
Chapter 11

Analysis of Shading Pipelines
John C. Hart

 14-1

A Framework for Analyzing Real-
Time Advanced Shading Techniques

John C. Hart
University of Illinois

jch@cs.uiuc.edu

Peter K. Doenges
Evans & Sutherland Computer Corp.

pdoenges@es.com

 Abstract
Numerous techniques have been developed to perform advanced
shading operations in real time. The real-time versions vary greatly
from their original implementations due to the constraints of existing
hardware and programming libraries. This paper introduces a grammar
for articulating these modern real-time shading pipelines. We survey
the existing techniques, using the grammar to classifies them into a
taxonomy illustrating the commutations that differentiate the pipelines
from the classical version and each other. The taxonomy follows a
natural development that concludes with texture shading, which is
applied to four advanced shaders to explore its versatility.

1 Introduction
The task of presenting a three-dimensional object on a two-dimensional
display relies largely on perceptual cues the brain has evolved for
resolving the three-dimensional spatial configuration of a scene from its
projection onto the eye’s two-dimensional retina. One of these cues is
shading: the variation in color and intensity of a surface that indicates
its position and orientation within a scene.

Consumer computer graphics has finally outgrown the classic lighting
model composed of Lambertian diffuse and Phong/Blinn specular
reflection that dominated hardware implementation for the past two
decades. [Cook & Torrance, 1982] noted that the standard technique of
matching the diffuse component with the surface material color and the
specular component with the color of the light source was a good
model for plastic, which consists of a suspension of diffusing pigments
covered by a thin clear specular membrane. With the support of
advanced shaders, consumer computer graphics will finally overcome
its cliché plastic appearance.

Procedural shaders generate the color of a point on the surface by
running a short program. The Renderman system, which contains a
little language specifically developed for procedural shaders, is the
current industry standard for procedural shading. Hanrahan suggests
that Renderman, while adequate for production-quality shading, may
not be the most appropriate choice for specifying real-time shaders
[Hanrahan, 1999].

Shaders determine the color of light exiting a surface as a function of
the light entering a surface and the properties of the surface. Shaders
combine the cues of lighting, which determines how light uniformly
interacts with the surface, and texturing, which determines how light
nonuniformly interacts with the surface. We use the stationarity of the
phenomena as a key differentiator between surface lighting and surface
texturing. Hence, “texturing” is a feature parameterized in part by
position whereas “lighting” is not.

Section 3 surveys current real-time advanced shading strategies.
Finding information on these topics is not easy. The techniques have
resulted as much from developers as from researchers, and these
techniques appear in tutorials, how-to’s, product specifications and
reports more often than in journals and conference proceedings. This
survey collects these ideas together in one place and presents the
techniques in a uniform and organized manner to allow better
comparison and understanding of their benefits and drawbacks.

This paper is in part a response to the keynote talk of the
Eurographics/SIGGRAPH 1999 Graphics Hardware Workshop
[Hanrahan, 1999]. This talk lamented the fact that there are many
directions hardware vendors are considering to support advanced
shading. This situation was best described by the slide in Figure 1.
Section 3 develops a natural progression from the standard graphics
pipeline through fragment lighting, multitexturing and multipass
eventually concluding with texture shading.

Figure 1. Slide 22 of [Hanrahan, 1999]

Hanrahan recommended that graphics hardware community should
investigate solutions to this problem by “commuting the graphics
pipeline.” The grammar introduced in Section 2 provides a
representation where such commutations can be articulated. analyzed
and classified. Such grammars are already familiar in the analysis of
rendering. A grammar associated with the rendering equation [Kajiya,
1985] has been used to classify the transport of light from its source to

11 - 1

 14-2

the viewer as a sequence of symbols corresponding to emittance,
occlusion, and specular and diffuse surface reflections.

This paper also follows up on the ideas of [McCool & Heidrich, 1999],
which proposed a texture shader built on a multitexturing stack
machine and a wider variety of texture coordinate generation modes.
Section 4 begins to look in detail at what kinds of shaders and
variations are possible using these advanced programmable shader
techniques.

2 A Graphics Pipeline Grammar
This section develops a grammatical representation for the graphics
shading pipeline. The symbols used in this grammar are listed in Figure
2.

We denote a two-dimensional surface parameterization as u = (u,v).
We denote the shading parameters as a vector s that contains light
source and surface material constants, as well as the local coordinate
frame and the view vector. We use the vector x to represent a triangle
vertex with its position in model coordinates, and xs to denote the same
point in viewport (screen) coordinates. The 2-D surface texture
coordinates are an attribute of the vertex and are denoted u x. Likewise,
the shading parameter vector is also a vertex attribute and is denoted s
x. Note that since these functions accept a single parameter, we
eliminate the use of paranthesis in favor of a grammatical expression.

We denote color c = (R,G,B). The map p: s → c denotes a shader, a
procedure that maps shading parameters to a color c. The operator T: u
→ c is a 2-D texture map that returns a color c given surface texture
coordinates u.

We use capital letters to denote maps that are implemented with a
lookup table, such as the texture map T. We will use the ← operator to
denote assignment to this table. For example, the framebuffer C:xs → c
is a mapping from screen coordinates xs to a color c. The frame buffer
is implemented as a table, and assignment of an element c into this
table at index xs is denoted as C xs ← c.

