u,v). 
We denote the shading parameters as a vector s that contains light 
source and surface material constants, as well as the local coordinate 
frame and the view vector. We use the vector x to represent a triangle 
vertex with its position in model coordinates, and xs to denote the same 
point in viewport (screen) coordinates. The 2-D surface texture 
coordinates are an attribute of the vertex and are denoted u x. Likewise, 
the shading parameter vector is also a vertex attribute and is denoted s 
x. Note that since these functions accept a single parameter, we 
eliminate the use of paranthesis in favor of a grammatical expression. 

We denote color c = (R,G,B). The map p: s → c denotes a shader, a 
procedure that maps shading parameters to a color c. The operator T: u 
→ c is a 2-D texture map that returns a color c given surface texture 
coordinates u.  

We use capital letters to denote maps that are implemented with a 
lookup table, such as the texture map T. We will use the ← operator to 
denote assignment to this table. For example, the framebuffer C:xs → c 
is a mapping from screen coordinates xs to a color c. The frame buffer 
is implemented as a table, and assignment of an element c into this 
table at index xs is denoted as C xs ← c. 

Most of the standard graphics pipeline can be decomposed into a 
general projection π that maps vertices from 3-D model coordinates x 
to 2-D screen coordinates xs , and a rasterization that takes these screen 
coordinate vertices and fills in the pixels of the polygon they describe 
using linear interpolation. It will be useful for the analysis of the 
aliasing artifacts to know exactly when attributes are interpolated 
across a polygon, as this signals when continuous functions are 
discretely sampled. We will indicate that a continuous function has 
been discretely sampled by rasterization with a delta function operator 
δ. 

Hence, x is a polygon vertex in model-coordinates, π x is the screen 
coordinate corresponding to that point and δ π x reminds us that the 
coordinates of that pixel were discretely interpolated from the screen 
coordinates of the polygon's vertices. The goal of the next section will 
be to articulate and analyze various techniques for assigning a value to 
the screen pixel C δ π x. 

3 Procedural Shading Techniques 
This section analyzes various graphics shading pipelines, including the 
standard pipeline, deferred shading, multipass, multitexturing, 
environment map techniques and texture shading. It also makes explicit 
shading techniques supported by these pipelines, including Phong 
mapping and environment mapped bump mapping. 

3.1 Standard Graphics Pipeline Shading 

The standard implementation of the modern graphics pipeline is 
dominated by the linear interpolation of vertex attributes at the end of 
the pipeline. 

Gouraud Interpolation. The standard graphics pipeline 
implementation of lighting is expressed in this notation as 

 C δ π x ← δ p s x. (1) 

Lighting is computed per-vertex, and the resulting color is interpolated 
(using a technique known as Gouraud shading) across the pixels of the 
screen-space polygon by the rasterization engine. 

Texture Mapping. Texturing is performed in screen coordinates and 
texture coordinates are assigned per-vertex and interpolated across the 
pixels of the screen-space polygon by the rasterization engine. 
Interpolated texture coordinates are then index into a texture map to 
determine a per-pixel texture color 

 C δ π x ← T δ u x. (2) 

The aliasing artifacts introduced by texture mapping occur when the 
sampling rate of the delta function on the LHS of (2) (the resolution of 
the polygon's screen projection) disagrees with the sampling rate of the 
delta function on the RHS (the texture's resolution). Methods for 
resampling the texture map based on the MIP map [Williams, 1983] or 
the summed-area table [Crow, 1984] fix this problem by adjusting the 
sampling density on the RHS of (2) to match that of the LHS. 

x vertex in model coordinates 

u surface parameterization (u,v) 

s shading parameter vector (N,V,R,H,…) 

π graphics pipeline from model to viewport coordinates 

xs pixel in viewport coordinates (xs,ys) 

δ rasterization (interpolation and sampling) 

c color vector (R,G,B) 

⊕ color combination function 

C frame buffer 

T texture map 

← assignment 

Figure 2: Operators in the shading pipeline grammar. 
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An additional though subtle issue with the δ function on the RHS of (2) 
is perspective correction. Since the projection π on the LHS performs a 
perspective divide, then the δ rasterization function on the RHS must 
also perform a per-pixel perspective divide. 

