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Abstract 
Procedural solid texturing was introduced fourteen years ago, but 
has yet to find its way into consumer level graphics hardware for 
real-time operation. To this end, a new model is introduced that 
yields a parameterized function capable of synthesizing the most 
common procedural solid textures, specifically wood, marble, 
clouds and fire. This model is simple enough to be implemented 
in hardware, and can be realized in VLSI with as little as 100,000 
gates. 
 
The new model also yields a new method for antialiasing  
synthesized textures. An expression for the necessary box filter 
width is derived as a function of the texturing parameters, the 
texture coordinates and the rasterization variables. Given this 
filter width, a technique for efficiently box filtering the 
synthesized texture by either mip mapping the color table or using 
a summed area color table are presented. Examples of the 
antialiased results are shown. 
 
CR Categories: I.3.1 [Computer Graphics]: Hardware 
Architecture --- Graphics processors; I.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism --- Color, shading, 
shadowing and texture. 
Keywords: antialiasing, hardware. procedural texturing, solid 
texturing. 

1. INTRODUCTION 
Peachey [1985] and Perlin [1985] introduced procedural solid 
texturing as a method for simulating the sculpture  of  objec ts  
(of  arbi t rary detai l  and genus)  out  of  a  sol id  
mater ia l  such as  wood or  s tone,  and a lso  the  
s imula t ion  of  the  na tura l  e lements  of  f i re ,  water  

(waves) ,  a i r  (c louds)  and ear th  ( ter ra in  and planets). 
Figure 1 through Figure 6 illustrate the variety of images that can 
be synthesized using procedural solid textures. 
 
Solid texturing creates the illusion that a shape is carved out of a 
solid three-dimensional substance. The details of a solid texture 
align across edges and corners of an object surface. For example 
the grain features on the teapots in Figure 1 and Figure 2 align 
with the block of material out of which they were sculpted. 
Depending on the detail and genus of the object, similar alignment 
of 2-D image texture maps can be very tricky [Peachey, 1985].  
 
Procedural textures require much less memory than stored image 
textures, and unlike image textures their resolution depends only 
on computation precision. The sky and water in Figure 3 extend to 
infinity with non-repeating procedural detail. The fire in Figure 4 
is procedurally textured on a single polygon. Zooming into the 
coastlines of the planet in Figure 5 reveals an arbitrarily intricate 
level of detail depending on the number of noise functions used in 
its generation. Figure 6 simulates the reflection of the moon on 
water without ray tracing or environment mapping by clever 
manipulation of the color maps of a procedural texture. 
 
While this popular, powerful and flexible technique is found in 
nearly all high-quality photorealistic rendering packages, it has 
not yet found its way into consumer-level hardware for real-time 
rendering. Procedural solid textures would greatly enrich the 
quality of some of the 2D-image-textured graphical elements 
found in 3-D interactive games and virtual worlds, not only with 
wooden and stone objects, but with expansive terrain, oceans and 
skies filled with non-repeating detail. 
 
Hardware implementation would also support the real-time 
animation of procedural textures. Varying the parameters of a 
procedure yields a dynamic animated texture. Depending on the 
paths chosen through parameter space, these animations can 
smoothly loop or be non-repeating. These animated textures 
would support such effects as ripples forming in marble, fire 
exploding, waves gently rising and falling, clouds billowing, and 
continents forming on planets. 

1.1. Previous Work 
Some have identified memory bandwidth as a major obstacle in 
increasing the performance of real-time graphics hardware. While 
memory size grows at a rate of 50% per year (one thousandfold 
over the past two decades), memory bandwidth only grows 12% 
per year (only tenfold over the past two decades) [Torborg & 
Kajiya, 1996]. Texture mapping in particular relies heavily on 
memory, and the bandwidth of this memory is the primary factor 
limiting the number and complexity of 2-D image textures 
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available in real-time. Some have overcome the memory 
bandwidth limitation at the expense of increasing memory size to 
hold multiple redundant copies of the texture [Akeley, 1993], 
[Montrym, et al., 1997]. Others relaxed the memory bandwidth 
limitation by reducing the size of the textures via compression 
[Torborg & Kajiya, 1996],[Beers, et al., 1996]. Procedural 
texturing hardware is a way of increasing the performance of 
current graphics hardware by augmenting its existing pre-stored 2-
D image textures with a variety of procedural solid textures 
without impacting the hardware’s memory requirements. 
 
Accessing a procedural texture requires more time than an image 
texture as the texture value must be computed instead of accessed 
from memory. Hence, real-time procedural texturing has 
previously only been available in high-end parallel graphics 
systems. For example, Pixel Planes [Rhoades, et al., 1992], 
PixelFlow [Molnar, et al., 1992] and the Pixel Machine [Potmesil 
& Hoffert, 1989] all supported real-time procedural texturing. 
Indeed, PixelFlow now has a fully-developed procedural shading 
system, including support for procedural solid texturing [Olano & 
Lastra, 1998]. 
 
Solid texturing is also not new to hardware implementation. The 
Reality Engine, for example, has the memory bandwidth 
necessary to support prestored solid texture volumes up to a 
maximum resolution of 256 x 256 x 64 texture elements [Akeley, 
1993]. The InfiniteReality graphics system [Montrym, et al., 
1997] has 1GB of physical texture memory that could be 
organized into a 10243 pre-stored solid texture volume. 
 
Antialiasing procedural textures is more complicated than for 
stored image textures. Whereas MIP maps [Williams, 1983] and 
summed-area tables [Crow, 1984] can be precomputed and stored 
for image textures, procedural textures are generated on the fly 
and such antialiasing techniques can not be readily applied. 

Supersampling is a common technique for antialiasing procedural 
textures but directly increases rendering time. For example, 
supersampling was the method used to inhibit aliasing in 
PixelFlow’s procedural textures [Olano & Lastra, 1998]. 
Bandlimiting the procedural texture is also an effective technique 
[Norton, et al., 1982], but works easily and efficiently only on 
procedures based completely on spectral synthesis.  

1.2. Overview 
Section 2 introduces a texture model capable of synthesizing the 
most commonly used procedural textures (in fact all textures in 
Figure 1 through Figure 6) but concise enough to implement in 
hardware. The identification of this model allows the textures to 
be specified by parameters to a fixed procedure which can be 
simplified enough to be implemented in present-day VLSI 
technology. 
 
Section 3 introduces a new method for antialiasing procedural 
textures based on computing a first order approximation of the 
color index variance over the area of a pixel. This approximation 
allows the antialiasing method to simulate an area sample of the 
textured image faster than supersampling. Unlike bandlimiting 
(which is a pre-filter), the new method is a post-filter that does not 
affect the parameters of the generation of the texture. 
  
Section 4 exhibits the results of this model, exploring the various 
tradeoffs necessary to feasibly implement the model without 
significantly compromising image quality. An effective but 
reduced model can be implemented with as few as 100,000 gates, 
which is about 10% of the real-estate of modern consumer-level 
graphics processors. 

 
Figure 1: Carved wooden teapot. 

 
Figure 2: Marble teapot sculpture. 

 
Figure 3: Seascape. 

 
Figure 4: Fire. 

 
Figure 5: Planet. 

 
Figure 6: Moonrise. 
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2. A MODEL FOR PROCEDURAL 
TEXTURING 

Various formalisms on procedural solid texture specifications 
have been proposed. Perhaps the most pervasive has been the 
Renderman shading language [Hanrahan & Lawson, 1990], but 
there are also other alternatives (e.g. [Abram & Whitted, 1990]). 
We propose a concise class of procedures capable of synthesizing 
a variety of textures and effects, but simple and direct enough to 
facilitate hardware implementation. The procedures are 
parameterized by values that completely control the type and 
character of the texture this model generates, such that these 
parameters (and the texture’s color map) are the only 
representation of the texture that need be stored. 

2.1. Analytical Model 
Procedural solid texture mapping uses a mapping of the form p: 
R3→R4 from solid texture coordinates s = (s,t,r) into a color space 
(R,G,B,α). (We follow the convention of using boldface to 
indicate vector values and functions, and italics to indicate scalar 
values and functions.) Some texture mapping techniques also 
include a homogeneous texture coordinate [Segal, et al., 1992] but 
it remains to be explored how such a coordinate benefits 
procedural solid texturing. Often procedural solid textures 
incorporate a color map. In such cases, p = c ο f consisting of an 
implicit classification of the texture space f: R3→R and a color 
map c: R→ R4. 
 
For a given polygon, the texture coordinate functions s(x) = 
(s(x),t(x),r(x)) indicate the range of the texture coordinates with 
respect to screen coordinates x=(x,y). Hence, the procedural 
texture can be evaluated with respect to screen coordinates as p(x) 
= c o f o s(x). 
 
We restrict the texture map p to the family of functions 

 ,))(()()( 
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where q: R3→R is a quadric classification function and n: R3→R 
is a noise function. The combination of quadrics and noise yields 
a specification sufficient to generate a wide variety of commonly 
used procedural solid textures. The affine transformations Ti 
control the frequency and phase of the noise functions. 

2.1.1. Color Map 

The color map c associates a color (R,G,B) with each index 
returned by the classification function f. The color map c is 
typically implemented as a lookup table 

 c( f ) = clut[round(n modclamp( f ))] (2) 

where clut[] is an array of n RGB color vectors. Color map 
indices returned by f are, depending on a flag parameter, either 
clamped to [0,1] or taken modulo one to map within the bounds of 
the lookup table. 

2.1.2. Quadric Classification Function 

The function q: R3→R in (1) is the quadric 
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which can more conveniently be represented homogeneously as 
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treating s as a homogeneous column vector [Blinn, 1982]. 
 
The quadric function supports the spherical, cylindrical, 
hyperbolic and parabolic classification of space for texturing.  

2.1.3. Noise Function 

The function n: R3→R in (1) is an implementation of the Perlin 
noise function [Perlin, 1985]. The values ai control the amplitude 
of the noise function, whereas the affine transformation Ti controls 
the frequency and phase of each noise component. There are a 
fixed number of noise components available, and this limit is 
typically between four and eight in typical texturing examples. 

2.2. Texture Examples 
The space of solid textures spanned by (1) covers the textures 
most commonly found in procedural solid texturing. The four 
fundamental procedural solid textures are: wood, clouds, marble 
and fire. 

2.2.1. Wood 

The texture model generated the wood texture shown in Figure 1, 
by using the quadratic function to classify the texture space into a 
collection of concentric cylinders [Peachey, 1985]. Waviness in 
the grain is created by modulation of a noise function 

 ).,4,4(),,( 22 rtsntsrtsf ++=  (5) 

The color map consists of a modulo-one linear interpolation of a 
light “earlywood” grain and a darker “latewood” grain. The 
quadric classification makes the early rings wider than the later 
rings, which is to a first approximation consistent with tree 
development.  

2.2.2. Clouds 

Cloudy skies are made with a fractal 1/f sum of noise 
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The texture described by (6) is mapped onto a very large high-
altitude polygon parallel to the ground plane in Figure 3, resulting 
in clouds that become more dense in the distance due to 
perspective-corrected texturing coordinate interpolation. The color 
map is a clamped linear interpolation from blue to white. The 
water is the same procedural texture with a blue-to-black 
colormap. 

2.2.3. Marble 

Marble uses the noise function to distort a linear ramp function of 
one coordinate [Perlin, 1985] 
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The color map consists of a modulo-one table of colors from a 
cross section of the marble. Figure 2 demonstrates the marble 
texture on a cube, and the solid texturing again aligns the texture 
details on the edges of the cube. Continuously increasing the noise 
amplitude animates the formation of the ripples in the marble, 
simulating the pressure and heating process involved in the 
development of marble [Ebert, 1994]. 

2.2.4. Fire 

Like marble, fire is simulated by offsetting a texture coordinate 
with fractal noise [Musgrave & Mandelbrot, 1989]. The fire 
example shown in Figure 4 was textured onto a single polygon 
and modeled as 
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Continuously varying the noise phase term �  animates the fire 
texture. 