Most of the standard graphics pipeline can be decomposed into a
general projection π that maps vertices from 3-D model coordinates x
to 2-D screen coordinates xs , and a rasterization that takes these screen
coordinate vertices and fills in the pixels of the polygon they describe
using linear interpolation. It will be useful for the analysis of the
aliasing artifacts to know exactly when attributes are interpolated
across a polygon, as this signals when continuous functions are
discretely sampled. We will indicate that a continuous function has
been discretely sampled by rasterization with a delta function operator
δ.

Hence, x is a polygon vertex in model-coordinates, π x is the screen
coordinate corresponding to that point and δ π x reminds us that the
coordinates of that pixel were discretely interpolated from the screen
coordinates of the polygon's vertices. The goal of the next section will
be to articulate and analyze various techniques for assigning a value to
the screen pixel C δ π x.

3 Procedural Shading Techniques
This section analyzes various graphics shading pipelines, including the
standard pipeline, deferred shading, multipass, multitexturing,
environment map techniques and texture shading. It also makes explicit
shading techniques supported by these pipelines, including Phong
mapping and environment mapped bump mapping.

3.1 Standard Graphics Pipeline Shading

The standard implementation of the modern graphics pipeline is
dominated by the linear interpolation of vertex attributes at the end of
the pipeline.

Gouraud Interpolation. The standard graphics pipeline
implementation of lighting is expressed in this notation as

 C δ π x ← δ p s x. (1)

Lighting is computed per-vertex, and the resulting color is interpolated
(using a technique known as Gouraud shading) across the pixels of the
screen-space polygon by the rasterization engine.

Texture Mapping. Texturing is performed in screen coordinates and
texture coordinates are assigned per-vertex and interpolated across the
pixels of the screen-space polygon by the rasterization engine.
Interpolated texture coordinates are then index into a texture map to
determine a per-pixel texture color

 C δ π x ← T δ u x. (2)

The aliasing artifacts introduced by texture mapping occur when the
sampling rate of the delta function on the LHS of (2) (the resolution of
the polygon's screen projection) disagrees with the sampling rate of the
delta function on the RHS (the texture's resolution). Methods for
resampling the texture map based on the MIP map [Williams, 1983] or
the summed-area table [Crow, 1984] fix this problem by adjusting the
sampling density on the RHS of (2) to match that of the LHS.

x vertex in model coordinates

u surface parameterization (u,v)

s shading parameter vector (N,V,R,H,…)

π graphics pipeline from model to viewport coordinates

xs pixel in viewport coordinates (xs,ys)

δ rasterization (interpolation and sampling)

c color vector (R,G,B)

⊕ color combination function

C frame buffer

T texture map

← assignment

Figure 2: Operators in the shading pipeline grammar.

11 - 2

 14-3

An additional though subtle issue with the δ function on the RHS of (2)
is perspective correction. Since the projection π on the LHS performs a
perspective divide, then the δ rasterization function on the RHS must
also perform a per-pixel perspective divide.

Modulation. The results of lighting and texture mapping are combined
using a modulation operator

 C δ π x ← (δ p s x) ⊕ (T δ u x). (3)

In other words, the color of each pixel in the polygon's projection π(x)
is given by a blending operation of the pixel in the texture map T and
the interpolated shading of the polygon’s vertices.

3.2 Fragment Lighting

Fragment lighting is perhaps the most obvious way to implement
lighting. It simply extends the per-vertex lighting currently present in
graphics libraries to per-pixel computation. Fragment lighting thus
computes the shading of each pixel as it is rasterized

 C δ π x ← p δ s x. (4)

The shader parameters stored at each vertex are interpolated across the
pixels of the polygon's projection, and a procedure is called for each
pixel to synthesize the color of that pixel. Methods for Phong shading
in hardware [Bishop & Weimer, 1986],[Peercy et al., 1997] are based
on fragment lighting, as are a variety of procedural shaders, both
production [Hanrahan & Lawson, 1990] and realtime [Hart et al.,
1999].

Note that fragment lighting (4), which supports Phong shading
interpolation, is a permutation of (1), which supports Gouraud shading
interpolation. The juxtaposition of sampling δ and shader evaluation p
suffices to change the representation from interpolating shader results
(color) with shader parameters (e.g. surface normals).

Fragment lighting applies the entire procedure to each pixel before
moving to the next. The main drawbacks to this technique is that
interpolated vectors, such as the surface normal, need to be
renormalized, which requires an expensive per-pixel square root
operation. If this renormalization is approximated or ignored, the
resulting artifacts can be incorrect shading, and this error increases with
the curvature of the surface the polygon approximates.

The second drawback is the amount of per-pixel computation versus
the amount of per-pixel time. Assuming a megapixel display and a 500
MIPS computer sustaining a 10 Hz frame rate limits procedures to 50
instructions. While a high-level VLIW instruction set could implement
most shaders in 50 instructions, this would be a wasteful investment of
resources since most shaders remain static, and the shader processor
continue to repeatedly synthesize the same texture albeit for different
pixels as the object moves across the screen.

The sampling rate of the δ in the LHS of (4) (the resolution of the
polygon's projection) matches the sampling rate of the RHS (the
resolution of the polygon sampling the shader). Hence aliasing occurs
when this rate insufficiently samples the shader p. With the exception

of the obvious and expensive supersampling technique, procedural
shaders can be antialiased by bandlimiting [Norton, et al., 1982] and a
gradient magnitude technique [Rhoades, et al., 1992], [Hart et al.,
1999], both which modify the texture procedure p to only generate
signals properly sampled by the coordinates discretized by the δ.