Modulation. The results of lighting and texture mapping are combined 
using a modulation operator 

 C δ π x ← (δ p s x) ⊕ (T δ u x). (3) 

In other words, the color of each pixel in the polygon's projection π(x) 
is given by a blending operation of the pixel in the texture map T and 
the interpolated shading of the polygon’s vertices. 

3.2 Fragment Lighting 

Fragment lighting is perhaps the most obvious way to implement 
lighting. It simply extends the per-vertex lighting currently present in 
graphics libraries to per-pixel computation.  Fragment lighting thus 
computes the shading of each pixel as it is rasterized 

 C δ π x ← p δ s x. (4) 

The shader parameters stored at each vertex are interpolated across the 
pixels of the polygon's projection, and a procedure is called for each 
pixel to synthesize the color of that pixel. Methods for Phong shading 
in hardware [Bishop & Weimer, 1986],[Peercy et al., 1997] are based 
on fragment lighting, as are a variety of procedural shaders, both 
production [Hanrahan & Lawson, 1990] and realtime [Hart et al., 
1999]. 

Note that fragment lighting (4), which supports Phong shading 
interpolation, is a permutation of (1), which supports Gouraud shading 
interpolation. The juxtaposition of sampling δ and shader evaluation p 
suffices to change the representation from interpolating shader results 
(color) with shader parameters (e.g. surface normals). 

Fragment lighting applies the entire procedure to each pixel before 
moving to the next. The main drawbacks to this technique is that 
interpolated vectors, such as the surface normal, need to be 
renormalized, which requires an expensive per-pixel square root 
operation. If this renormalization is approximated or ignored, the 
resulting artifacts can be incorrect shading, and this error increases with 
the curvature of the surface the polygon approximates. 

The second drawback is the amount of per-pixel computation versus 
the amount of per-pixel time. Assuming a megapixel display and a 500 
MIPS computer sustaining a 10 Hz frame rate limits procedures to 50 
instructions. While a high-level VLIW instruction set could implement 
most shaders in 50 instructions, this would be a wasteful investment of 
resources since most shaders remain static, and the shader processor 
continue to repeatedly synthesize the same texture albeit for different 
pixels as the object moves across the screen. 

The sampling rate of the δ in the LHS of (4) (the resolution of the 
polygon's projection) matches the sampling rate of the RHS (the 
resolution of the polygon sampling the shader). Hence aliasing occurs 
when this rate insufficiently samples the shader p. With the exception 

of the obvious and expensive supersampling technique, procedural 
shaders can be antialiased by bandlimiting [Norton, et al., 1982] and a 
gradient magnitude technique [Rhoades, et al., 1992], [Hart et al., 
1999], both which modify the texture procedure p to only generate 
signals properly sampled by the coordinates discretized by the δ. 

3.3 Deferred Shading 

Deferred shading [Molnar, 1992] implements procedural shading in 
two phases. In the first phase 

 T δ π x ← δ s x (5) 

such that the shading parameters are stored in a fat texture map T which 
is the same resolution as the display, called the fat framebuffer. Once 
all of the polygons have been scan converted, the second phase makes a 
single shading pass through every pixel in the frame buffer 

 C xs ← p T xs (6) 

replacing the color with the results of the procedure applied to the 
stored solid texture coordinates. In this matter, the application of p, the 
shader, is deferred until all of the polygons have been projected, such 
that the shader is only applied to visible sections of the polygons. 

Deferred shading applies all of the operations of the shader expression 
to a pixel before the next pixel is visited, and so suffers the same 
process limitations as fragment lighting. Unlike fragment lighting, 
deferred shading has a fixed number of pixels to visit, which provides a 
constant execution speed regardless of scene complexity. 

In fact, the main benefit of deferred shading is the reduction of its 
shading depth complexity to one. This means a shader is evaluated only 
once for each pixel, regardless of the number of overlapping objects 
that project to that pixel. Since some shaders can be quite complex, 
only applying them to visible pixel can save a significant amount of 
rendering time. 