2.2.5. Planet 

A wide variety of different worlds, such as the one shown in 
Figure 5, can be generated by applying fractal textures, such as 
(6), to spheres. The color map for such images resembles a 
cartographic “legend.” The cloudy atmosphere was rendered on 
the same sphere “over” the planet in a second pass using a color 
map with varying opacity values. 

2.2.6. Moonrise  

The moonrise in Figure 6 was rendered completely using 
synthesized textures, without any other kind of shading. The 
moon is a sphere with a fractal texture. The clouds were rendered 
on a single polygon perpendicular to the viewer and imposed over 
the moon. The water was rendered with a single polygon 
extending off to infinity. The highlight on the water was faked 
with two triangles textured using (7) with a partially transparent 
color map. 

3. ANTIALIASING 
Image texture aliases occur due to texture magnification and 
minification. Texture magnification occurs when the texture 
image itself contains too few samples such that a single texture 
element projects to several screen pixels. Text ure minification 
results when the projection of the texture image covers too few 
pixels and several texture elements project to the same screen 
pixel. Modern texture mapping hardware inhibits aliases due to 
texture magnification by bilinear or bicubic interpolation of the 
appropriate texture elements. Such hardware inhibits texture 
minification aliases through the use of a MIP map that 
precomputes lower resolution versions of the texture, and samples 
the MIP map using trilinear or tricubic interpolation of 
neighboring pixels at the appropriate resolution level. 
 
Aliases of synthesized textures do not fall into such categories 
since there is no fixed image resolution. Each such texture will 
exhibit some form of aliasing if sampled below twice the highest 
frequency in the texture’s spectrum, which may be infinite for 
some textures. Hence, procedural textures do not suffer from 
magnification aliases, but require filtering to remove frequencies 
above the Nyquist limit to avoid minification aliases. 
 
Synthetic textures could be antialiased by precomputing them, 
storing the results in MIP-mapped image textures. However, such 

an antialiasing technique would remove the flexibility such 
textures provided, and would also consume a tremendous amount 
of space when used on solid textures. Band limiting the output of 
the texture map removes aliases by prefiltering the texture before 
sampling [Norton, et al., 1982], but is difficult to implement in a 
generalized texturing environment. Supersampling the texture 
degrades time perfomance and arbitrarily increases the complexity 
of the hardware implementation. 
 
Instead, we analyze the function p(x) that textures pixels to 
determine the width of a box filter that would eliminate the 
aliasing frequencies from the spectrum of the synthesized texture. 
Several have described techniques for antialiasing procedural 
textures by antialiasing the textures’ colormaps [Rhoades, et al.,  
1992], [Worley, 1994]. In the next section, we provide a more 
rigorous mathematical justification and derivation of the 
technique, resulting in an ideal filter width for the texture which is 
used to box filter to the procedural texture by averaging the 
elements of the color table that the texture procedure generates 
over the support of the filter. 

3.1. Texture Filtering via Color Table 
Filtering 

Consider a domain D on the screen consisting of pixels whose 
color is determined solely by the projection of a single 
procedurally texture mapped polygon. We assume the color map 
indices generated by the procedural texture are continuous across 
the polygon. Let a = minD f(x) be the least possible color map 
index used in the pixels in D, and let b = maxD f(x) be the greatest 
such index. Then we assume 
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the average color in D is sufficiently approximated by the average 
of the color table entries between indices a and b. As shown in 
Figure 7, we provide a first-order approximation of the bounds a 
and b used in the RHS of (9) by differentiating the texture 
function f(x) and setting a  = f(x) - ||∇f(x)||/2 and b = f(x) + 
||∇f(x)||/2. If either a or b or both fall outside the bounds of the 
color table, then the boundary of the color table is extended using 

x

 f(x)
1

df/ dx1

df/dx

pixels

clut
indices

 
Figure 7: The derivative df/dx approximates the extent of the color 

map indices one pixel in either direction. Half of the derivative 
estimates the variation in color map indices half of a pixel in either 

direction. 
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either the modulo or clamp operators according to the modclamp 
flag. 
 
The remainder of this section describes this differentiation in 
detail, applies efficient methods for integrating the color map to 
determine the numerator of the RHS of (9), and demonstrates the 
results. 

3.2. Differentiating the Texture 
Procedure 

The magnitude of the gradient ∇f =  (∂f/∂x,∂f/∂y) indicates the 
width of the appropriate filter on the color map. From (1), we 
have that the gradient of f is 

 
i

i
i
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where ni is the ith noise function: n(Ti(s)). From (3) we have that 
the gradient of q is 
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since Q is symmetric. 
 
The derivative of the noise terms are given by 
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The gradient dn/ds = [∂n/∂s ∂n/∂t ∂n/∂r 0] is also known as the 
function DNoise [Perlin, 1985]. 
 
The value ds/dx is the Jacobian of the texture coordinates s with 
respect to the screen coordinates x. The values of ds/dx is 
computed during the scan conversion of the polygon as the 
perspective-corrected pixel increments. The values of ds/dy can be 
computed for each triangle using the plane equation and 
performing a perspective-correcting division. 

3.3. Filtering the Color Table 
The filtering of color map values can be evaluated efficiently 
using either a color table MIP map or a summed area color table. 

3.3.1. Color table MIP map 

MIP maps are commonly used in standard texturing systems to 
prefilter image textures and sample from the prefiltered texture 
when the texture is minified (insufficiently sampled by the image 
pixels) [Williams, 1983]. 
 
One may also create a MIP map of a color table. The process 
begins with the n-element full resolution color table clut1[]. Then 
neighboring colors in the table are averaged to create a half-
resolution n/2-element color table  clut2[]. This process is repeated 
until a one-element color table clutlg n[] results, representing the 
average color of the entire color table. 
 
Given a filter width w, let i = floor(lg w). Then the proper 
resolution color table from the mip map is selected and the color 
indexed is returned as clut i[f/i] (or more accurately the linear or 
cubic interpolation of the values of clut i[f/i] and clut i+1[f/(i+1)]). 

 
(a) 

 
(b) 

Figure 8: Zone plate aliased (a) and filtered (b). 
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3.3.2. Summed area color table 

Image textures are also antialiased efficiently using the summed 
area table [Crow, 1984]. A summed area table transforms 
information into a structure that can quickly perform integration, 
specifically a box filtering operation. 
 
The summed area color table consists of a table where each entry 
consists of the sum of all elements in the color table including the 
current entry’s element 

 ∑
=

=
i

j

ji
0

][][ clutcsat  (13) 

or recurrently as csat[i] = csat[i-1] + clut[i]. The current entry’s 
element can be recovered by subtracting the previous summed 
area element from the current summed area element as 

 clut[i] = csat[i] – csat[i-1] (14) 

for i > 0. Box filtering the color map entries for a given filter 
width is computed as 

 (csat[f + w/2] - csat[f - w/2])/w.  (15) 

 
Special care must be taken for the cases where the support of the 
filter crosses the bounds of the color table. For the following cases 
let N is the number of entries in the color table. 
 
• w ≥ N: Return the average of the entire color map: csat[N-1]/N. 
 
• f + w/2 ≥ N: 

mod: (csat[f + w/2 – N] + csat[N-1] – csat[f – w/2 - 1])/w. 
clamp: ((f+w/2–(N-1))clut[N-1] + csat[N-1] – csat[f–w/2-1])/w. 
 

• f - w/2 < 0: 
mod: (csat[f + w/2] + csat[N-1] - csat[N + f - w/2 - 1])/w. 
clamp: (-(f - w/2) clut[0] + csat[f + w/2])/w. 
 

An alternative to performing the above computations at render 
time is to use the above formulae to precompute a color summed 
area table three times as long, ranging from –N to 2N – 1. 

3.4. Examples 
The derivations in Section 3.2 show that procedural textures 
produce aliasing artifacts from three possible places. 
1. Quadric Variation: The quadric classification changes too 

quickly: ||dq/ds|| too large. 
2. Noise Variation: The noise changes too quickly: 

ai||dn(Tis)/ds|| too large. 
3. Texture Coordinate: The texture coordinates change too 

quickly: ||ds/dx || too large. 
Each of these components can create a signal containing 
frequencies exceeding the Nyqist limit of the pixel sampling rate. 
 
Figure 8 demonstrates quadratic variation aliasing (type #1) with a 
zone plate constructed from the procedure 

 22 5050),,( tsrtsf += . (16) 

rendered with an extremely harsh “zebra” color map. Analysis of 
(16) shows that the aliases are governed by ∇f = dq/ds ds/dx, with 
dq/ds = (100 s,100 t). The zone plate was plotted at a resolution of 
2562 and over the unit square in texture coordinate space, hence 
∂s/∂x = ∂t/∂y = 1/256. Setting the colormap filter width to (100 s 
+ 100 t)/256 reduces the aliases to the point of being barely 
noticable. 
 
Noise variation aliases (type #2) happen in concert with texture 
coordinate aliasing (type #3), since in a single scene the frequency 
and amplitude of noise is constant, and only varies across the 
image with distance from the viewer. For example, the clouds on 
the horizon in Figure 3 do not alias near the horizon because the 
filter width is scaled in part by the noise function derivative, and 
increases as the magnitude of ds/dx  increases. In the distance as 
the projection of the noise reaches the Nyquist limit, the filter 
width reaches the size of the entire color table, yielding a 
homogeneous hazy blue color. 
 
Figure 9 illustrates all three types of texture aliasing on a torus. 
The centerline of the woodgrain rings passes through the left side 
of the torus, creating grain of increasing frequency on the right. 
Hence the filterwidth increases from the left to the right side of 

(a) 

(b) 

(c) 
Figure 9: Torus rendered with wood texture (a) is antialiased 

(b) using filterwidths shown in (c) ranging from one (black) to 

256 (white). 
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the torus demonstrating quadric variation (type #1) aliasing. The 
amplitude and frequency of the noise term remains constant over 
the torus object, and so causes a uniform increase of the 
filterwidth due to noise variation (type #2) aliasing. The polygons 
on the silhouette of the torus have larger filterwidths than their 
neighbors, demonstrating texture coordinate (type #3) aliasing. 
 

4. Results 
The goal of the previous sections was to simplify the synthesis of 
antialiased solid textures. In this section, we describe and 
demonstrate software and simulated hardware implementations, 
and document some of the tests performed in the process. 

4.1. Software Implementation 
The basic tool of this research is a simulator that implements in 
fixed point arithmetic the texture synthesis model along with its 
associated filtering and color table mechanisms, as well as a 
prototype rasterizer. This simulator is responsible for all of the 
textured images in this paper. While the textures themselves were 
antialiased, the polygon edges were not. In fact, we avoided the 
temptation to use many small polygons to create smoother 
surfaces and silhouettes in order to better demonstrate the ability 
of procedural textures instead of geometry to provide visual detail. 
 
This simulator serves as an antialiasing procedural texturing 
shader, and could be incorporated as a plug-in to existing software 
rendering systems. This simulator also serves as the basis of an 
extension to OpenGL, which already supports solid texture 
coordinates. The current implementation uses the OpenGL 
feedback buffer to collect the transformed polygons in screen 
coordinates for rasterization by the simulator [Carr & Hart, 1999]. 
The resulting textured raster image generated by the simulator is 
then combined with the raster image generated by OpenGL’s 
rasterization engine using the associated z-buffers to negotiate 
visibility. Hence the simulator integrates synthesized solid 
textures into OpenGL’s existing texturing, lighting and modeling 
system. 

4.2. Hardware Implementation 
A complete implementation of the model can be realized in VLSI 
with 1.25 million gates, resulting in the image quality shown in 
Figure 1 through Figure 6. A reduced and approximated version 
of the texture synthesis model can be implemented in as few as 
100,000 gates. Sample images from such an implementation are 
exhibited in Figure 11. 
 
Overall, the compromises in image quality necessary to 
implement the model in 100,000 gates appear minor, and the 
effects are very subtle. Some texture coordinate aliasing is 
noticable on the polygons of the teapots closest to the viewer. The 
character of the water, sky, planet and moonrise are slightly 
smoother due to a reduction in the number of noise function 
evaluations. The teapots and fire have noticable artifacts due to a 
linear approximation to the noise function. 