3.3 Deferred Shading

Deferred shading [Molnar, 1992] implements procedural shading in
two phases. In the first phase

 T δ π x ← δ s x (5)

such that the shading parameters are stored in a fat texture map T which
is the same resolution as the display, called the fat framebuffer. Once
all of the polygons have been scan converted, the second phase makes a
single shading pass through every pixel in the frame buffer

 C xs ← p T xs (6)

replacing the color with the results of the procedure applied to the
stored solid texture coordinates. In this matter, the application of p, the
shader, is deferred until all of the polygons have been projected, such
that the shader is only applied to visible sections of the polygons.

Deferred shading applies all of the operations of the shader expression
to a pixel before the next pixel is visited, and so suffers the same
process limitations as fragment lighting. Unlike fragment lighting,
deferred shading has a fixed number of pixels to visit, which provides a
constant execution speed regardless of scene complexity.

In fact, the main benefit of deferred shading is the reduction of its
shading depth complexity to one. This means a shader is evaluated only
once for each pixel, regardless of the number of overlapping objects
that project to that pixel. Since some shaders can be quite complex,
only applying them to visible pixel can save a significant amount of
rendering time.

The main drawbacks for deferred shading is the size of the fat
framebuffer T. The fat framebuffer contains every variable used by the
shader, including surface normals, reflection vectors, and the
location/direction and color of each light source.

One possible offset to the large frame buffer is to generate the frame in
smaller chunks, trading space for time. It is not yet clear whether the
time savings due to deferred shading’s unit depth complexity makes up
for the multiple renderings necessary for this kind of implementation.

Antialiasing is another drawback of deferred shading since the
procedural texture is generated in a separate step of the algorithm than
the step where the samples have been recorded from the δ. Deferred
shading thus precludes the use of efficient polygon rasterization
antialiasing methods such as coverage masks. Unless a significant
amount of auxiliary information is also recorded, previous procedural
texturing antialiasing algorithms do not easily apply to deferred
shading.

11 - 3

 14-4

However, with the multi-sample antialiasing found in many recent
graphics controllers, supersampling appears to be the antialiasing
technique of choice, and is certainly the most directly and generally
scalable antialiasing solution across all segments of the graphics
market. While the deferred shading frame buffer would have to be as
large as the sampling space, this still seems to be a feasible and
attractive direction for further pursuit.

Since all of the information needed by shader is held in the fat frame
buffer per pixel, the channels of the framebuffer would need to be
signed and generally of higher precision than the resulting color to
prevent error accumulation in complex shaders.

3.4 Environment Map Lighting

There are a variety of texture coordinate modes that implement useful
features. Recall that an environment map is an image of the incoming
luminance of a point in space.

Spheremap. Environment mapping is most commonly supported in
hardware by the spheremap mode. This texture coordinate generation
mode assigns a special projection of the reflection vector R component
of the shading information s to the texture coordinate u of the vertex x

 u x ← πR R s x. (7)

This projection requires a per-vertex square root that is handled during
texture coordinate generation. The texture map consists of a mirror-ball
image of the surrounding environment, which is combined with
standard lighting by (3). This notation reveals how environment
mapping avoids the interpolation of normalized vectors, by instead
interpolating and sampling the projection of the reflection vector as a
texture coordinate. This inexact approximation can create artifacts on
large polygons spanning high-curvature areas.

Phong/Gloss Mapping. One problem with vertex lighting is that since
vertex colors are interpolated, specular highlights that peak inside
polygon faces do not get properly sampled. Specular highlights can be
simulated using (13) to generate an environment spheremap consisting
of a black sphere with specular highlights. This allows current graphics
API’s to support Phong highlights on polygon faces, using (7) for
texture coordinate generation and (3) for modulating texturing with
lighting. These highlights could be considered the incoming light from
a diffused area light source, thereby softening the appearance of real-
time shaded surfaces.

One significant advantage of the environment map is that it can contain
the incoming light information from any number of light sources.
Without it, we have a shading complexity that is linear in the number of
light sources, often requiring a separate pass/texture for each light
source. Putting all of the light source information into an environment
map reduces the complexity to constant in the number of light sources.

Environment Mapped Bump Mapping. Phong mapping can also be
used to approximate bump mapping

 C δ π x ← T δ ((u x) + (T’ δ u’ x)) (8)

where T’ is a bump map texture that, instead of a color, returns a 2-D
vector (the partial derivatives of the bump map height field) that offsets
the index into the environment map. Comparing EMBM (8) to standard
texture mapping (2) shows precisely where the perturbation occurs.
This form of bump mapping is supported by Direct3D 6.0, but requires
hardware support for the offsetting of texture indices by a texture result.
It would be interesting to investigate what other effects are possible by
offsetting a texture index with the result of another texture.

3.5 Multipass Rendering

Modern graphics API’s have limited resources that are often exhausted
implementing a single effect. Multipass algorithms render the scene
several times, combining a new effect with the existing result. Each
pass can include an additional shader element, including lighting
effects and texture layers. Each pass follows the form

 C δ π x ← (C δ π x) ⊕ ((δ p s* x) ⊕ (T* δ u* x)) (9)

where the asterisk indicates operators that typically change for each
pass. The image composition operators of OpenGL 1.2.1 support a
variety of frame combination operators.

Multipass is a SIMD approach that distributes procedural operations
across the screen, applying a single operation to every screen pixel
before moving to the next operation in the shading expression.

The benefit of multipass rendering is its flexibity. Any number of
passes and combinations can be supported, and can be used to support
full-featured shading languages [Proudfoot, 1999], [Olano, et al.,
2000].