The main drawbacks for deferred shading is the size of the fat 
framebuffer T. The fat framebuffer contains every variable used by the 
shader, including surface normals, reflection vectors, and the 
location/direction and color of each light source. 

One possible offset to the large frame buffer is to generate the frame in 
smaller chunks, trading space for time. It is not yet clear whether the 
time savings due to deferred shading’s unit depth complexity makes up 
for the multiple renderings necessary for this kind of implementation. 

Antialiasing is another drawback of deferred shading since the 
procedural texture is generated in a separate step of the algorithm than 
the step where the samples have been recorded from the δ. Deferred 
shading thus precludes the use of efficient polygon rasterization 
antialiasing methods such as coverage masks. Unless a significant 
amount of auxiliary information is also recorded, previous procedural 
texturing antialiasing algorithms do not easily apply to deferred 
shading. 
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However, with the multi-sample antialiasing found in many recent 
graphics controllers, supersampling appears to be the antialiasing 
technique of choice, and is certainly the most directly and generally 
scalable antialiasing solution across all segments of the graphics 
market. While the deferred shading frame buffer would have to be as 
large as the sampling space, this still seems to be a feasible and 
attractive direction for further pursuit. 

Since all of the information needed by shader is held in the fat frame 
buffer per pixel, the channels of the framebuffer would need to be 
signed and generally of higher precision than the resulting color to 
prevent error accumulation in complex shaders. 

3.4 Environment Map Lighting 

There are a variety of texture coordinate modes that implement useful 
features. Recall that an environment map is an image of the incoming 
luminance of a point in space. 

Spheremap. Environment mapping is most commonly supported in 
hardware by the spheremap mode. This texture coordinate generation 
mode assigns a special projection of the reflection vector R component 
of the shading information s to the texture coordinate u of the vertex x 

 u x ← πR R s x. (7) 

This projection requires a per-vertex square root that is handled during 
texture coordinate generation. The texture map consists of a mirror-ball 
image of the surrounding environment, which is combined with 
standard lighting by (3). This notation reveals how environment 
mapping avoids the interpolation of normalized vectors, by instead 
interpolating and sampling the projection of the reflection vector as a 
texture coordinate. This inexact approximation can create artifacts on 
large polygons spanning high-curvature areas. 

Phong/Gloss Mapping. One problem with vertex lighting is that since 
vertex colors are interpolated, specular highlights that peak inside 
polygon faces do not get properly sampled. Specular highlights can be 
simulated using (13) to generate an environment spheremap consisting 
of a black sphere with specular highlights. This allows current graphics 
API’s to support Phong highlights on polygon faces, using (7) for 
texture coordinate generation and (3) for modulating texturing with 
lighting. These highlights could be considered the incoming light from 
a diffused area light source, thereby softening the appearance of real-
time shaded surfaces. 

One significant advantage of the environment map is that it can contain 
the incoming light information from any number of light sources. 
Without it, we have a shading complexity that is linear in the number of 
light sources, often requiring a separate pass/texture for each light 
source. Putting all of the light source information into an environment 
map reduces the complexity to constant in the number of light sources. 

Environment Mapped Bump Mapping. Phong mapping can also be 
used to approximate bump mapping 

 C δ π x ← T δ ((u x) + (T’ δ u’ x)) (8) 

where T’ is a bump map texture that, instead of a color, returns a 2-D 
vector (the partial derivatives of the bump map height field) that offsets 
the index into the environment map. Comparing EMBM (8) to standard 
texture mapping (2) shows precisely where the perturbation occurs. 
This form of bump mapping is supported by Direct3D 6.0, but requires 
hardware support for the offsetting of texture indices by a texture result. 
It would be interesting to investigate what other effects are possible by 
offsetting a texture index with the result of another texture. 

3.5 Multipass Rendering 

Modern graphics API’s have limited resources that are often exhausted 
implementing a single effect. Multipass algorithms render the scene 
several times, combining a new effect with the existing result. Each 
pass can include an additional shader element, including lighting 
effects and texture layers. Each pass follows the form 

 C δ π x ← (C δ π x) ⊕ ((δ p s* x) ⊕ (T* δ u* x)) (9) 

where the asterisk indicates operators that typically change for each 
pass. The image composition operators of OpenGL 1.2.1 support a 
variety of frame combination operators. 