4.3. Precision Tests 
Several tests have been conducted to determine the texture 
coordinate precision necessary to avoid magnification aliases 
[Kameya & Hart, 1999]. Figure 10 shows the results of tests with 
a 5122-pixel scene of a coarsely-triangulated objects computed 
using a variety of texture coordinate precisions.  

4.4. Animation Tests 
The seascape was animated to determine the effectiveness of the 
antialiasing technique. The seascape scene (Figure 3) was the 
most taxing on the colormap filtering algorithm because it 
textures infinite planes. Two animations of flights into the horizon 
were generated, one with and one without filtering. The unfiltered 
animation resulted in severe aliasing in the form of distracting 
noise near the horizon. The filtered animation significantly 
reduced these aliases, although some very slight flicker is still 
observable. This subtle flicker seems to be an inevitable 
compromise of the colormap-averaging filter in that removing the 
flicker results in textured planes that get too blurry too soon 
before reaching the horizon. 
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Figure 10: The effect of numerical precision on texture appearance. 
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The flame shown in Figure 11 was also animated to determine 
how effectively they would appear in the hardware 
implementation. The rectilinear grid basis of the noise functions is 
clearly evident due to the reduced number of noise octaves and 
the tri-linear interpolation. However the animation does clearly 
resemble burning flames and would sufficently represent such in 
typical consumer real-time graphics applications. 

5. Conclusion 
We set out to formalize a model for synthesizing popular 
procedural solid textures, and analyzed this model to derive an 
effective antialiasing scheme and an efficient hardware 
implementation. We showed that the model is capable of 
simulating the common procedural text ures of wood, clouds, 
marble and fire, but is also simple enough to adequately 
implement in hardware. 
 
Often textures are animated, to simulate fire, billowing clouds and 
other dynamic effects. Animation of texture map images requires 
a significant amount of texture memory and fast CPU access to 
the texture memory. The procedural texturing hardware will be 
capable of real-time animation of clouds billowing, fire burning 
and marble forming. 
 
PixelFlow defered shading until after all of the rasterization was 
completed [Molnar, et al., 1992]. It stored all of the shading 
information in the frame buffer, such that each pixel was shaded 
only once regardless of the number of polygons that overlapped it. 
The procedural texturing hardware described in this paper could 
be used to texture such pixels if the texture index, coordinates and 
Jacobian were stored in the framebuffer. 

5.1. Future Work 
This work only scratches the surface of procedural texturing 
hardware. Procedural texturing inexpensively overcomes the 
fundamental graphics texture rendering problems of memory 
bandwidth. With the success of this particular model, we expect 
other more sophisticated texturing models will be developed. The 
connotation of procedural texturing is that an actual program is 
run to generate the texture. While our model uses a fixed program 
with parameters controlling the character of its output, future 
procedural texturing hardware might be designed to permit 
uploading of texture programs. While such machines already exist 
(e.g. the Pixel Machine, Pixel Planes) there is no restriction on the 
texturing programs. Hence the user is burdened responsibility of 
antialiasing. Restricting the language used to write a procedural 
shader can increase the quality of its output, as it  allows the 
hardware to better analyse the program to predict the aliases its 
output may contain, and automatically take measures to inhibit 
those aliases. 
 
The antialiasing technique was derived from the model, but there 
is nothing specific to the model that makes this antialiasing 
technique work. Hence the color map antialiasing technique could 
be generalized and applied to any procedural texture so long as 
the derivatives are available. Computation of these derivatives is 
straightforward for this simple model, but could be quite 
complicated for true procedural textures described in a 
programming language. The error associated with approximation 
(9) should also be investigated further. 
 
The colormap of the planet in Figure 5 is not continuous, jumping 
from a sandy color to an aquamarine to mark the coastlines of the 
world. As the filterwidth increases due to the noise contributions, 
this sharp coastline diffuses into a muddy color inbetween. A 

 
 

  

 

   

Figure 11: 100,000 gate simulations of  Figure 1 through Figure 6. 
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more sophisticated antialiasing system might mark such jump 
discontinuities in the colormap and affect the filterwidth in these 
areas to further inhibit this artifact. 
 
The noise function used was adapted from Rayshade [Skinner & 
Kolb, 1991], which uses cubic blending functions on a lattice of 
random numbers. This particular version lends itself to efficient 
hardware implementation, but the details of such an 
implementation are left as future work. 
 
Procedural hardware need not be limited to just texture. 
Procedural hardware bump mapping, displacement mapping and 
shading in general seem to be logical extensions of this work. 
Recently, minor extensions to existing graphics pipelines for 
increased shading language support have been proposed [McCool 
& Heidrich, 1999]. Further extension might lead to the generation 
of procedural geometry that would overcome the bandwidth 
problem of transmitting polygons from the host to the graphics 
processor. 
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 (a) (b) (c) (d) 

Figure 1. Solid texture coordinates stored as vertex colors of a model (a) are rasterized into a texture atlas (b). A procedural 
shader replaces the interpolated solid texture coordinates with colors (c), which are applied to the object using texture mapping. 

 

Abstract 
Shortly after its introduction in 1985, procedural solid texturing 
became a must-have tool in the production-quality graphics of the 
motion-picture industry. Now, over fifteen years later, we are 
finally able to provide this feature for the real-time consumer 
graphics used in videogames and virtual environments. A texture 
atlas is used to create a 2-D texture map of the 3-D solid texture 
coordinates for a given surface. Applying the procedural texture to 
this atlas results in a view-independent procedural solid texturing 
of the object. 

Texture atlases are known to suffer from sampling problems and 
seam artifacts. We discovered that the quality of this texturing 
method is independent of the continuity and distortion of the atlas, 
which have been focal points of previous atlas techniques. We 
instead develop new meshed atlases that ignore continuity and 
distortion in favor of a balanced distribution of as many texture 
samples as possible. These atlases are seam-free due to careful 
attention to their rasterization in the texture map, and can be MIP-
mapped using a balanced mesh-clustering algorithm. 

Techniques for fast procedural synthesis are also investigated, 
using either the host processor or with multipass graphics 
processor operations on the texture map. We used these atlas and 
synthesis techniques to create a real-time procedural solid texture 
design system. 

CR Categories: I.3.7 [Computer Graphics] Three-Dimensional 
Graphics and Realism (color, shading and texture). 

Keywords: Atlas, mesh partitioning, MIP-map, multipass 
rendering, procedural texturing, solid texturing, texture mapping. 

1. Introduction 
The concept of procedural solid texturing is well known [32][37], 
and has found widespread use in graphics [6]. Solid texturing 
simulates a sculpted appearance and directly generates texture 
coordinates regardless of surface topology. Procedural texturing 
makes solid texturing practical by computing the texture on 
demand (instead of accessing a stored volumetric array), and at a 

level detail limited only by numerical precision. These features 
were quickly adopted for production-quality rendering by the 
entertainment industry, and became a core component of the 
Renderman Shading Language [11]. 

With the acceleration of graphics processors outpacing the 
exponential growth of general processors, there have been several 
recent calls for real-time implementations of procedural shaders, 
e.g. [12][38]. Real-time procedural shaders would make 
videogame graphics richer, virtual environments more realistic and 
modeling software more faithful to its final result. Section 2 
describes previous implementations of real-time procedural 
texturing and shading systems, all requiring special-purpose 
graphics supercomputers or processors. 

Peercy et al. [35] recently took a large step toward this goal by 
developing a compiler that translated Renderman shaders into 
multipass OpenGL code. While complex Renderman shaders could 
not yet be rendered in real-time, this compiler showed that their 
implementation on graphics accelerators was at least feasible. They 
created new interactive shading language, ISL, to produce more 
efficient OpenGL shaders. 

Unfortunately, ISL did not introduce any new techniques for solid 
texturing, supporting it instead with texture volumes. While 
modern graphics accelerator boards now have enough texture 
memory to store a moderate resolution volume, and some even 
support texture compression, storing a 3-D dataset to produce a 2-
D surface texture is inefficient and an unnecessarily wasteful use 
of texture memory. Applying procedural texturing operations to an 
entire texture volume also wastes processing time. 

Apodaca [1] described how the texture map can be used to store 
the shading of a model. His technique shaded a mesh in world 
coordinates, but stored the resulting colors in a second “reference” 
copy of the mesh embedded in a 2-D texture map. The mesh could 
then be later shaded by applying the texture map instead of 
computing its original shading. 

We can use this technique to support view-independent procedural 
solid texturing. Consider a single triangle with 3-D solid texture 
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coordinates1 si and 2-D surface coordinates ui assigned to its 
vertices xi for i = 1,2,3. Figure 1a shows such triangles, plotted in 
model coordinates with color indicating their solid coordinates. We 
apply a procedural solid texture to the triangle (x1,x2,x3) in three 
steps. The first step rasterizes the triangle into a texture map using 
its surface texture coordinates (u1,u2,u3). This rasterization 
interpolates its vertices’ solid texture coordinates si across its face. 
Figure 1b shows each pixel (u,v) in the rasterization now contains 
the interpolated solid texture coordinates s(u,v). The second step 
executes a texturing procedure p() on these solid texture 
coordinates, resulting in the color c(u,v) = p(s(u,v)) shown in 
Figure 1c. This color table c(u,v) is a texture map that we apply to 
the original triangle (x1,x2,x3) via its surface coordinates ui, 
resulting in the view-independent procedural solid texturing shown 
in Figure 1d. 

This atlas technique was implemented as a tool to preview 
procedural solid textures in recent modeling packages [2], [45] 
though it suffered from sampling problems. Lapped textures [40] 
also used a texture atlas to allow the lapped texture swatches to be 
applied in a simple texture mapping operation, noting “the atlas 
representation is more portable, but may have sampling problems.” 

Section 3 describes the texture atlas in detail, and analyzes the 
artifacts it can cause. Poor coverage of the texture map by the atlas 
causes aliasing, whereas discontinuities in the atlas cause seams in 
the textured surface. Section 4 describes new atlases that overcome 
these artifacts, with atlases that cover more of the texture map and 
distributing the resulting samples more evenly to reduce texture 
magnification aliases. Section 4.3 describes how an atlas that can 
be MIP mapped to eliminate texture minification aliases. 

The use of an atlas enables procedural texturing operations to be 
applied to the texture map, and Section 5 describes how this step 
can be implemented efficiently on both the host and the graphics 
controller. Section 6 concludes with an interactive procedural solid 
texture editor, other applications of these methods and ideas for 
further investigation. 

2. Previous Work 
There have been several implementations of real-time procedural 
solid texturing over the past fifteen years, though they have either 
required high-performance graphics computers or special-purpose 
graphics hardware. 

Procedural solid texture has been available on parallel graphics 
supercomputers, such as the AT&T Pixel Machine [39] and UNC’s 
Pixel Planes 5 and PixelFlow [26]. The Pixel Machine in fact was 
used as a platform for exploring volumetric procedural solid 
texture spaces [36]. 

Rhoades et al. [42] developed a specialized assembly language, 
called T-code, for procedural shading on Pixel Planes 5. The T-
code interpreter included automatic differentiation to estimate the 
variation of the procedure across the domain of a pixel. This 
estimate of the variation was used as a filter width to antialias the 
procedural texture, by averaging the range of colors the procedure 
could generate within the pixel. 

Olano et al. [30] implemented a real-time subset of the Renderman 
shading language on Pixel Flow, including the ability to synthesize 
procedural solid textures. Standard Renderman shader tools 

_______________________________ 
1 To keep these two textures straight, we will use s  = (s,t,r) to indicate the solid texture 

coordinates and u = (u,v) to indicate the texture map coordinates. We will need to 
assign both kinds of coordinates to the vertices of a mesh. 

including automatic differentiation and clamping [28] were used to 
antialias the procedural textures. 

Hart et al. [14] designed a VLSI processor based around a single 
function capable of generating several of the most popular 
procedural solid textures. Procedural solid textures were 
transmitted to this hardware as a set of parameters to the texturing 
function. The derivative of the function was also implemented to 
automatically antialias the output, à la [42]. 