The drawback of multipass rendering is its execution time. Each pass
typically requires the re-rasterization of all of the geometry.
Furthermore, storage and combination of frame buffer images can be
incredibly slow. In many OpenGL implementations, it is faster to
display a one-polygon-per-pixel mesh texture mapped with an image
than to try to write the image directly to the screen.

Multipass rendering benefits from a retained (scene graph) mode since
the input object data rarely changes from pass to pass. If multipass is
used from a static viewpoint, then the polygons need only be rasterized
once, and each pass can be performed on screen space vertices (π x)
instead of model space vertices x, specifically

 C δ xs ← (C δ xs) ⊕ ((δ p s* x) ⊕ (T* δ u* x)) (10)

Such a system would combine the benefits of deferred shading
(compare (5) and (6)) with multipass since the shading would be
deferred until after polygon projection. The shader would be executed
only on the polygons that survived clipping, but this includes more than
just the visible polygons.

As each new frame is composed with a previous frame, a low-pass
filter should remove high frequencies from the new frame before
composition. It is not yet clear what interference patterns could be
created when composing two images with energy at nearly the same

11 - 4

 14-5

frequency. Some situations could cause a beating pattern at a lower,
more noticeable frequency.

As the results of the shading expression are accumulated in the frame
buffer, the precision of the frame buffer needs to be increased beyond
the final color output precision. To best accomodate a variety of
individual shading operations, the intermediate frame buffers need to
support signed values.

Accumulation Buffer. Perhaps the most obvious multipass technique
is the accumulation buffer

 C δ π∗ x ← (C δ π∗ x) ⊕ (δ p s x) (11)

where π∗ indicates that the projection is perturbed. This perturbation
supports antialiasing, motion blur, depth of field and, when combined
with a shadowing technique, soft shadows.

Shadow Mask. The multipass method for rendering shadows via the
shadow mask [Williams, 1978] is given by the following steps

 C δ π x ← δ p s x,

 C’ δ π x ← δ p s’ x,

 Cl δ πl x ← δ x,

 α C xs ← (z C xs) > (z Cl πl π-1 xs),

 C xs ← (α C xs)*(C xs) + (1 – α C xs)*(C’ xs).

where s contains ambient lighting parameters and s’ contains diffuse
and specular. The superscript l indicates a frame buffer Cl and
projection πl for the light source. The expression α C xs returns the
alpha channel of the frame buffer C at position xs, and likewise the z
operator returns the depth channel. Analyzing the shadow mask
algorithm in this notation reveals several opportunities for special
hardware to support parallel operation and pass combination.

Shadow Volumes. Multipass techniques usually rely heavily on the
stencil buffer to either restrict the shader’s operations to a section of the
screen, or to store a temporary result of a shading operation. For
example, the shadow volume method can be expressed

 C δ π x ← δ p s x,

 s C δ π x ← (s C δ π x) OR ((z δ π x’) > (z C δ π x’)),

 C δ π x ← (s C δ π x) ? (δ p s’ x).

In this example, the object vertices are denoted x and the shadow
volume vertices are x’. The operator s(C) returns the stencil buffer
value from the frame buffer C. The vector s contains ambient shading
parameters whereas s’ contains diffuse and specular parameters.

3.6 Multitexturing

Multitexturing allows different textures to be combined on a surface.
Multitexturing is a SIMD approach that distributes procedural
operations across data, performing a single operation on the entire
texture before moving to the next operation.

OpenGL 1.2.1 supports chained multitexturing

 Cδπx ← T’’’δu’’’x ⊕ (T’’δu’’x ⊕ (T’δu’x ⊕ Tδux)). (12)

where the ⊕ symbol denotes one of the OpenGL texture modes, either
decal, modulate or blend. Direct3D appears to be extending these
modes to allow a larger variety of texture expressions.

Multitexturing avoids the antialiasing roadblocks encountered by
deferred shading because multitexturing defers the shading to the
texture map, then projects the result onto the screen. This sets up the
opportunity for shading aliases, which are more tolerable, without
affecting rasterization aliases, which are more distracting.

Antialiasing in a multitexturing system could be accomplished by
antialiasing each of the component textures. MIP mapping of
multitexture components is one method used to filter the texture
components.

Since the textures are used as components to shading equations, higher
precision texture maps are needed to accumulate intermediate results,
especially if scales greater than one are allowed. Signed texture values
are also necessary.

3.7 Texture Shading

Texture shading stores shading information in the texture coordinates
and maps. In its simplest form, it is expressed as

 T δ u ← p s δ u (13)

where the texture coordinate vector u indexes local illumination and
texturing information s, and p applies a shader to this information,
storing the resulting color in the texture map. The texture map is then
applied to the surface using (2), which now takes responsibility for both
texturing and lighting [Kautz & McCool, 1999] . Such techniques
require special texture generation modes such that the texture
coordinates contain a portion of the shader expression. These methods
are demonstrated in Section 4.

Fat Texture Map. Texture shading occurs on a surface, which is
parameterized by a two-dimensional coordinate system. A fat texture
map could be considered that stores a vector of shading parameter
instead of simply colors

 C δ π x ← p T δ u x. (14)

The parameters stored in the fat texture map might include vectors such
as surface normals and tangents, or cosines such as the dot product of
the surface normal and the light direction. This model of texture

11 - 5

 14-6

shading is similar to deferred shading, replacing the fat frame buffer
with a fat texture map.