Multipass is a SIMD approach that distributes procedural operations 
across the screen, applying a single operation to every screen pixel 
before moving to the next operation in the shading expression. 

The benefit of multipass rendering is its flexibity. Any number of 
passes and combinations can be supported, and can be used to support 
full-featured shading languages [Proudfoot, 1999], [Olano, et al., 
2000]. 

The drawback of multipass rendering is its execution time. Each pass 
typically requires the re-rasterization of all of the geometry. 
Furthermore, storage and combination of frame buffer images can be 
incredibly slow. In many OpenGL implementations, it is faster to 
display a one-polygon-per-pixel mesh texture mapped with an image 
than to try to write the image directly to the screen. 

Multipass rendering benefits from a retained (scene graph) mode since 
the input object data rarely changes from pass to pass. If multipass is 
used from a static viewpoint, then the polygons need only be rasterized 
once, and each pass can be performed on screen space vertices (π x) 
instead of model space vertices x, specifically 

 C δ xs ← (C δ xs) ⊕ ((δ p s* x) ⊕ (T* δ u* x)) (10) 

Such a system would combine the benefits of deferred shading 
(compare (5) and (6)) with multipass since the shading would be 
deferred until after polygon projection. The shader would be executed 
only on the polygons that survived clipping, but this includes more than 
just the visible polygons. 

As each new frame is composed with a previous frame, a low-pass 
filter should remove high frequencies from the new frame before 
composition. It is not yet clear what interference patterns could be 
created when composing two images with energy at nearly the same 
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frequency. Some situations could cause a beating pattern at a lower, 
more noticeable frequency. 

As the results of the shading expression are accumulated in the frame 
buffer, the precision of the frame buffer needs to be increased beyond 
the final color output precision. To best accomodate a variety of 
individual shading operations, the intermediate frame buffers need to 
support signed values. 

Accumulation Buffer. Perhaps the most obvious multipass technique 
is the accumulation buffer 

 C δ π∗ x ← (C δ π∗ x) ⊕ (δ p s x) (11) 

where π∗ indicates that the projection is perturbed. This perturbation 
supports antialiasing, motion blur, depth of field and, when combined 
with a shadowing technique, soft shadows. 

Shadow Mask. The multipass method for rendering shadows via the 
shadow mask [Williams, 1978] is given by the following steps 

 C δ π x ← δ p s x, 

 C’ δ π x ← δ p s’ x, 

 Cl δ πl x ← δ x, 

 α C xs ← (z C xs) > (z Cl πl π-1 xs), 

 C xs ← (α C xs)*(C xs) + (1 – α C xs)*(C’ xs). 

where s contains ambient lighting parameters and s’ contains diffuse 
and specular. The superscript l indicates a frame buffer Cl and 
projection πl for the light source. The expression α C xs returns the 
alpha channel of the frame buffer C at position xs, and likewise the z 
operator returns the depth channel. Analyzing the shadow mask 
algorithm in this notation reveals several opportunities for special 
hardware to support parallel operation and pass combination. 

Shadow Volumes. Multipass techniques usually rely heavily on the 
stencil buffer to either restrict the shader’s operations to a section of the 
screen, or to store a temporary result of a shading operation. For 
example, the shadow volume method can be expressed 

 C δ π x ← δ p s x, 

 s C δ π x ← (s C δ π x) OR ((z δ π x’) > (z C δ π x’)), 

 C δ π x ← (s C δ π x) ? (δ p s’ x). 

In this example, the object vertices are denoted x and the shadow 
volume vertices are x’. The operator s(C) returns the stencil buffer 
value from the frame buffer C. The vector s contains ambient shading 
parameters whereas s’ contains diffuse and specular parameters. 

3.6 Multitexturing 

Multitexturing allows different textures to be combined on a surface. 
Multitexturing is a SIMD approach that distributes procedural 
operations across data, performing a single operation on the entire 
texture before moving to the next operation. 