Current graphics libraries such as OpenGL [44] and Direct3D [24] 
support solid texturing with the management of homogeneous 3-D 
texture coordinates, and recent versions of these libraries support 
three-dimensional texture volumes that can be MIP-mapped to 
support antialiasing. 

Peercy et al. [35] developed a compiler that translated the 
Renderman shading language into OpenGL source code. The 
technique used multi-pass rendering and requires an OpenGL 1.2 
implementation with its imaging subset, as well as the floating-
point-framebuffer and pixel-feedback extensions. As mentioned in 
the introduction this method depends on texture volumes for solid 
texturing. 

3. The Texture Atlas 
A (surface) texture mapping u = � (x) is a function from a surface 
into a compact subset of the plane called the texture map. The 
texture mapping need not be continuous, but usually consists of 
piecewise continuous parts � i() called charts. The area on the 
surface in model coordinates is called the chart domain whereas 
the area the domain maps to in the texture map is called the chart 
image. The collection of charts that forms a texture mapping  

� () = ∪ � i() is called an atlas [27]. If the surface texture mapping is 
one-to-one, then its inverse � -1() is a parameterization of the 
surface. Atlases often (but not always) parameterize the surface, 
such that each pixel in the texture map represents a unique location 
on the object surface2. 

Hence parameterization methods could be used to generate atlases. 
For example, MAPS [19] parameterizes a mesh of arbitrary 
topological type, using a simplified version of the mesh embedded 
in three-space to serve as the base domain of smoothed piecewise 
barycentric parameterizations. This base mesh and the 
parameterization it supports could be flattened into a 2-D texture 
map, but the same flattening could also create an atlas by directly 
flattening the original mesh. Texture atlases do not require the 
continuity and smooth differentiability that good parameterization 
strive for. 

Texture atlases have strived instead to minimize the distortion of 
its charts, and to minimize areas of discontinuity between chart 
images. Section 3.1 shows that distortion does not affect the 
quality of our method. Section 3.2 describes how discontinuities 
can cause seam artifacts, but we eliminate these artifacts later in 
Section 4.1. We instead offer two new measures of atlas quality: 
coverage (Sec. 3.3) and relative scale (Sec. 3.4), that are used to 
indicate the sampling fidelity offered by the atlas. Section 4 
proposed new atlas techniques that perform well with respect to 
these two new measures. 

3.1 Distortion 
The distortion of a texture mapping is responsible for the 
deformation of a fixed image as it is mapped onto a surface. 
_______________________________ 
2 In topology, the atlas is used to define manifolds. In this context the atlas need not 

be one-to-one and the range of its charts may overlap. 
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Previous techniques for creating atlases have focused on reducing 
the distortion of the charts [43], either by projection [1], 
deformation energy minimization [20][21][22], or interactive 
placement [33][34]. 

Chart images are often complex polygons, and must then be 
packed (without further distortion) efficiently into the texture map 
to construct the atlas. Automatic packing methods for complex 
polygons are improving [25], but have not yet surpassed the 
abilities of human experts in this area. 

Our use of a texture atlas for solid texturing is not directly affected 
by chart distortion. Solid texture coordinates are properly 
interpolated across the chart image in the texture map regardless of 
the difference in shape between the model-coordinate and the 
surface-texture-coordinate triangles. Chart distortion affects only 
the direction, or “grain” of the artifacts, but not their existence, as 
will be shown later in Figure 6. 

3.2 Discontinuity 
Texture atlases are discontinuous along the boundaries of their 
charts. Texture mapping can reveal these discontinuities as a 
rendering artifact known as a seam. Seams are pixels in the texture 
map along the edges of charts. They appear along the mesh edges 
as specks of the wrong color, either the texture map’s background 
color or a color from a different part of the texture. 

Previous techniques have reduced seams by maximizing the size 
and connectivity of the chart images in the texture atlas. For 
example, Maillot et al. [22] merged portions of the surface of 
similar curvature. These partitions improved the atlas continuity, 
resulting in fewer charts, though with complex boundaries. While 
this method reduced seams to the complex boundaries of fewer 
charts, it did not eliminate them. 

Seams appear because the rasterization rules differ from texture 
magnification rules. The rules of polygon scan conversion are 
designed with the goal of plotting each pixel in a local polygonal 
mesh neighborhood only once3. The rules for texture magnification 
are designed to appropriately sample a texture when the sample 
location is not the center of a pixel, usually nearest neighbor or a 
higher order interpolation of the surrounding pixels. 

A 

B 

A 

B 

A 

B 

(a) (b) (c)  

Figure 2. Seams occur due to differences between texture 
magnification (a) and rasterization (b), shown in red (c). 

Figure 2a shows two triangles with integer coordinates in the 
texture map. Figure 2b shows these two triangles rasterized using 
the standard rules [7], with unrasterized white pixels in the 
background. In this figure, the integer pixel coordinates occur at 
the center of the grid cells. Hence the grid cell indicates the set of 
points whose nearest neighbor is the pixel located at the cell’s 
center. Figure 2b illustrates that some points in both triangles A 
and B have background pixels as nearest neighbors, and some 
points in triangle B have pixels rasterized as triangle A because 

_______________________________ 
3 Missing pixels can result in holes or even cracks in the mesh, whereas plotting the 

same pixel twice (once for each of two different polygons) can cause pixel flashing 
as neighboring polygons battle for ownership of the pixel on their border. 

triangle A’s pixels are their nearest neighbors. Figure 2c indicates 
these points in red. 

Higher order texture magnification, such as bilinear or bicubic can 
reduce but not eliminate the effect of background pixels, and 
actually exaggerate the problem along the shared edge between 
triangles A and B. A common solution is to overscan the polygons 
in the texture map, but surrounding all three edges of each triangle 
with a one-pixel safety zone wastes valuable texture samples. 

3.3 Coverage 
The coverage C of an atlas measures how effectively the 
parameterization uses the available pixels in the texture map. The 
coverage ranges between zero and one and indicates the percentage 
of the texture map covered by the image of the mesh faces 
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where A() returns the area of a triangle. We assume the texture 
map is a unit square. 

The coverage of atlases of packed complex polygons was quite 
low, covering less than half of the available texture samples in our 
tests. We also implemented a simple polygon packing method that 
used a single chart for each triangle. This triangle packing 
performed much better than the complex polygon packing, but still 
covered only 70% of the available texture samples. Since distortion 
does not affect the quality of our procedural solid texturing 
technique, the next section shows that the chart images of triangles 
can be distorted to cover most if not all of the available texture 
samples.  

3.4 Relative Scale 
Whereas the coverage measures how well the parameterization 
utilizes texture samples, the relative scale S  indicates how evenly 
samples are distributed across the surface. We measure the relative 
scale as the RMS of the ratio of the square root of the areas before 
and after each chart of the atlas is applied 
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The additional summation factor computes the surface area of the 
object in model space, and normalizes the relative scale so it can 
be used as a measure to compare the quality of atlases across 
different models. A relative scale less than one indicates that the 
atlas is contracting a significant number of large triangles too 
severely, whereas a relative scale greater than one indicates that 
small triangles are taking up too large a portion of the texture map. 

The relative scale of existing atlas techniques is typically less than 
one half. Inefficient packing yields low coverage, such that 
triangles must be scaled even smaller in order to make the complex 
chart images fit into available texture space. 

4. Atlases for Solid Texturing 
This section describes methods for constructing texture atlases 
specifically for procedural solid texturing that overcome sampling 
problems and seams.  
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4.1 Uniform Mesh Atlases 
One way to take as many samples as possible is to maximize the 
coverage of texture map by the atlas. Since distortion does not 
affect the quality of the atlas for our application, we choose to 
deform the model triangles into a form that can be easily packed. 
The uniform mesh atlas arbitrarily maps all of the triangles into a 
single shape, an isosceles right triangle. These right triangles are 
packed into horizontal strips and stacked vertically in the texture 
map. 

Figure 3 demonstrates the uniform mesh atlas. Continuity is 
ignored and the texture map can be thought of as a collection of 
rubber jigsaw puzzle pieces that must be stretched into an 
appropriate place on the model surface. 

The length of each adjacent edge of the mesh triangles is given by 

  
H

M
a

2/
=  (3) 

where H is the horizontal resolution of a square texture map. The 
floor ensures that we can plot a full row of triangle pairs. Note that 
a is not an integer, but non-integer edge lengths can create 
problems with seams. 

Seam Elimination. Seams can be avoided by the careful 
rasterization of mesh triangles. Triangles A and B have been 
rasterized into the texture map as shown before. The triangles in 
Figure 4b are rasterized with half pixel offsets such that no 
background pixe ls will be accessed by the texture’s magnification 
filter. Nonetheless, samples in triangle B near its hypotenuse will 
still return A’s color. Overscanning the hypotenuse of triangle B 
and shifting triangle A right one pixel, as shown in Figure 4c, 
eliminates the seam artifact between A and B. This overscanning 
solution reduces the coverage slightly, but only costs one column 
of pixels for each triangle pair in a horizontal strip. 

A 

B 

A 

B 

A 

B 

(a) (b) (c)  

Figure 4. Standard rasterization rules disagree with texture 
magnification rules (a) and (b). Overscanned polygons are 

sampled correctly (c). 

Since seams are eliminated, triangles can be placed in any order in 
the uniform mesh atlas. If the model contains triangle strips, then 
these strips can be inserted directly into the uniform mesh atlas 
without overscanning, as the edge they share has appropriate pixels 
on either side of it. 

4.2 Non-Uniform Mesh Atlases 
While the uniform mesh atlas does a good job of using available 
texture samples, it distributes those samples unevenly. Object 
polygons both large and small get the same number of texture 
samples. The uniform mesh atlas biases the sampling of texture 
space in favor of areas with small triangles. While smaller 
polygons may appear in more interesting areas of the model, 
geometric detail might not correlate with texture detail. 

Our goal is to not only use as many samples of the texture as 
possible, but to distribute those samples evenly across the model. 
The non-uniform mesh atlas attempts to more evenly distribute 
texture samples by varying the size of triangle chart images in the 
texture map. 

Area-Weighted Mesh Atlas . An obvious criterion is that larger 
model triangles should receive more texture samples, and so their 
image under the atlas should be larger. We implement this area-
weighted NUMA by first sorting the mesh triangles by non-
increasing area.  The mesh atlas is again constructed in horizontal 
strips, but the size of the triangles in the strip is weighted by the 
inverse of the relative scale of the triangles in the strip. This allows 
larger triangles to get more texture samples. Figure 5 demonstrates 
the area-weighted atlas on a rhino model. 

 

Figure 5: Rhino sculpted from wood and its area-weighted 
non-uniform mesh atlas. 

Length-Weighted Mesh Atlas. Skinny triangles occupy smaller 
areas, but require extra sampling in their principal axis direction to 
avoid aliases. The length-weighted NUMA uses the triangle’s 
longest edge to prioritize its space utilization in the texture map. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 6. Effects of mesh atlas sample distribution 
techniques on a poorly tesselated object containing slivers: 

uniform (a),  area weighted (b) and length weighted (c). 

Figure 6 demonstrates the appearance of artifacts from the mesh 
atlases on the cross of a chess king piece. The procedural texture in 
this example is a simple striped pattern. Every triangle in the 
uniform mesh atlas (a) gets the same number of texture samples, 
regardless of size, resulting in the jagged sampling of the textured 
stripe on the left. The area-weighted NUMA reduces these aliasing 
artifacts, stealing ext ra samples from the rest of the model’s 
smaller triangles. But the sliver polygon needs more samples than 
its area indicates, and the length-weighted NUMA gives the sliver 
triangles the same weight as their neighbors, reducing the aliasing 
completely, leaving only the artifacts of the nearest-neighbor 
texture magnification filter. 

 

Figure 3. Uniform mesh atlas for a cloud textured 
moon. 
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Comparison. We plotted the relative scale of each triangle in the 
meshed rhino model. The ideal relative scale is equal to the square 
root of the surface area, and is plotted in green. Since all of the 
uniform mesh atlas’s chart image triangles are the same size, the 
plot of its relative scale simply indicates the size of the triangle in 
the model. Hence larger triangles are sample starved, but as Table 
1 shows, a larger number of smaller triangles are receiving too 
many samples. 