Incorporating texture shading into multitexturing replaces the fat
texture map with a collection of standard-sized texture maps each
containing a sub-expression result of a complex shader expression.
McCool proposed a multitexturing algebra based on a stack machine,
allowing more complex texture expressions. McCool’s proposal for dot
products overlooks the sines of the angles between vectors, which
could be useful for rendering hair.

It is interesting that the linear interpolation across the polygon
interpolates the indices across the parameter vectors stored in texture
memory. This allows the interpolation of normals and other shading
parameters to be precomputed, such that only the index u need be
interpolated [Kilgard, 1999].

Solid Mapping. Texture shading was used to perform solid texturing in
OpenGL without any extensions [Carr, et al., 2000]. The technique
assumed that the mapping u: x→u is one-to-one (such that images of
the object’s polygons do not overlap in the texture map T). The object’s
polygons are rasterized into the texture map

 T δ u x ← δ s x, (15)

where the shading parameters, in this case the solid texture coordinates
(s,t,r), are stored as a color {R = s ; G = t ; B = r} in the texture map T.
A second pass

 T δ u ← p T δ u (16)

replaces the texture map contents (s,t,r) with a color (R,G,B) generated
by the procedural shader p on the solid texture coordinates. The texture
map now contains a procedural solid texture that can be mapped back
onto the object using standard texture mapping (2).

4 Applications
In the previous section, we followed a natural progression of techniques
to support the real-time implementation of advanced shading models.
This progression concluded with texture shading, which, when
supported by multitexturing and multipass rendering, provides a
powerful tool for implementing advanced shaders, though the full
power of this tool is not yet completely understood. We explore the
capabilities of texture shading by considering the implementation of a
variety of advanced shaders.

These advanced shaders require more information than the standard
surface normal and reflection vector currently available. This
information can be encoded as dot products, as recommended by
[McCool & Heidrich, 1999]. The coordinates and vectors used by these
shaders are enumerated in Figure 3.

u the point on the surface whose illumination properties we are
interested in;

N the unit surface normal perpendicular to the tangent plane of
the surface at u;

T principal tangent vector used to fix the orientation of the
coordinate frame at u for anisotropic shading;

L a light-dependent unit light vector anchored at u in the
direction of one of possibly many light sources;

V the view-dependent unit view vector anchored at u in the
direction of the viewer;

R the light-dependent unit light reflection vector equal to
2(N ⋅L)N–L;

H the light- and view-dependent unit halfway vector equal to L+V
normalized (constant for orthographic projection and
directional light sources);

Figure 3: Shading parameters.

One method for implementing advanced shaders is to precompute its
results for all possible inputs. We consider the equivalence classes of
the reflectance function of a surface � (u,v, � i, � i, � r, � r) where u,v denotes
a point on the surface, � i, � i are the elevation and azimuth of a light
vector L on this point, and � r, � r are the elevation and azimuth of the
viewing direction V. (We use the term BRDF although many shaders
are not actually bidirectional [Lewis, 1994]). We will denote
equivalence classes by replacing parameters of the plenoptic function
with the symbol ⋅, as shown in Figure 4.

� (⋅,⋅, � i, � i, � r, � r) BRDF
� (⋅,⋅, � i,⋅,⋅,⋅) Diffuse, e.g. Lambert’s law
� (⋅,⋅, � i,⋅, � r,⋅) Isotropic, e.g. N⋅L, N⋅V
� (⋅,⋅, � i, � i+⋅, � r, � r+⋅) Specular, e.g. N⋅L, N⋅V, V⋅R
� (⋅,⋅, � i, � i,⋅,⋅) Anisotropic diffuse, e.g. N⋅L, T⋅L
� (u,v,⋅,⋅,⋅,⋅) Texturing
� (u,v, � i,⋅,⋅,⋅) Diffuse bump mapping
� (u,v, � i, � i+⋅, � r, � r+⋅) Specular bump mapping

Figure 4: Equivalence classes of reflectance
functions.

We investigate the various advanced texturing and shading techniques
within these equivalence classes and use the classes to determine if
precomputation and storage is feasible within the implementation
technique.

[Cabral et al., 1999] showed how a general BRDF could be applied
through the environment spheremap by assigning to it the reflected
luminance instead of the incident luminance. While a technique for
interpolating these luminance maps was described, this technique relies
on a large number of environment maps discretized over the possible
view positions.

11 - 6

 14-7

Companies such as nVidia have announced interest and support in 3-D
texture maps, they are not currently available in an efficient form
through current graphics API’s. A 3-D texture map would be capable
of storing reflectance information for specular reflectance and even
diffuse bump mapping.

The advanced shaders we investigated typically use at least four
distinct values as their parameters, which precludes the use of a texture
map to lookup precomputed results. However, these advanced shaders
are created from separable 2-D reflectance functions that can be
combined to form the final multidimensional shader. [Kautz &
McCool, 1999] decomposed 4-D BRDF’s into a sequence of separable
functions of 2-D reflectance functions. Basing the separability of
shaders on the model instead of a general decomposition has the added
benefit of supporting parameterization of the model, requiring
recomputation of only the component whose parameter has changed, or
even the real-time control of the blending operations between the
individual lookup textures.