OpenGL 1.2.1 supports chained multitexturing 

 Cδπx ← T’’’δu’’’x ⊕ (T’’δu’’x ⊕ (T’δu’x ⊕ Tδux)). (12) 

where the ⊕ symbol denotes one of the OpenGL texture modes, either 
decal, modulate or blend. Direct3D appears to be extending these 
modes to allow a larger variety of texture expressions. 

Multitexturing avoids the antialiasing roadblocks encountered by 
deferred shading because multitexturing defers the shading to the 
texture map, then projects the result onto the screen. This sets up the 
opportunity for shading aliases, which are more tolerable, without 
affecting rasterization aliases, which are more distracting. 

Antialiasing in a multitexturing system could be accomplished by 
antialiasing each of the component textures. MIP mapping of 
multitexture components is one method used to filter the texture 
components. 

Since the textures are used as components to shading equations, higher 
precision texture maps are needed to accumulate intermediate results, 
especially if scales greater than one are allowed. Signed texture values 
are also necessary. 

3.7 Texture Shading 

Texture shading stores shading information in the texture coordinates 
and maps. In its simplest form, it is expressed as 

 T δ u ← p s δ u (13) 

where the texture coordinate vector u indexes local illumination and 
texturing information s, and p applies a shader to this information, 
storing the resulting color in the texture map. The texture map is then 
applied to the surface using (2), which now takes responsibility for both 
texturing and lighting  [Kautz & McCool, 1999] . Such techniques 
require special texture generation modes such that the texture 
coordinates contain a portion of the shader expression. These methods 
are demonstrated in Section 4. 

Fat Texture Map. Texture shading occurs on a surface, which is 
parameterized by a two-dimensional coordinate system. A fat texture 
map could be considered that stores a vector of shading parameter 
instead of simply colors 

 C δ π x ← p T δ u x. (14) 

The parameters stored in the fat texture map might include vectors such 
as surface normals and tangents, or cosines such as the dot product of 
the surface normal and the light direction. This model of texture 
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shading is similar to deferred shading, replacing the fat frame buffer 
with a fat texture map. 

Incorporating texture shading into multitexturing replaces the fat 
texture map with a collection of standard-sized texture maps each 
containing a sub-expression result of a complex shader expression. 
McCool proposed a multitexturing algebra based on a stack machine, 
allowing more complex texture expressions. McCool’s proposal for dot 
products overlooks the sines of the angles between vectors, which 
could be useful for rendering hair. 

It is interesting that the linear interpolation across the polygon 
interpolates the indices across the parameter vectors stored in texture 
memory. This allows the interpolation of  normals and other shading 
parameters to be precomputed, such that only the index u need be 
interpolated [Kilgard, 1999]. 

Solid Mapping. Texture shading was used to perform solid texturing in 
OpenGL without any extensions [Carr, et al., 2000]. The technique 
assumed that the mapping u: x→u is one-to-one (such that images of 
the object’s polygons do not overlap in the texture map T). The object’s 
polygons are rasterized into the texture map 

 T δ u x ← δ s x, (15) 

where the shading parameters, in this case the solid texture coordinates 
(s,t,r), are stored as a color {R = s ; G = t ; B = r} in the texture map T. 
A second pass 

 T δ u ← p T δ u (16) 

replaces the texture map contents (s,t,r) with a color (R,G,B) generated 
by the procedural shader p on the solid texture coordinates. The texture 
map now contains a procedural solid texture that can be mapped back 
onto the object using standard texture mapping (2). 

4 Applications 
In the previous section, we followed a natural progression of techniques 
to support the real-time implementation of advanced shading models. 
This progression concluded with texture shading, which, when 
supported by multitexturing and multipass rendering, provides a 
powerful tool for implementing advanced shaders, though the full 
power of this tool is not yet completely understood. We explore the 
capabilities of texture shading by considering the implementation of a 
variety of advanced shaders. 