Mesh Atlas Coverage Relative Scale 
Uniform 91% 1.75 
Area-Weighted 93% 0.66 
Length-Weighted 93% 0.86 

Table 1. Measurement of mesh atlas performance on the 
rhino model. 

The area-weighted mesh atlas does a much better job of 
distributing the samples, and nearly complements the sampling of 
the uniform mesh atlas. The area-weighted NUMA undersamples 
smaller triangles because they are assigned to the remaining scraps 
of the texture map, which also results in its relative scale of less 
than (but closer to) one. 

 
(a)                                                (b) 

 
(c) 

Figure 7. The rhino model color coded by the relative scale 
of each triangle under the uniform (a), area-weighted (b) 
and length-weighted (c) atlases. Green indicates optimal 

sampling, blue indicates too few samples, and red indicates 
too many. 

Figure 7 illustrates the difference with this weighting, increasing 
the samples in the belt of skinny triangles around the rhino’s waist, 
and the stretched triangles around its shoulder, by sacrificing some 
of the samples in the rest of the model. The length-weighting 
heuristic also improves the performance statistics, resulting in a 
relative scale much closer to the goal of one. 

4.3 Multiresolution Mesh Atlases 
Section 4.1 described how seam artifacts were removed by making 
rasterization agree with texture magnification. Texture minification 
also produces artifacts, aliasing when projected texture resolution 
exceeds screen resolution. 

The MIP-map is a popular method for inhibiting texture 
minification aliases [46]. The MIP-map creates a multiresolution 
pyramid of textures, filtering the texture from full resolution in 
half-resolution steps down to a single pixel. Each pixel at level l of 
a MIP-map represents 4l pixels of the full resolution texture map 
(at level 0). 

Assume we have a uniform mesh atlas where the adjacent edge a  
of each of the triangles is a power of two. Then at levels up to la =  
lg a, some pixels from both sides of a triangle pair will combine 

into a single pixel. This averaging is correct only if the triangle 
pair also shares an edge in the surface mesh. 

At level la + 1, four neighboring triangle-pairs in the texture map 
will be averaged together. The uniform mesh atlas cannot be MIP-
mapped at level la, + 1 or above as there is no spatial relationship 
between triangles in the atlas. We can however impose a spatial 
relationship on the uniform mesh atlas that permits MIP-mapping 
above level la. 

At level la, triangle pairs are each represented by a single pixel. At 
level la + 1, the result of averaging neighboring triangles pairs is a 
single pixe l. Hence, the mesh needs to have neighborhoods of 
triangle pairs grouped together, but the grouping need not be in any 
particular order. 

We achieve this grouping by partitioning the surface mesh 
hierarchically into a balanced quadtree. Each level of the quadtree 
partitions the mesh into disjoint contiguous sections with 
(approximately) the same number of faces. 

We implement our face partitioning using a multiconstraint-
partitioning algorithm [18]. Such algorithms have found a wide 
variety of applications in computer graphics, e.g. [9][17][19]. 

The face hierarchy is constructed using the dual of the mesh. The 
partitioning algorithm uses edge collapses to repeatedly simplify 
this dual graph, yielding a hierarchy. The “balanced first choice” 
[18] heuristic is used to balance the hierarchy during 
simplification. We then optimize this graph from the top down, 
exchanging subtrees to minimize the edge length of the boundaries 
of the partitions. The result is demonstrated in Figure 8. 

 

Figure 8. Levels of texture detail in the multiresolution 
uniform mesh atlas. 
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5. Procedural Texturing onto the Atlas 
The solid texture coordinates resulting from the mesh atlases 
provides an efficient and direct method for applying procedural 
textures to an arbitrary object. We apply procedures directly to the 
texture map using the texture map containing solid texture 
coordinates interpolated across the polygon faces as input, 
replacing these coordinates with colors producing a texture map 
that when applied yields a procedural solid texturing of the object. 

Procedural textures can be generated a number of ways. We 
explore two basic techniques. The first technique runs a procedure 
sequentially on the host. The second technique compiles the 
procedure into a multipass program executed in SIMD fashion by 
the graphics controller. We will focus on the Perlin noise function 
[37] as this single function is a widely used element of a large 
portion of procedural textures. 

5.1 Host Rasterization 
The texture atlas technique allows the procedural texture to be 
generated from the host. Host procedures provide the highest level 
of flexibility, allowing all of the benefits of a high-level language 
compiled into a broad instruction set. 

Several fast host-processor methods exist for synthesizing 
procedural textures. Goehring et al. [10] implemented a smooth 
noise function in Intel MMX assembly language, evaluating the 
function on a sparse grid and using quadratic interpolation for the 
rest of the values. Kameya et al. [14] used streaming SIMD 
instructions that forward differenced a linearly interpolated noise 
function for fast rasterization of procedurally textured triangles.  

One could use the graphics processor to rasterize the texture atlas, 
and then let the host processor replace the interpolated solid 
coordinates with procedural texture colors. The main drawback to 
this technique is the asymmetry of the graphics bus, which is 
designed for high speed transmission from the host to the graphics 
card. The channel from the graphics card to the host is very slow, 
taking nearly a second to perform an OpenGL ReadPixels 
command on an Intel PC AGP bus. 

To overcome this bottleneck, our host-procedure implementation 
uses the host to rasterize the atlas directly into the texture map. 
Host rasterization provides full control over the rasterization rules 
and full precision for the interpolated texture coordinates. While 
the host processor is not nearly as fast as the graphics processor at 
rasterization, the generation and rendering of the atlas into texture 
memory is an interactive-time operation, whereas examination of 
the object is a real-time operation supported completely by the 
graphics card’s texture mapping hardware. Its results are shown 
later in Table 3. 

5.2 A Multipass Noise Algorithm 
Following [15][23][35][41], we can harness the power of graphics 
accelerators to generate procedural textures directly on the 
graphics board. 

The noise function could be implemented using a 3-D texture of 
random values with a linear magnification filter. A texture atlas of 
solid texture coordinates can be replaces with noise samples using 
the OpenGL pixel texture extension [31]. 

The vertex shader programming model found in Direct3D 8.0 [24] 
and the recent NVIDIA OpenGL vertex shader extension [31] can 
support procedural solid texturing. In fact a Perlin noise function 
has been implemented as a vertex program [29]. But a per-vertex 
procedural texture will produce vertex colors that are Gouraud 
interpolated across faces. 

Input: solid_map with R,G,B containing s,t,r coordinates. 
Initialize noise = black 
solid_int = solid_map >> bf 

solid_intpp = solid_int + 1/(2b-1) 
weight = (solid_map – (solid_int << bf)) << bi 
for (k = 0; k < 8; k++) { 
  corner = solid_int 
  corner = solid_intpp with glColorMask(k&1,k&2,k&4) 
  randomize corner 
  corner *= if (k&1) then R(weight) else 1 – R(weight)4 
  corner *= if (k&2) then G(weight) else 1 – G(weight) 
  corner *= if (k&4) then B(weight) else 1 – B(weight) 
  noise += corner 
} 
Output: solid noise texture map 

Figure 9. Multipass noise algorithm.  

We instead implemented a per-pixel noise function using multipass 
rendering onto the texture atlas. Assume the three channels (R,G,B) 
of our buffers have a depth of b bits5. We will assume a fixed-point 
representation with bi integer bits and bf fractional bits, b = bi + bf. 
The algorithm in Figure 9 computes a random value in [0,1] at the 
integer lattice points, and linearly interpolates these random values 
across the cells of the lattice. 

SGI Implementation. We implemented the noise function in 
multipass OpenGL on imaging workstations using the 
glPixelTransfer and glPixelMap functions. The glPixelTransfer 
function performs a per-component scale and bias, whereas 
glPixelMap performs a per-component lookup. The results appear 
in Table 2. 

NVidia Implementation . We also implemented a noise function 
for consumer-level accelerators using the NVidia chipset. Since the 
NVidia driver did not accelerate glPixelTransfer and glPixelMap, 
we used register combiners to shift, randomize and isolate/combine 
components. 

Randomization on the NVidia controller was particularly difficult, 
as its driver did not accelerate logical operations like exclusive-or 
on the frame buffer. Instead, we used the register combiners to 
display one of two colors depending on an input color’s high bit, 
then used the register combiners to shift the input color left one bit 
(without overflowing and causing a clamp to one). This ended up 
generating 375 passes (!). The source code for these operations can 
be found on the accompanying CD-ROM. 

 Implementation Execution Time 
SGI Solid Impact 1.3 Hz 
SGI Octane 2.5 Hz 
NVidia GeForce 256 0.9 Hz 

Table 2. Execution times for the multipass noise algorithm. 

Table 2 shows the NVidia implementation did not perform as well 
as the SGI implementation. Profiling the code revealed that the 
main bottleneck was the time it took to save the framebuffer in a 
texture, adding an average of 3 ms per pass for 354 of the passes. 
OpenGL currently does not support rendering directly to texture, 
and the register combiner did not directly support the blending of 
its output with the destination pixel currently in the frame buffer. 

_______________________________ 
4 The functions R(), G() and B() return a luminance image of t he channel. 

5 Framebuffers currently hold only 8 or 12 bits per channel though there is an 
extension that supports 32-bit floating point, and indications that floating point 
buffers may soon be supported by a larger variety of graphics hardware and drivers. 

6 - 16



 10-17

The randomization step in the SGI implementation produced white 
noise using a glPixelMap lookup table of random values, whereas 
the NVidia implementation blended random colors, yielding 
Gaussian noise. If desired, one could redistribute the Gaussian 
noise into white noise with a fixed histogram equalization step. 

6. Conclusion 
We have shown how the texture atlas can facilitate the real-time 
application of solid procedural texturing. We showed that for this 
application, the texture atlas need not be concerned with distortion 
nor discontinuity, but should instead focus on sampling fidelity. 
We introduced new mesh-based atlas generation schemes that 
more efficiently used available texture samples, and non-uniform 
variations of these meshes distributed these samples more evenly 
across the object. We also used a mesh partitioning method to 
construct a MIP-mappable atlas. 

The texture atlas allows solid texturing procedures to be applied to 
the texture map, allowing efficient multipass programming using 
the accelerated operations available on the graphics controller as 
they become feasible. 

The system makes effective use of preprocessing. The procedural 
texture needs to be resynthesized only when its parameters change, 
and the texture atlas needs to be reconstructed only when the 
object changes shape. Specifically, if the position of the object’s 
vertices move, but the topology of the mesh remains invariant, then 
the procedural solid texturing generated by this method will adhere 
to the surface [1]. This is a useful property that prevents texture 
“swimming,” such that for example the grain of a warped wood 
plank follows the warp of the plank. 

6.1 Interactive Procedural Solid Texture Design 
We used the methods described in this paper to create a procedural 
solid texture design system that would allow the user to load an 
object and apply a procedural solid texture. This system can be 
found on the accompanying CD-ROM. Since the procedural solid 
texturing is applied as a standard 2-D surface texture mapping, the 
design system supported full real-time observation of a 
procedurally solid textured object. Using the techniques of Section 
4, the object did not suffer from any seam artifacts, and aliasing 
was reduced by making good use of the available texture samples. 

We also allowed the user to interactively change the procedural 
solid texturing parameters. Using the techniques described in 
Section 5.1, we were able to support interactive-rate feedback to 
the user, such that the user could observe the result of a parameter 
on the procedural solid texture while dragging a slider. 

The software procedural texture renderer simultaneously rasterized 
the texture atlas into texture memory and applied the texturing 
procedure to the texture atlas. We increased the responsiveness of 
our system by having this renderer render a lower resolution 
interpolated version of the atlas during manipulation, and replace it 
with a higher resolution version at rest. The rendering speed of this 
system is shown in Table 3. 