4.1 Cook-Torrance

The Torrance-Sparrow local illumination model is a highly empirical
physically based method that is both experimentally and physically
justified. The most common implementation of the Torrance-Sparrow
model is the Cook-Torrance approximation [Cook & Torrance, 1982]
of the specular component

))((LNVN

FDG
⋅⋅

= �� . (17)

The Fresnel effect is the total reflection of light glancing off of a
surface at an angle shallower than the critical angle, which is modeled
as







+−
−++

+
−= 2

2

2

2

)1)((
)1)((

1
)(
)(

2
1

cgc
cgc

cg
cg

F (18)

where c = V⋅H and g2=η2+c2-1. Computed directly, the divisions and
square root would be costly, though feasible, for direct hardware
implementation of this term. Alternatively, an approximation or a two-
dimensional lookup table indexed by g and c would also suffice. The
constants for the Frenel term vary with wavelength, so separate F terms
can be computed for each color channel, resulting in a highlight that
changes hue with intensity. The Frenel effect is plotted in the second
row of Figure 5.

The roughness term is a distribution of the orientation of the
microfacets, which is typically modeled by the Beckmann distribution
function,







⋅

−⋅
⋅

=
22

2

42)(
1)(

exp
)(4

1
HNm

HN
HNm

D , (19)

 Figure 5: Cook-Torrance. Figure 6: Skin.

 Figure 7: Hair. Figure 8: Fake Fur.

11 - 7

 14-8

parameterized by the surface roughness m. The Beckmann distribution
function for m=0.6 is plotted in the fourth row of Figure 5. This could
be implemented with a 2-D texture map parameterized by N⋅H and m,
which would also allow the roughness to vary across a surface.

The geometric attenuation factor G accounts for self-shadowing







 ⋅

⋅
⋅⋅

⋅
⋅=)(

)(2
),(

)(2
,1min LN

HV

HN
VN

HV

HN
G (20)

as the smaller of one, the inverse of the percentage of blocked incident
light, and the inverse of the percentage of blocked reflected light, and
is demonstrated in the third row of Figure 5. The geometry term
consists of four cosines N⋅H, V⋅H, N⋅V and N⋅L. However, the
implementation can be separated into the product of two texture maps.
A base 2-D texture map of 2(N⋅H)/(V⋅H), modulated by a 1-D texture
maps containing either N⋅V or N⋅L. (If the API supports scaling by the
texture coordinate, these 1-D texture maps could be eliminated.)

Note that the full Cook-Torrance implementation, shown in the first
row of Figure 5, requires four cosines N⋅H, N⋅L, V⋅H, and V⋅L.
Precomputation and storage of the lighting model would result in a
four-dimensional table equivalent to the BRDF. Hence, programmable
shading remains a more efficient implementation for this lighting
model.

4.2 Multilayer Shaders

Multilayer shaders decompose reflected light into a surface scattered
component and a sub-surface scattered component at each layer. There
many applications of multilayer shaders, including materials such as
skin, leaves, tree canopies and shallow ponds.

Whereas Lambertian reflection is constructed from geometric
principles, Seeliger’s model [Hanrahan & Krueger, 1993] is
constructed from first principles in physics as

)()(VNLN

LN

⋅+⋅
⋅=� (21)

It scatters light more uniformly than Lambert’s law, providing a softer
appearance similar to skin. Compare the fourth row (Lambertian) with
the third row (Seeliger) of Figure 6. This lighting model is isotropic
(but not bidirectional). It could be precomputed using a two-
dimensional texture map indexed by the cosines N⋅L and N⋅V, or even
by arithmetic on two texture coordinates.

The Henyey-Greenstein function was used to model the scattering of
light by particles in a given layer

2/32

2

)21(
1

4
1

)(
VgLg

g
VLp

⋅−+
−=⋅ � (22)

which is parameterized by the mean cosine of the direction of scattering
g. This scattering function is plotted as intensity in the second row of
Figure 6.

The scattering function was used as a probability distribution function
for the Monte Carlo model that constructed a full BRDF by sampling a
hemisphere of incoming light and measuring the exiting light on the
same hemisphere. However, the Henyey-Greenstein function could also
be used as an opacity function for texture layers, as demonstrated in the
first row of Figure 6. As such, it can be implemented as a 2-D texture
indexed by the cosine L⋅V and the scattering parameter g. One possible
improvement is to implement the Henyey-Greenstein scattering using
the EMBM enhancement (8).

Alternatively, the entire skin reflection function could be implemented
as a 3-D specular BRDF, indexed by N⋅L, N⋅V and L⋅V.

4.3 Anisotropic Shaders

Anisotropic lighting models require a grain tangent direction in the
reflectance coordinate frame, and must also account for self-
shadowing. The most common use for anisotropic reflection is in the
simulation of hair and fur, but can also be used for brushed metals and
grassy fields.

A BRDF for hair was modeled [Kajiya & Kay, 1989] with a diffuse
component given by the sine of the angle between the hair direction
and the light vector

 2)(1),sin(LTLTd ⋅−==� (23)

and the specular component as the sum of the products of the sines and
cosines of the angle between the hair direction and the light vector and
the view vector, raised to a specular exponent

 ()n

s VTLTVTLT 22)(1)(1))((⋅−⋅−+⋅⋅=� . (24)

Figure 7 shows these shading models. The fourth row is diffuse. The
third row is specular with exponent one and the second row is specular
with exponent 8. Note that the tangent dot products may be negative,
such that raising to an even power changes the sign. The diffuse and
specular components are combined in the first row.