These advanced shaders require more information than the standard 
surface normal and reflection vector currently available. This 
information can be encoded as dot products, as recommended by 
[McCool & Heidrich, 1999]. The coordinates and vectors used by these 
shaders are enumerated in Figure 3. 

u the point on the surface whose illumination properties we are 
interested in; 

N the unit surface normal perpendicular to the tangent plane of 
the surface at u; 

T principal tangent vector used to fix the orientation of the 
coordinate frame at u for anisotropic shading; 

L a light-dependent unit light vector anchored at u in the 
direction of one of possibly many light sources; 

V the view-dependent unit view vector anchored at u in the 
direction of the viewer; 

R the light-dependent unit light reflection vector equal to 
2(N ⋅L)N–L; 

H the light- and view-dependent unit halfway vector equal to L+V 
normalized (constant for orthographic projection and 
directional light sources); 

Figure 3: Shading parameters. 

One method for implementing advanced shaders is to precompute its 
results for all possible inputs. We consider the equivalence classes of 
the reflectance function of a surface � (u,v, � i, � i, � r, � r) where u,v denotes 
a point on the surface, � i, � i are the elevation and azimuth of a light 
vector L on this point, and � r, � r are the elevation and azimuth of the 
viewing direction V. (We use the term BRDF although many shaders 
are not actually bidirectional [Lewis, 1994]). We will denote 
equivalence classes by replacing parameters of the plenoptic function 
with the symbol ⋅, as shown in Figure 4. 

�  (⋅,⋅, � i, � i, � r, � r) BRDF 
�  (⋅,⋅, � i,⋅,⋅,⋅) Diffuse, e.g. Lambert’s law 
�  (⋅,⋅, � i,⋅, � r,⋅) Isotropic, e.g. N⋅L, N⋅V 
�  (⋅,⋅, � i, � i+⋅, � r, � r+⋅) Specular, e.g. N⋅L, N⋅V, V⋅R 
�  (⋅,⋅, � i, � i,⋅,⋅) Anisotropic diffuse, e.g. N⋅L, T⋅L 
�  (u,v,⋅,⋅,⋅,⋅) Texturing 
�  (u,v, � i,⋅,⋅,⋅) Diffuse bump mapping 
�  (u,v, � i, � i+⋅, � r, � r+⋅) Specular bump mapping

Figure 4: Equivalence classes of reflectance 
functions. 

We investigate the various advanced texturing and shading techniques 
within these equivalence classes and use the classes to determine if 
precomputation and storage is feasible within the implementation 
technique. 

[Cabral et al., 1999] showed how a general BRDF could be applied 
through the environment spheremap by assigning to it the reflected 
luminance instead of the incident luminance. While a technique for 
interpolating these luminance maps was described, this technique relies 
on a large number of environment maps discretized over the possible 
view positions. 
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Companies such as nVidia have announced interest and support in 3-D 
texture maps, they are not currently available in an efficient form 
through current graphics API’s. A 3-D texture map would be capable 
of storing reflectance information for specular reflectance and even 
diffuse bump mapping. 

The advanced shaders we investigated typically use at least four 
distinct values as their parameters, which precludes the use of a texture 
map to lookup precomputed results. However, these advanced shaders 
are created from separable 2-D reflectance functions that can be 
combined to form the final multidimensional shader. [Kautz & 
McCool, 1999] decomposed 4-D BRDF’s into a sequence of separable 
functions of 2-D reflectance functions. Basing the separability of 
shaders on the model instead of a general decomposition has the added 
benefit of supporting parameterization of the model, requiring 
recomputation of only the component whose parameter has changed, or 
even the real-time control of the blending operations between the 
individual lookup textures. 

4.1 Cook-Torrance 

The Torrance-Sparrow local illumination model is a highly empirical 
physically based method that is both experimentally and physically 
justified. The most common implementation of the Torrance-Sparrow 
model is the Cook-Torrance approximation [Cook & Torrance, 1982] 
of the specular component 

 
))(( LNVN

FDG
⋅⋅

= �� . (17) 

The Fresnel effect is the total reflection of light glancing off of a 
surface at an angle shallower than the critical angle, which is modeled 
as 
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where c = V⋅H and g2=η2+c2-1. Computed directly, the divisions and 
square root would be costly, though feasible, for direct hardware 
implementation of this term. Alternatively, an approximation or a two-
dimensional lookup table indexed by g and c would also suffice. The 
constants for the Frenel term vary with wavelength, so separate F terms 
can be computed for each color channel, resulting in a highlight that 
changes hue with intensity. The Frenel effect is plotted in the second 
row of Figure 5. 