 Noise Octaves Atlas Res. Procedural Synthesis Speed 
  1 2562 9.09 Hz (18 Hz) 
  1 5122 2.56 Hz (4.55 Hz) 
  1 10242 0.72 Hz (1.30 Hz) 
  4 2562 6.25 Hz (10 Hz) 
  4 5122 1.82 Hz (3.03 Hz) 
  4 10242 0.40 Hz (0.76 Hz) 

Table 3. Execution times for procedural texture synthesis 
into the texture atlas. Parenthetic times measure lower 

resolution synthesis during interaction. 

6.2 Applications 
We have focused this paper on the application of real-time 
procedural solid texturing, though the techniques described appear 
to impact other areas as well. 

Solid Texture Encapsulation. Unlike surface texture coordinates, 
solid texture coordinates are not uniformly implemented by 
graphics file formats.  Using surface texture of a solid texture 
allows the texture coordinates to be more robustly specified in 
object files and also allows the solid texture to be included as a 
more compact texture map image instead of a wasteful 3-D solid 
texture array. 

3-D Painting. The meshed atlas techniques can also be used to 
support 3-D painting onto surfaces [13]. The atlas provides an 
automatic parameterization. The discontinuities of the 
parameterization do not impact painting as the texture atlas 
maintains a per face correspondence between the surface and the 
texture map. The meshed atlas techniques presented in Section 4 
also improve surface painting by using as many texture samples as 
possible distributed evenly across the surface. 

Normal Maps. The normal map [3][8] is a texture map whose 
pixels hold a surface normal instead of a color. Normal maps are 
used for real-time per-pixel bump mapping using dot-product 
texture combiners found in Direct3D and extensions of OpenGL. 
The meshed atlas generation techniques can be used to create well-
sampled normal maps since normal maps do not require continuity 
between faces. 

Real-Time Shading Languages . Recent real time shading 
languages [35][41] have been developed to support procedural 
shaders, including texturing and lighting, by converting shader 
descriptions into multipass graphics library routines. In particular, 
Proudfoot et al. [41] focuses on the difference between per object, 
per vertex and per fragment processes in real-time shaders. The 
texture atlas supports additional categories of view-dependent and 
view-independent processes. View dependent processes utilize 
multipass operations to the framebuffer, whereas view independent 
processes utilize multipass operations to the texture map, ala 
Section 5.2. The results of view independent processes can be 
stored and accessed directly from the texture map, accelerating the 
rendering of real time shading language shaders. 

6.3 Future Work 
While this work achieved our goal of real-time procedural solid 
texturing, it has also inspired several directions for further 
improvement. 

Direct Manipulation of Procedural Textures . The interactive 
procedural solid texture design system is a first step. Another step 
would be to allow the sliders to be bypassed, supporting direct 
manipulation of procedural textures. The user could drag a texture 
feature to a desired location and have the software automatically 
reconfigure the parameters appropriately. 

Preservation of Mesh Structure . The mesh atlases do not 
preserve the object’s original mesh structure, and our mesh atlas 
processing program outputs multiple copies of shared mesh 
vertices with different surface texture coordinates. This increases 
the size of the model description files, and may cause the resulting 
models to render more slowly. Preservation of mesh structure, or at 
least triangle strips, would be a useful addition to this stage of the 
process. 

Higher-Order Texture Magnification. Section 4.1 described the 
special overscanning measures taken during rasterization of the 
texture atlas to eliminate seam artifacts. This overscanning works 
when a nearest neighbor texture magnification filter is used. A 
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linear texture magnification filter would make the textures appear 
less blocky, but will require overscanning by one pixel along all 
edges reduces the number of available samples on polygon faces 
creating additional seldom used samples on polygon edges. 

Atlas Compression . The texture atlas resembles the codebook 
used in vector quantization. The number of faces in the atlas could 
be reduced by allowing the atlas to no longer be one-to-one, and to 
let triangles with similar procedural texture features to map to the 
same location in the texture atlas. This kind of atlas compression 
would increase the number of available texture samples with larger 
chart images in the texture atlas. 
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Abstract 
While working on a method for supporting real-time procedural 
solid texturing, we developed a general purpose multipass pixel 
shader to generate the Perlin noise function. We implemented 
this algorithm on SGI workstations using accelerated OpenGL 
PixelMap and PixelTransfer operations, achieving a rate of 
2.5 Hz for a 256x256 image. We also implemented the noise 
algorithm on the NVidia  GeForce2 using register combiners. 
Our register combiner implementation required 375 passes, but 
ran at 1.3 Hz. This exercise illustrated a variety of abilities and 
shortcomings of current graphics hardware. The paper concludes 
with an exploration of directions for expanding pixel shading 
hardware to further support iterative multipass pixel-shader 
applications. 

Keywords: Pixel shaders, Perlin noise function, hardware 
shading, register combiners. 

1. Introduction 
The concept of procedural shading is well known [17][19], and 
has found widespread use in graphics [3]. Procedural shading 
computes arbitrary lighting and texture models on demand. 
Procedural textures efficiently support high resolution, non-
repeating features indexed by three-dimensional solid texture 
coordinates. These features were quickly adopted for 
production-quality rendering by the entertainment industry, and 
became a core component of the Renderman Shading 
Language [5]. 

With the acceleration of graphics processors outpacing the 
exponential growth of general processors, there have been 
several recent calls for real-time implementations of procedural 
shaders, e.g. [6][20]. Real-time procedural shading makes 
videogames richer, virtual environments more realistic and 
modeling software more faithful to its final result. Real-time 
procedural texturing, in particular, allows modelers to use solid 
textures to seamlessly simulate sculptures of wood and stone. It 
yields complex animated environments with billowing clouds 
and flickering fires. Designers and users can interactively 
synthesize and investigate new procedural worlds that seem 

vaguely familiar to our own but with features unique to 
themselves. 

Several have researched techniques for supporting procedural 
shading with real-time graphics hardware [15][18][21][22]. 
These shading methods reorganize the architecture of the 
graphics API to suit the needs of procedural shading, applying 
API components to tasks for which they were not originally 
designed [8][11]. 

One such technique supports real-time procedural solid texturing 
[2] by using the texture map to store the shading of an object [1]. 
The technique maintains a texture atlas that maps triangles from 
a surface mesh into a non-overlapping array in texture memory. 
The triangles are plotted in texture memory using their solid 
texture coordinates as vertex colors. Rasterization then 
interpolates solid texture coordinates across their faces in the 
texture map. A procedural texturing pass replaces the solid 
texture coordinates in the texture map with the procedural 
texture color. Finally, this color is reapplied to the object surface 
via standard texture mapping. The result is a view-independent 
procedural solid texturing of the object. 

One of the most common components of a procedural shading 
system is the Perlin noise function [19], a correlated three-
dimensional field of uniform random values. This versatile 
function provides a deterministic random function whose 
bandwidth can be controlled to inhibit aliasing. Moreover, 1/fβ 
sums of noise functions can be used to form turbulence and 
other fractal structures whose statistics can be set to match those 
of various kinds of natural phenomena. 

   
 (a) (b) 

Figure 1. Perlin noise function (a) and a 1/f sum (b). 

We integrated the Perlin noise function into our real-time 
procedural solid texturing system in a variety of different ways, 
both as a CPU process and as a GPU process. This paper 
describes an algorithm for implementing the Perlin noise 
function as a multipass pixel shader. It also analyzes this noise 
implementation on a variety of systems. We used the available 
accelerated implementations of the OpenGL API and its device-
dependent extensions on two SGI systems and an NVidia 
GeForce2. The paper concludes with suggestions for further 

Contact info: Dept. of Computer Science, 1304 W. Springfield 
Ave., Urbana, IL 61801, (217) 333-8740, jch@cs.uiuc.edu. 
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hardware accelerator development that would facilitate faster 
implementations of the Perlin noise function as well as a broader 
variety of texturing procedures. 

2. Previous work 
Because the Perlin noise function has become a ubiquitous but 
expensive tool in texture synthesis, it has been implemented in 
highly optimized forms on a variety of general and special 
purpose platforms. 

Several fast host-processor methods exist for synthesizing Perlin 
noise. Goehring et al. [4] implemented a smooth noise function 
in Intel MMX assembly language, evaluating the function on a 
sparse grid and using quadratic interpolation for the rest of the 
values. Kameya et al. [10] used streaming SIMD instructions 
that forward differenced a linearly interpolated noise function 
for fast rasterization of procedurally textured triangles. 

One can also generate solid noise with a 3-D texture array of 
random values [13], using hardware trilinear interpolation to 
correlate the random lattice values stored in the volumetric 
texture. Fractal turbulence functions can be created using 
multitexture/multipass modulate and sum operations. A texture 
atlas of solid texture coordinates would then be replaced with 
noise samples using the OpenGL pixel texture extension, ala [9]. 

The vertex-shader programming model found in Direct3D 8.0 
[12] and the recent NVIDIA OpenGL vertex shader extension 
[16] can support procedural solid texturing. A Perlin noise 
function has been implemented as a vertex program [14]. But a 
per-vertex procedural texture produces vertex colors that are 
Gouraud interpolated across faces, such that the frequency of the 
noise function must be at, or less than half, the frequency of the 
mesh vertices. This would severely restrict the use of turbulence 
resulting from 1/f sums of noise. Hence the Perlin noise vertex 
shader is limited to low-frequency displacement mapping or 
other noise effects that can be mesh frequency bound. 

Our favorite implementation of the Perlin noise function is from 
the Rayshade ray tracer [24]. This implementation created its 
own pseudorandom numbers by hashing integer solid texture 
coordinates with a scalar function 
Hash3d(i,j,k), then interpolated these 
random values with a simple smooth cubic 
interpolant SCURVE(u) = 3u2 – 2u3 to 
yield the final result. 

Given solid texture coordinates s,t,r, the Rayshade noise 
function effectively returned noise as the value 
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where 

w(s,i) = SCURVE(s - s)i (1-SCURVE(s - s)1-i 

is a weighting function. Hence, the noise function returns a 
weighted sum of the random values at the eight corners of the 
integer lattice cube containing s,t,r. 

   
 (a) (b) 

Figure 2. Result of the Rayshade implementation of the 
Perlin noise function, using cubic interpolation (a) and 
linear interpolation (b) of corner lattice random values. 

Figure 2 demonstrates the result of the Rayshade 
implementation of the Perlin noise function. The random values 
result from the drand48() function of the standard C math 
library. Noise is defined on an integer coordinate lattice, which 
results in the strong horizontal and vertical correlation. 

We will use this sample as a reference to compare our pixel-
shader implementations of the Perlin noise function. The 
average brightness of the (s,t) slice of the noise is due to the 
fixed r coordinate. This average intensity will differ from across 
implementations, resulting in variations in brightness for a given 
(s,t) slice of the three-dimensional noise field. 

3. A Multipass Noise Algorithm 
We based our real-time implementation of the Perlin noise 
function on the concise Rayshade implementation. We 
implemented a per-pixel noise function using multipass 
rendering onto a texture atlas initialized with solid texture 
coordinates stored as pixel colors. 

The Perlin noise function is defined on a field of real values, 
where the integer subset of its domain defines the base 
frequency of the noise. Implementation of the noise function 
requires coordinates s,t,r to range over multiple integers, though 
color components only range over [0,1]. Hence, given three 
channels (R,G,B) each with a depth of b bits1, we use a fixed-
point representation with bi integer bits and bf fractional bits, b = 
bi + bf. 

Following the form of the Rayshade noise implementation, the 
algorithm in Figure 3 computes a random value in [0,1] at the 
integer lattice points, and linearly interpolates these random 
values across the cells of the lattice. 

_______________________________ 
1
 Framebuffers currently hold only 8 or 12 bits per channel though there is an 

extension that supports 32-bit floating point, and indications that floating point 
buffers may soon be supported by a larger variety of graphics hardware and 
drivers. 
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Input: 2-D texture solid_map with R,G,B containing s,t,r 
coordinates. 
Initialize texture noise = black 
texture solid_int = solid_map >> bf 

texture solid_intpp = solid_int + 1/(2b-1) 
texture weight = (solid_map – (solid_int << bf)) << bi 
for (k = 0; k < 8; k++) { 
  texture corner = solid_int 
  overwrite corner = solid_intpp with glColorMask(k&1,k&2,k&4) 
  randomize corner 
  corner *= if (k&1) then R(weight) else 1 – R(weight)2 
  corner *= if (k&2) then G(weight) else 1 – G(weight) 
  corner *= if (k&4) then B(weight) else 1 – B(weight) 
  noise += corner 
} 
Output: solid noise texture map 

Figure 3. Multipass noise algorithm.  