The diffuse reflection can be implemented with as a 1-D texture map,
indexed by T⋅L. (The cosine-to-sine conversion is so fundamental that
perhaps it bears hardware implementation.) The specular reflection
function can be implemented as a 2-D texture map, indexed by T⋅L and
T⋅V. Alternatively, for directional light and orthographic views, this can
be implemented using the tangent vector T as the texture coordinate,
and using a texture transformation matrix whose first row is L and
second row is V [Heidrich & Seidel, 1998].

This model was further enhanced for efficient use in the entertainment
industry [Goldman, 1997]. The scattering of light by hair and fur is
approximated by

VTLT
VTLT

p
××
×⋅×=)()((25)

11 - 8

 14-9

the cosine of the dihedral angle between the hair-light plane and the
hair-view plane. Compare the fourth row of Figure 8, which contains
the diffuse and specular terms, with the third row, which plots the
scattering function.

An opacity function for hair is given by an inverted Gaussian












⋅
⋅−−

−=
NV

TVk
V

2)(1
exp1)(� (26)

where k is a constant equal to the projected area of each strand of hair
times the number of hair strands, both per unit square. This opacity
function is plotted (for k=0.1) as intensity in the second row of Figure
8. These terms are collected to form a general reflectance model for
hair

 ()ssddtr kkk
p

k
p

LsV ����� +




 −++−=

2
1

2
1

))(1)((hair
 (27)

which combines constants of reflection kr and transmission kt
(backlighting), and diffuse kd and specular ks reflection. The fraction s
is used to control the degree of self-shadowing of hair. This expression
can be implemented as a multipass rendering, or a multitexturing if the
API supports the operations. This result is demonstrated in the first row
of Figure 8.

4.4 Non-Photorealistic Shaders

While photorealism has been a longstanding goal of computer graphics,
a significant amount of attention has also been paid to the use of
graphics for illustration and visualization. The fundamental problem in
non-photorealistic rendering is silhouette detection. The silhouette of an
object occurs where the surface normal is perpendicular to the view
vector, which could be indicated by the reflectance

 � = 1-(1-V⋅N)n (28)

where the exponent n indicates the crispness of the silhouette.

Shading in illustrations is often performed by hash marks, which often
follow the tangent directions of the surface, and hardware shaders
based on this form of shading would need the tangent vectors in
addition to the surface normal to properly orient a prestored or
synthesized hash texture. One could implement such hashing using a
hashed spheremap.

5 Conclusion
We tackled the problem of analyzing present shader technology. We
introduced a grammar capable of representing the fundamental nature
of and differences between real-time shading techniques. We used this
grammar to compare features of the standard pipeline with deferred
rendering, multipass, multitexturing, texture shading and environment
map techniques. We also evaluated these techniques with respect to a
variety of advanced shaders.

We found that the natural progression of the real-time shader
techniques leads to texture shading supported by multitexturing and
multipass. We also found that storage of the BRDF is inefficient, and
advanced shading procedures are too complex to implement directly,
but they can however be assembled by multitexture components that
consist of 2-D texture maps indexed by coordinates generated from dot
products of shader vector variables.

5.1 Future Work

Analyzing real-time shading pipelines using the grammar provides a
basis for innovation, and makes various commutations easier to
consider. We expect this comparison may inspire new techniques based
on innovative permutations of the parameterization, shader, projection
and interpolation operations.

We also expect the grammar to grow more specific, providing a more
detailed view of the specific channels and coordinates used for various
shading effects.

Due to the constraints of time, we have omitted bump mapping,
procedural texturing and the noise function from this discussion. Half
of procedural shading is procedural texturing, though most of the
attention on advanced shading has focused on lighting and local
illumination models.

5.2 Acknowledgments

This work was supported in full by a consulting contract through the
Evans & Sutherland Computer Corp. Conversations with Kurt Akeley,
John Buchanan, Nate Carr, Rich Ehlers, Alain Fournier, Eric Haines,
Pat Hanrahan, Chuck Hansen, Masaki Kameya, Michael McCool,
Marc Olano and Steve Tibbitts were very useful in uncovering the
details of many of these real-time shading techniques.

Bibliography
[Banks, 1994] D. C. Banks. Illumination in Diverse Codimensions.

Computer Graphics (Proceedings of SIGGRAPH '94), 1994, pp.
327-334.

[Bishop & Weimer, 1986] Gary Bishop and David M. Weimer. Fast
Phong Shading, Computer Graphics 20(4), (Proceedings of
SIGGRAPH 86), Aug. 1986, pp. 103-106.

[Cabral et al., 1999] Brian Cabral and Marc Olano and Philip
Nemec. Reflection Space Image Based Rendering, Proceedings of
SIGGRAPH 99, Computer Graphics Proceedings, Annual
Conference Series, Aug. 1999, pp. 165-170.

[Carr, et al., 2000] Nate Carr, John Hart and Jerome Maillot. The Solid
Map: Methods for Generating a 2-D Texture Map for Solid
Texturing. Proc. Western Computer Graphics Symposium, Mar.
2000.

[Cook & Torrance, 1982] R. L. Cook and K. E. Torrance. A
Reflectance Model for Computer Graphics, ACM Transactions on
Graphics, 1 (1), January 1982, pp. 7-24.

11 - 9

 14-10

[Crow, 1984] Franklin C. Crow. Summed-area Tables for Texture
Mapping, Computer Graphics 18(3), (Proceedings of SIGGRAPH
84), July 1984, pp. 207-212.

[Goldman, 1997] Dan B. Goldman. Fake Fur Rendering, Proceedings
of SIGGRAPH 97, Computer Graphics Proceedings, Annual
Conference Series, Aug. 1997, pp. 127-134.