The roughness term is a distribution of the orientation of the 
microfacets, which is typically modeled by the Beckmann distribution 
function,  
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 Figure 5: Cook-Torrance. Figure 6: Skin. 
 

  
 Figure 7: Hair. Figure 8: Fake Fur. 
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parameterized by the surface roughness m. The Beckmann distribution 
function for m=0.6 is plotted in the fourth row of Figure 5. This could 
be implemented with a 2-D texture map parameterized by N⋅H and m, 
which would also allow the roughness to vary across a surface. 

The geometric attenuation factor G accounts for self-shadowing 
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as the smaller of one, the inverse of the percentage of blocked incident 
light, and the inverse  of the percentage of blocked reflected light, and 
is demonstrated in the third row of Figure 5. The geometry term 
consists of four cosines N⋅H, V⋅H, N⋅V and N⋅L. However, the 
implementation can be separated into the product of two texture maps. 
A base 2-D texture map of 2(N⋅H)/(V⋅H), modulated by a 1-D texture 
maps containing either N⋅V or N⋅L. (If the API supports scaling by the 
texture coordinate, these 1-D texture maps could be eliminated.) 

Note that the full Cook-Torrance implementation, shown in the first 
row of Figure 5, requires four cosines N⋅H, N⋅L, V⋅H, and V⋅L. 
Precomputation and storage of the lighting model would result in a 
four-dimensional table equivalent to the BRDF. Hence, programmable 
shading remains a more efficient implementation for this lighting 
model. 

4.2 Multilayer Shaders 

Multilayer shaders decompose reflected light into a surface scattered 
component and a sub-surface scattered component at each layer. There 
many applications of multilayer shaders, including materials such as 
skin, leaves, tree canopies and shallow ponds. 

Whereas Lambertian reflection is constructed from geometric 
principles, Seeliger’s model [Hanrahan & Krueger, 1993] is 
constructed from first principles in physics as 
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It scatters light more uniformly than Lambert’s law, providing a softer 
appearance similar to skin. Compare the fourth row (Lambertian) with 
the third row (Seeliger) of Figure 6. This lighting model is isotropic 
(but not bidirectional). It could be precomputed using a two-
dimensional texture map indexed by the cosines N⋅L and N⋅V, or even 
by arithmetic on two texture coordinates. 

The Henyey-Greenstein function was used to model the scattering of 
light by particles in a given layer 
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which is parameterized by the mean cosine of the direction of scattering 
g. This scattering function is plotted as intensity in the second row of 
Figure 6. 

The scattering function was used as a probability distribution function 
for the Monte Carlo model that constructed a full BRDF by sampling a 
hemisphere of incoming light and measuring the exiting light on the 
same hemisphere. However, the Henyey-Greenstein function could also 
be used as an opacity function for texture layers, as demonstrated in the 
first row of Figure 6. As such, it can be implemented as a 2-D texture 
indexed by the cosine L⋅V and the scattering parameter g. One possible 
improvement is to implement the Henyey-Greenstein scattering using 
the EMBM enhancement (8). 

Alternatively, the entire skin reflection function could be implemented 
as a 3-D specular BRDF, indexed by N⋅L, N⋅V and L⋅V. 

4.3 Anisotropic Shaders 

Anisotropic lighting models require a grain tangent direction in the 
reflectance coordinate frame, and must also account for self-
shadowing. The most common use for anisotropic reflection is in the 
simulation of hair and fur, but can also be used for brushed metals and 
grassy fields. 