The input to the algorithm is an image solid_map whose R,G,B 
colors consist of solid texture coordinates. The first half of the 
algorithm decomposes solid_map into its integer part solid_int  
shifted right bf times and a fractional part weight shifted left bi 
times. 

       
 (a) (b) (c) 

Figure 4. Solid texture coordinates solid_map (a), 
tex_int shifted left by bf (b) and weight (fractional part 

shifted left by bf) (c). 

Figure 4 shows a sample texture map as a plane of two-
dimensional solid texture coordinates spanned by s and t. We set 
bf = 4 bits. The solid texture coordinates s,t,r range from 
(0.0,0.0,0.0) to (15.9375,15.9375,0.0) and are represented in the 
solid texture coordinate texture map Figure 4(a) with RGB 
colors from (0,0,0) to (1,1,0). Internally in the 24bpp 
framebuffer, these RGB colors range from (0,0,0) to 
(255,255,0). These coordinates are shifted right by bf to form 
tex_int, which is shown Figure 4(b) shifted left by bf to increase 
contrast and brightness. Subtracting (b) from (a) leaves tex_frac, 
which is shifted left by bf to create a normalized weight function 
Figure 4(c). 

The color (R,G,B) of each pixel (x,y) in solid_map corresponds 
to a solid texture point (s=R,t=G,r=B) that falls within some 
lattice cell. The corner of this cell is given by the coordinates in 
the corresponding pixel (x,y) stored in solid_int. The opposite 
corner of this cell is found in the corresponding pixel in 
solid_intpp (whose colors are increments of those in solid_int). 

Each of the eight corners of the cell can be found by 
combinations of the coordinates in solid_int and solid_intpp. 
The second half of the algorithm iterates over all eight corners, 
creating a random value indexed by the integer value at that 
corner. These random values are weighted by the fractional 
portion of the solid texture coordinates found in weight or its 
additive inverse. Summing the products of these weights for 
each of the eight corners performs a trilinear interpolation of the 

_______________________________ 
2
 The functions R(), G() and B() return a luminance image of the corresponding 

channel. 

random values at the corners, resulting in result of the noise 
function. 

We will spend the next two sections implementing this 
algorithm using the available accelerated features of two 
different graphics architectures. These implementations are each 
divided into two sections, on implementing the logical shift 
operations needed for the first half of the algorithm, and the 
random value synthesis needed for the second half. 

4. SGI Implementation 
The SGI graphics accelerators have focused on high-end real-
time rendering for the scientific visualization and entertainment 
production communities. Hence accelerated features have 
included scientific imaging functions that support algebraic and 
lookup-table operations on pixels. 

We focused our implementation on low end and midline SGI 
workstations, which are commonly deployed for digital content 
creation and design in both the videogame and animation 
communities. 

4.1 PixelTransfer and PixelMap 
We implemented the noise function in multipass OpenGL on 
SGI workstations using accelerated PixelTransfer3 and PixelMap 
functions. The PixelTransfer function performs a per-component 
scale and bias, whereas PixelMap performs a per-component 
lookup into a predefined table of values. 

We defined an assembly language of useful PixelTransfer 
functions. Specifically, the function setPixelTransfer(a,b) sets 
OpenGL to perform an ax + b operation during the next image 
transfer operation, where x represents each component of the 
RGBA color. The function setPixelMap(table) uses PixelMap to 
replace colors channels with their corresponding entries in a 
lookup table. We also defined a blendtex(i) operation that draws 
the texture image corresponding to texture index i. The 
instruction savetex(i) saves the current framebuffer as texture 
image i. 

Unlike the previous section, the SGI implementation begins with 
three luminance images tex_s, tex_t and tex_r instead of a 
single RGB image solid_map. We could perform all of the 
decompositions on a single texture, but we would later need to 
break its red, green and blue channels into individual luminance 
textures, and we found it impossible to perform this efficiently 
with the OpenGL extension set available to low-end and midline 
SGI workstations that lacked the color_matrix extension. 

    
 (a) (b) (c) 

Figure 5. RGB image weight (a) is equal to (1,0,0) * 
luminance image tex_s (b) + (0,1,0) * luminance image 

tex_t (c) + (0,0,1) * luminance image tex_r (not 
shown). 

_______________________________ 
3
 Following the convention of the OpenGL ARB, we avoid the use of the “gl” 

prefix for functions and the “GL_” prefix for tokens when describing elements 
of the OpenGL API. 
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4.2 Logical Shift Operations 
The task of decomposing a texture map of fixed point solid 
texture coordinates into integer and fractional textures used 
PixelTransfer multiplication to achieve shifting operations. We 
defined an integer shift = 1 << bf. We modulated the texture by 
shift to perform a logical shift left by bf, and by 1/shift to 
perform a logical shift right. (Some hardware required us to 
round instead of truncate, which was performed by a 
PixelTransfer bias of -0.5/255.0.) We also defined fracshift as 
255.0/((1 << bf) - 1). This allowed us to scale our fractional 
portions into normalized weights. 

The following code fragment demonstrates the decomposition of 
the s coordinate. Similar decompositions need to be performed 
on tex_t and tex_r as well. 

// shift s right to remove fractional part, save as si 
blendtex(tex_s); 
setPixelTransfer(1.0/shift, 0.0 /* or –0.5/255.0 */); 
savetex(tex_si); 
resetPixelTransfer(); 

// shift si back left 
blendtex(tex_si); 
setPixelTransfer(shift, 0.0); 
CopyPixels(0,0,HRES,VRES,COLOR); 
resetPixelTransfer(); 

// subtract si (floor of s) from s to get fractional part of s 
Enable(BLEND); 
BlendEquation(SUBTRACT); 
BlendFunc(1, 1); 
blendtex(tex_s); 
Disable(BLEND); 

// scale fractional part into normalized weight in [0,1] 
setPixelTransfer(fracshift, 0.0); 
savetex(tex_sf); 
resetPixelTransfer(); 

 

4.3 Random Value Synthesis 
We implemented randomization using a lookup table. This 
lookup table was accessed using the accelerated PixelMap 
OpenGL function. Recall the value k ranges from 0 to 7 
denoting the current corner. The following code fragment 
synthesizes a random field based on the s coordinate. 

// tex_sin = random(si) or random(si++) 
blendtex(tex_si); 
setPixelTransferf(1.0, (k&1) ? 1.0/255.0 : 0.0);  
setPixelMap(sran);  
savetex(tex_sin); 

Similar code fragments apply to the t and r coordinates, using 
(k&2) and (k&4) in the PixelTransfer, respectively. At this point 
tex_sin, tex_tin and tex_rin contain random values indexed by 
the s,t,r values at the kth corner of the cell. The following code 
fragment combines these three random values into a single 
random value. 

// now tex_sin, tex_tin and tex_rin are random 
// add them up into a single random number4 
blendtex(tex_sin); 
Enable(BLEND); BlendFunc(ONE,ONE); 
blendtex(tex_tin); 
blendtex(tex_rin); 
Disable(BLEND); 

This combination of random values is highly correlated due to 
the componentwise combination of random values. We reduce 
this correlation with an additional randomization pass. 

// one more randomization (in place) 
setPixelMap(nran);  
CopyPixels(0,0,HRES,VRES,COLOR); 
resetPixelTransfer(); 

      
 (a) (b) (c) (d) 

Figure 6. The sum of random numbers indexed by s (a). 
and t (b) is highly correlated (c). This correlation is 
reduced by indexing into a final randomization (d). 

The random number tables sran, tran and rran are uniform 
random number distributions over the range [0,1/3]. These three 
random values are added to form the final distribution, which is 
slightly non-uniform and heavily coordinate correlated, as 
shown in Figure 6(c). An additional randomization reduces this 
correlation as shown in Figure 6(d). 

     
 (a) (b) (c) (d) 

Figure 7. The random values at integer lattice locations 
for corners ( s,t) (a), ( s+1,t) (b), ( s,t+1) (c) 

and ( s+1,t+1) (d). 

Figure 7 shows the random values generated at the four corners 
of the lattice. Note that in this example these are all translates of 
each other. 

The random value is then weighted by the fractional part of the 
original texture coordinates s,t,r. Note that we have broken out 
the original RGB image weight from the previous section into 
three luminance images tex_sf, tex_tf and tex_rf. We also use 
the built-in additive complement blending operation to invert the 
weight appropriately depending on the cell corner. 

// displayed texture now random value at corner k 
// weight this contribution by fractional parts of s,t,r 
Enable(BLEND); 
BlendFunc(0, (k&1) ? SRC : 1 - SRC); 
blendtex(tex_sf); 
blendFunc(0, (k&2) ? SRC : 1 - SRC); 
blendtex(tex_tf); 
BlendFunc(0, (k&4) ? SRC : 1 - SRC); 
blendtex(tex_rf); 
_______________________________ 
4
 Note the addition of the component random values introduces a slight Gaussian 

bias to the resulting noise. This could be eliminated if an accelerated exclusive-
or blending mode was available. 
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 (a) (b) (c) (d) 

Figure 8. Random values scaled by the weight functions 
(1 - tex_sf)(1-tex_tf) (a), tex_sf(1-tex_tf) (b), (1-

tex_sf)tex_tf (c) and tex_sf tex_tf (d). 

Figure 8 shows the random values at the corners (Figure 7) 
scaled by the product of weighting functions tex_sf and tex_tf. 
These weighting functions are luminance textures corresponding 
to the individual channels of Figure 4(c), such that 
weight = (tex_sf, tex_tf, tex_rf). 

The resulting weighted random value corresponding to the 
current corner is then added into a running total, as show in the 
following fragment. 

// add noise component into noise sum 
BlendFunc(1,1); 
blendtex(tex_noise); 
Disable(BLEND); 

// keep track of sum 
savetex(tex_noise); 

The texture tex_noise is initialized to black. After all eight 
corners have been visited, tex_noise contains the final noise 
values corresponding to the solid texture coordinates in the input 
luminance images tex_s, tex_t and tex_r. 

 

Figure 9. Noise function resulting from the sum of 
Figure 8 (a-d). 

4.4 Results 
Figure 9 shows the final noise function resulting from summing 
the images in Figure 8. The correlation from Figure 6(c) was 
reduced by the randomization in Figure 6(d) but is still evident, 
particularly in the final interpolated version, as strong horizontal 
and vertical tendencies in the noise. However, this correlation is 
also found in the reference noise implementation in Figure 2, 
and is primarily due to the integer lattice of noise values. 

We implemented this algorithm at a resolution of 2562 on a SGI 
Solid Impact, a SGI Octane, and an NVidia GeForce2. The SGI 
workstations are designed for advanced imaging applications 
and have hardware accelerated PixelTransfer and PixelMap 
operations whereas the NVidia card designed for mainstream 
consumer applications does not. The execution times are given 
in Table 1. 

 Implementation Execution Time (Rate) 
SGI Octane 0.4 sec. (2.5 Hz) 
SGI Solid Impact 0.75 sec. (1.3 Hz) 
NVidia GeForce 256 5 sec. (0.2 Hz) 

Table 1. Execution results for the multipass noise 
algorithm. 

5. NVidia Implementation 
We also implemented a noise function for consumer-level 
accelerators using the NVidia chipset. The NVidia products 
have been designed to accelerate commodity personal computer 
graphics, especially videogames. Hence the drivers did not 
accelerate PixelTransfer and PixelMap. We instead used register 
combiners to shift, randomize and isolate/combine components. 

5.1 Register Combiners 
Register combiners support very powerful per-pixel operations 
by combining multitextured lookups in a variety of manners. 
They support the addition, subtraction and component-wise 
multiplication (and even a dot product) of RGB vectors. They 
also support conditional operations based on the high-bit of the 
alpha channel of one of the inputs. They support signed byte 
arithmetic with a full 9 bits per channel, though can only store 8 
bit results. They also provide several mapping functions for 
signed/unsigned conversion, and the ability to modulate output 
values by one-half, two and four. 