[Hanrahan & Lawson, 1990] Pat Hanrahan and Jim Lawson. A
Language for Shading and Lighting Calculations, Computer
Graphics 24(4), (Proceedings of SIGGRAPH 90), Aug. 1990, pp.
289-298.

[Hanrahan & Krueger, 1993] Pat Hanrahan and Wolfgang Krueger.
Reflection from Layered Surfaces Due to Subsurface Scattering,
Proceedings of SIGGRAPH 93, Aug. 1993, pp. 165-174.

[Hanrahan, 1999] Patrick Hanrahan. Real Time Shading Languages.
Keynote, Eurographics/SIGGRAPH Workshop on Graphics
Hardware, Aug. 1999

[Hart et al., 1999] John C. Hart, Nate Carr, Masaki Kameya, Stephen
A. Tibbitts and Terrance J. Coleman. Antialiased parameterized
solid texturing simplified for consumer-level hardware
implementation, 1999 SIGGRAPH/Eurographics Workshop on
Graphics Hardware, Aug., 1999, pp. 45-53.

[Heckbert, 1990] Paul S. Heckbert. Adaptive Radiosity Textures for
Bidirectional Ray Tracing, Computer Graphics (Proceedings of
SIGGRAPH 90), 24 (4), August 1990, pp. 145-154

[Heidrich & Seidel, 1998] W. Heidrich and H.-P. Seidel. Efficient
Rendering of Anisotropic Surfaces Using Computer Graphics
Hardware. Image and Multi-dimensional Digital Signal
Processing Workshop (IMDSP) 1998.

[Kajiya & Kay, 1989] James T. Kajiya and Timothy L. Kay. Rendering
Fur with Three Dimensional Textures, Computer Graphics
(Proceedings of SIGGRAPH 89), 23 (3), July 1989, pp. 271-280.

[Kajiya, 1985] James T. Kajiya. Anisotropic Reflection
Models, Computer Graphics (Proceedings of SIGGRAPH 85), 19
(3), July 1985, pp. 15-21.

[Kajiya, 1986] James T. Kajiya. The Rendering Equation, Computer
Graphics (Proceedings of SIGGRAPH 86), 20(4), August 1986,
pp. 143-150.

[Kautz & McCool, 1999] Jan Kautz and Michael D. McCool.
Interactive Rendering with Arbitrary BRDFs using Separable
Approximations, Eurographics Rendering Workshop 1999, June
1999.

[Kilgard, 1999] Mark J. Kilgard. A Practical and Robust Bump-
mapping Technique for Today’s GPUs. nVidia Technical Report.
Feb. 2000.

[Lastra et al., 1995] Anselmo Lastra and Steven Molnar and Marc
Olano and Yulan Wang. Real-Time Programmable Shading, 1995
Symposium on Interactive 3D Graphics, April 1995, pp. 59-66.

[Lewis, 1994] R. R. Lewis. Making Shaders More Physically
Plausible, Computer Graphics Forum, 13 (2), January 1994, pp.
109-120.

[Norton, et al., 1982] Norton, Alan, Alyn P. Rockwood and Phillip T.
Skolmoski. Clamping: A method for antialiased textured surfaces
by bandwidth limiting in object space. Computer Graphics 16(3),
(Proc. SIGGRAPH 82), July 1982, pp. 1-8.

[McCool & Heidrich, 1999] Michael D.McCool and Wolfgang
Heidrich. Texture shaders, 1999 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, August 1999, pp. 117-126.

[Molnar, 1992] Steven Molnar and John Eyles and John
Poulton. PixelFlow: High-speed rendering using image
composition, Computer Graphics (Proceedings of SIGGRAPH
92), 26 (2), July 1992, pp. 231-240.

[Olano & Lastra, 1998] Marc Olano and Anselmo Lastra. A Shading
Language on Graphics Hardware: The PixelFlow Shading
System, Proceedings of SIGGRAPH 98, Computer Graphics
Proceedings, Annual Conference Series, July 1998, pp. 159-168.

[Olano, et al., 2000] Marc Olano, et al., Interactive Multi-Pass
Programmable Shading. To appear: Proc. SIGGRAPH
2000.

[Peercy et al., 1997] Mark Peercy and John Airey and Brian Cabral.
Efficient Bump Mapping Hardware, Proceedings of SIGGRAPH
97, Computer Graphics Proceedings, Annual Conference Series,
Aug. 1997, pp. 303-306.

[Proudfoot, 1999] Kekoa Proudfoot. Real Time Shading Language
Description, Version 4. Nov. 1999.

[Rhoades, et al., 1992] Rhoades, John, Greg Turk, Andrew Bellm
Andrei State, Ulrich Neumann and Amitabh Varshney. Real-Time
Procedural Textures. Proc. Interactive 3-D Graphics Workshop,
1992. pp. 95-100.

[Stalling & Zöckler, 1997] D. Stalling and M. Zöckler and H.-C. Hege
Fast Display of Illuminated Field Lines. IEEE Transactions on
Visualization and Computer Graphics, 3(2), 1997, pp. 118-128.

[Williams, 1978] Lance Williams. Casting Curved Shadows on Curved
Surfaces, Computer Graphics (Proceedings of SIGGRAPH
78), 12(3), Aug. 1978, pp. 270-274.

[Williams, 1983] Lance Williams. Pyramidal Parametrics, Computer
Graphics (Proceedings of SIGGRAPH 83), 17 (3), July 1983, pp.
1-11.

11 - 10