A BRDF for hair was modeled [Kajiya & Kay, 1989] with a diffuse 
component given by the sine of the angle between the hair direction 
and the light vector 

 2)(1),sin( LTLTd ⋅−==�  (23) 

and the specular component as the sum of the products of the sines and 
cosines of the angle between the hair direction and the light vector and 
the view vector, raised to a specular exponent 

 ( )n

s VTLTVTLT 22 )(1)(1))(( ⋅−⋅−+⋅⋅=� . (24) 

Figure 7 shows these shading models. The fourth row is diffuse. The 
third row is specular with exponent one and the second row is specular 
with exponent 8. Note that the tangent dot products may be negative, 
such that raising to an even power changes the sign. The diffuse and 
specular components are combined in the first row. 

The diffuse reflection can be implemented with as a 1-D texture map, 
indexed by T⋅L. (The cosine-to-sine conversion is so fundamental that 
perhaps it bears hardware implementation.) The specular reflection 
function can be implemented as a 2-D texture map, indexed by T⋅L and  
T⋅V. Alternatively, for directional light and orthographic views, this can 
be implemented using the tangent vector T as the texture coordinate, 
and using a texture transformation matrix whose first row is L and 
second row is V [Heidrich & Seidel, 1998]. 

This model was further enhanced for efficient use in the entertainment 
industry [Goldman, 1997]. The scattering of light by hair and fur is 
approximated by 
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the cosine of the dihedral angle between the hair-light plane and the 
hair-view plane. Compare the fourth row of Figure 8, which contains 
the diffuse and specular terms, with the third row, which plots the 
scattering function. 

An opacity function for hair is given by an inverted Gaussian 
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where k is a constant equal to the projected area of each strand of hair 
times the number of hair strands, both per unit square. This opacity 
function is plotted (for k=0.1) as intensity in the second row of Figure 
8. These terms are collected to form a general reflectance model for 
hair 

 ( )ssddtr kkk
p

k
p

LsV ����� +




 −++−=

2
1

2
1

))(1)((hair
 (27) 

which combines constants of reflection kr and transmission kt 
(backlighting), and diffuse kd and specular ks reflection. The fraction s 
is used to control the degree of self-shadowing of hair. This expression 
can be implemented as a multipass rendering, or a multitexturing if the 
API supports the operations. This result is demonstrated in the first row 
of Figure 8. 

4.4 Non-Photorealistic Shaders 

While photorealism has been a longstanding goal of computer graphics, 
a significant amount of attention has also been paid to the use of 
graphics for illustration and visualization. The fundamental problem in 
non-photorealistic rendering is silhouette detection. The silhouette of an 
object occurs where the surface normal is perpendicular to the view 
vector, which could be indicated by the reflectance 

 �  = 1-(1-V⋅N)n (28) 

where the exponent n indicates the crispness of the silhouette. 

Shading in illustrations is often performed by hash marks, which often 
follow the tangent directions of the surface, and hardware shaders 
based on this form of shading would need the tangent vectors in 
addition to the surface normal to properly orient a prestored or 
synthesized hash texture. One could implement such hashing using a 
hashed spheremap.  

5 Conclusion 
We tackled the problem of analyzing present shader technology. We 
introduced a grammar capable of representing the fundamental nature 
of and differences between real-time shading techniques. We used this 
grammar to compare features of the standard pipeline with deferred 
rendering, multipass, multitexturing, texture shading and environment 
map techniques. We also evaluated these techniques with respect to a 
variety of advanced shaders. 

We found that the natural progression of the real-time shader 
techniques leads to texture shading supported by multitexturing and 
multipass. We also found that storage of the BRDF is inefficient, and 
advanced shading procedures are too complex to implement directly, 
but they can however be assembled by multitexture components that 
consist of 2-D texture maps indexed by coordinates generated from dot 
products of shader vector variables. 

5.1 Future Work 

Analyzing real-time shading pipelines using the grammar provides a 
basis for innovation, and makes various commutations easier to 
consider. We expect this comparison may inspire new techniques based 
on innovative permutations of the parameterization, shader, projection 
and interpolation operations. 

We also expect the grammar to grow more specific, providing a more 
detailed view of the specific channels and coordinates used for various 
shading effects. 

Due to the constraints of time, we have omitted bump mapping, 
procedural texturing and the noise function from this discussion. Half 
of procedural shading is procedural texturing, though most of the 
attention on advanced shading has focused on lighting and local 
illumination models. 
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