The Direct3D 8.0 specification includes a register-combiner 
based assembly language [12]. However, our implementation 
sought to squeeze the best possible performance out of the 
NVidia chipset. We chose instead to use the OpenGL register 
combiner extensions, which provide complete, though device 
dependent, access to the graphics accelerator. 

Figure 10 illustrates the register combiner functionality used in 
this paper. The register combiner has four inputs A,B,C,D that 
can be any combination of the incoming fragment, a pixel from 
multitexture unit 0 or 1, and the contents of a scratch register 
called Spare0. The constants zero and one (via a special 
unsigned invert operation) can also be used as inputs, and other 
constant values can also be loaded via special registers. 

The outputs of the register combiners include A*B, C*D, A*B + 
C*D and the special A*B | C*D. This latter output yields A*B if 
the alpha component of the register Spare0 is less than 0.5, 
otherwise the output yields C*D. These outputs can also be 
optionally scaled by ½, 2 or 4. For this paper, it is safe to assume 
the output is always contained in the register Spare0. The 
register combiner has separate but comparable functions for the 
RGB values and the alpha values of the inputs and registers. 

6 - 23



 10-24 

Tex0 Tex1 incoming 
fragment 

Mult iplexor 

 
A B C D 

A*B C*D A*B+C*D (A*B | C*D) 

Mult iplexor, x1/2, x2, x4 

Spare0 

outgoing 
fragment 

 

Figure 10. Partial block diagram of the register combiner 
functionality used in this paper. 

There can be any number of register combiners that form a 
pipeline, using the temporary registers such as Spare0 to hold 
data between stages. The GeForce2 used to implement the pixel 
shaders in this paper contains two register combiners which 
allow two register combiner operations per pass. The GeForce3 
is expected to have eight register combiners. 

5.2 Logical Shift Operations 
In order to perform the decomposition of the input solid texture 
coordinate image into integer and fractional components, we 
developed a logical shift left register routine. This routine used 
the modulate-by-two output mapping, but this causes values 
greater than one half to clamp to one. We avoided this overflow 
by using the conditional mode of the register combiners. The 
following example sets up the register combiners to perform 
such a logical shift left on a luminance value (R=G=B) in 
multitexture unit 0. 

// first stage 
// spare[α] = texture0[b] 
A[α] = texture0[b] 
B[α] = 1 (zero with unsigned_invert) 
spare0[α] = A[α]*B[α] 
// spare0 rgb = texture0 less its high bit (or zero if less than ½) 
A[rgb] = texture0[rgb] 
B[rgb] = white (zero with unsigned_invert) 
spare0[rgb] = A[rgb]*B[rgb] - 0.5 // via bias_by_negative_one_half 

// second stage 
// spare0 rgb = (spare0[α] < 0.5 ? texture0[rgb] : spare0[rgb]) << 1 
A[rgb] = texture0[rgb] 
B[rgb] = white 
C[rgb] = spare0[rgb] 
D = white 
spare0[rgb] = 2*(spare0[α]<0.5 ? A[rgb]*B[rgb] : C[rgb]*D[rgb]) 

We could also generate a register combiner to perform a logical 
shift right using the scale_by_one_half mode, but found it was 
much simpler to perform a multitextured modulate-mode blend 
with a texture consisting of the single pixel containing the RGB 
color (0.5,0.5,0.5).  

5.3 Random Value Synthesis 
Randomization on the NVidia controller was particularly 
difficult. The driver (and presumably the hardware) accelerated 

neither pixel transfer/mapping operations, nor logical operations 
like exclusive-or. 

We instead implemented a register combiner random number 
generator by shifting each of the components of the integer 
values of the coordinates left one bit at a time. All four bits of 
each of the three components are at one point the high bit in 
multitexture unit 0. We then used the register combiner’s 
conditional mode to display one of two colors depending on the 
high bit of the current texel of multitexture unit 0. The following 
code fragment implements this technique. 

for (kk = 0; kk < 4; kk++) { 
 for (comp = 0; comp < 3; comp++) { 
  // display either tex_ranzero or tex_ranone 
  // depending on hi bit of tex_comp 
  setupblendhibit(ranzero[comp][kk],ranone[comp][kk]); 
  blend2tex(tex_comp[comp],tex_corran); 
  savetex(tex_corran); 
  if (kk < 3) { 
   // shift tex_comp left one 
   setupshift1(); 
   blendtex(tex_comp[comp]); 
   savetex(tex_comp[comp]); 
  } 
 } 
} 

The operation blend2tex(tex_a,tex_b) displays a multitextured 
image with tex_a as multitexture unit 0 and tex_b as 
multitexture unit 1. 

The arrays ranzero and ranone were initialized with random 
luminances. These random luminances were used as input to the 
function setupblendhibit(rgba0,rgba1). This function set up a 
register combiner that would display either constant color rgba0 
or rgba1 depending on the high bit of texture0, and would blend 
the color (rgba0 or rgba1) with texture1. 

We found that setting the alpha channel of rgba0 and rgba1 to 
1/8 provided a reasonable balance of colors after twelve 
successive blending operations. These blends were accumulated 
in tex_corran (corner random). Note that this loop involves 
12 randoms + 9 shifts = 21 passes, which expands to 168 passes 
for all eight corners.  

   
 (a) (b) 

Figure 11. Heavily correlated random values generated 
by blending random colors depending on the bits of the 

integer lattice value (a). Using (a) to index into a random 
value reduces the correlation (b). 

The resulting tex_corran still exhibited some coordinate 
correlation, which we reduced with an additional eight single-bit 
randomizations on tex_corran, yielding tex_corranran. This step 
resulted in an additional 8 randoms + 7 shifts = 15 passes per 
corner for a total of 120 passes. 

Due to the successive blending, the register combiner noise 
function is Gaussian distributed. A normal distribution could be 
recovered through a histogram equalization step, though such 
operations are not yet accelerated on consumer-level hardware. 
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Figure 12. Noise function resulting from register 
combiners. 

5.4 Results 
The register combiner implementation resulted in 375 passes, 
but runs in .77 seconds at a resolution of 2562 on a GeForce2 
using version 12.0 of the “developer” driver. This results in a 
1.3 Hz performance, which is suitable for interactive 
applications but is not yet real-time. A discussion of the reasons 
why the performance is slower than necessary is given later in 
Section 6.2. 

The resulting noise is shown in Figure 12. The NVidia 
implementation blended random colors, yielding Gaussian noise, 
whereas the reference and SGI implementations produced white 
noise. If desired, one could redistribute the Gaussian noise into 
white noise with a fixed histogram equalization step, though no 
such operation is currently accelerated on NVidia GPUs. 

6. Discussion 
The implementation of the Perlin noise function on SGI and 
NVidia GPUs has been successful in that we found it was 
feasible, but disappointing in that subtle hardware limitations 
prevent truly efficient implementations. These limitations 
included the limited precision available in the 8 bit per 
component framebuffer, the delay in performing a 
CopyTexSubImage transfer from the framebuffer to the texture 
memory, and the lack of acceleration of loginal operation blend 
modes such as exclusive-or. The process has also been 
illuminating, and has inspired us with several ideas for further 
advancement in hardware design to overcome these limitations 
and better support efficient multipass pixel shading. 

6.1 Limited Precision 
Most of the per-pixel operations need only a single channel, and 
set R=G=B since this is the most efficient mode of operation. 
The register combiners can be implemented to a higher 
precision, but their input and output precision is limited to the 
framebuffer precision. 

The register combiners currently support a conversion between 
8-bit unsigned external values and 9-bit signed internal values. 
These conversions perform the function f(x) = 2x – 1 on an 
input, and f-1(x) = 0.5x + 0.5 on the output, where x is each of the 
components of an RGBA pixel. 

We could likewise create a packed luminance conversion to the 
input and output of the register combiners. The input mapping 
would perform the function L = R << 16 | G << 8 | B yielding a 
24-bit luminance value on which one could perform scalar 
register combiner operations. Internally, the register combiner 
could maintain a 16.8 fixed-point format, and support operations 
such as addition, subtraction, multiplication and division using 
the extended range and precision of the new format. Once the 
operation is completed, the result may then be unpacked into the 

8-bit framebuffer with the output mapping R = L >> 16, G = 
(L>>8)&0xff and B & 0xff. 

6.2 Swizzle-Blits 
Given the number of passes required, the register combiner 
performance was astounding, currently 1.3 Hz on a GeForce2 
graphics accelerator at a resolution of 256x256. Profiling the 
code revealed that the main bottleneck was the time it took to 
save the framebuffer to a texture, adding an average of 2 ms per 
pass for 354 of the passes. OpenGL currently does not support 
rendering directly to texture, and the register combiner does not 
allow the framebuffer to be used as an input. 

Whereas framebuffer memory is organized in scanline order, 
modern texture memory is organized into blocks and other 
patterns to better capitalize on spatial coherence. This coherence 
allows texture pixels to be more effectively cached during 
texture mapping operation. However, in this case the layout of 
texture memory is counterproductive. The cost to “swizzle” the 
memory into the clustered arrangement when saving a 
framebuffer image to texture memory dominates the execution 
time of iterative multipass shaders. 

We have verifies this delay with a profile of the code, revealing 
that our CopyTexSubImage operations were taking longer than 
any other component of our shader. We also experimented with 
various resolutions and found a direct 1:1 correspondence 
between the number of pixels and the execution time. 

Perhaps a mode can be incorporated into the graphics 
accelerator state that optionally defeats the spatial-coherent 
clustering of texture memory. This mode could be enabled 
during multipass shader evaluation, to eliminate the shuffled 
memory delay incurred during the CopyTexSubImage 
operations. 

Alternatively, upcoming modes that support rendering directly 
to texture may also ameliorate this problem. 

6.3 Logical Blend Modes 
Blending modes such as exclusive-or and logical shifts left and 
right are extremely valuable when generating random values. 
Unfortunately these operations are not accelerated under current 
graphics drivers. Such operations are of the simplest to 
implement in hardware, and we suspect they will become 
accelerated as demand for them increases. 

7. Conclusion 
We have investigated the implementation of the Perlin noise 
function as a multipass pixel shader. We have developed a 
general algorithm and implemented it using the accelerated 
features from two different manufacturers. 

The SGI implementation based on PixelTransfer and PixelMap 
operations remains faster than the NVidia implementation based 
on register combiners. However, we expect the additional 
register combiner stages available in the upcoming GeForce3 
will close this gap. 

The process of implementing a general-purpose procedure using 
GPU accelerated operations has been illuminating. We are 
excited by the prospect of using the GPU as a SIMD-based 
supercomputer. However, this vision has been stifled by the low 
precision available in the buffers and processors, and the latency 
due to slow framebuffer-to-texture memory transfers. We 
believe both problems can be solved with moderate changes to 
existing graphics accelerator architectures, and have suggested 
possible solution implementations. 
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Our noise implementation uses linear interpolation of random 
values on an integer lattice. One can also implement cubic 
interpolation at the expense of four extra passes. The function 
SCURVE(u) = 3u2 – 2u3 can also be expressed as uu(3-2u). The 
function 1/4 SCURVE(u) can be implement by modulating the 
images u, u and 3/4 – 1/2 u. Note the latter is necessarily scaled 
by ¼ to fall within the legal [0,1] OpenGL range. This result can 
then be scaled by 4 (either through PixelTransfer or a register 
combiner) to yield SCURVE(u).  

We have investigated numerous methods for enhancing the 
performance of these multipass pixel shaders. The 2-D s-t plane 
examples suggested that image processing applications such as 
translation and convolution could be applied, but such 
techniques would not work for arbitrarily shaped objects in the 
solid texture coordinate image, such as in Figure 13. 

  
 (a) (b) 

Figure 13. Application of the noise function (b) on a 
sphere of solid texture coordinates (a). 

The source code and an executable for both implementations of 
the Perlin noise pixel shader can be found at: 

http://graphics.cs.uiuc.edu/~jch/mpnoise.zip 
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