
Chapter 6

Procedural Solid Texturing
John C. Hart

Proc. Eurographics/SIGGRAPH Graphics Hardware Workshop, Aug. 1999, pp. 45-53.

 10-1

Antialiased Parameterized Solid Texturing Simplified for Consumer-
Level Hardware Implementation

John C. Hart, Nate Carr, Masaki Kameya

Washington State University

Stephen A. Tibbitts, Terrance J. Coleman

Evans and Sutherland Computer Corp.

Abstract
Procedural solid texturing was introduced fourteen years ago, but
has yet to find its way into consumer level graphics hardware for
real-time operation. To this end, a new model is introduced that
yields a parameterized function capable of synthesizing the most
common procedural solid textures, specifically wood, marble,
clouds and fire. This model is simple enough to be implemented
in hardware, and can be realized in VLSI with as little as 100,000
gates.

The new model also yields a new method for antialiasing
synthesized textures. An expression for the necessary box filter
width is derived as a function of the texturing parameters, the
texture coordinates and the rasterization variables. Given this
filter width, a technique for efficiently box filtering the
synthesized texture by either mip mapping the color table or using
a summed area color table are presented. Examples of the
antialiased results are shown.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture --- Graphics processors; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism --- Color, shading,
shadowing and texture.
Keywords: antialiasing, hardware. procedural texturing, solid
texturing.

1. INTRODUCTION
Peachey [1985] and Perlin [1985] introduced procedural solid
texturing as a method for simulating the sculpture of objec ts
(of arbi t rary detai l and genus) out of a sol id
mater ia l such as wood or s tone, and a lso the
s imula t ion of the na tura l e lements of f i re , water

(waves) , a i r (c louds) and ear th (ter ra in and planets).
Figure 1 through Figure 6 illustrate the variety of images that can
be synthesized using procedural solid textures.

Solid texturing creates the illusion that a shape is carved out of a
solid three-dimensional substance. The details of a solid texture
align across edges and corners of an object surface. For example
the grain features on the teapots in Figure 1 and Figure 2 align
with the block of material out of which they were sculpted.
Depending on the detail and genus of the object, similar alignment
of 2-D image texture maps can be very tricky [Peachey, 1985].

Procedural textures require much less memory than stored image
textures, and unlike image textures their resolution depends only
on computation precision. The sky and water in Figure 3 extend to
infinity with non-repeating procedural detail. The fire in Figure 4
is procedurally textured on a single polygon. Zooming into the
coastlines of the planet in Figure 5 reveals an arbitrarily intricate
level of detail depending on the number of noise functions used in
its generation. Figure 6 simulates the reflection of the moon on
water without ray tracing or environment mapping by clever
manipulation of the color maps of a procedural texture.

While this popular, powerful and flexible technique is found in
nearly all high-quality photorealistic rendering packages, it has
not yet found its way into consumer-level hardware for real-time
rendering. Procedural solid textures would greatly enrich the
quality of some of the 2D-image-textured graphical elements
found in 3-D interactive games and virtual worlds, not only with
wooden and stone objects, but with expansive terrain, oceans and
skies filled with non-repeating detail.

Hardware implementation would also support the real-time
animation of procedural textures. Varying the parameters of a
procedure yields a dynamic animated texture. Depending on the
paths chosen through parameter space, these animations can
smoothly loop or be non-repeating. These animated textures
would support such effects as ripples forming in marble, fire
exploding, waves gently rising and falling, clouds billowing, and
continents forming on planets.

1.1. Previous Work
Some have identified memory bandwidth as a major obstacle in
increasing the performance of real-time graphics hardware. While
memory size grows at a rate of 50% per year (one thousandfold
over the past two decades), memory bandwidth only grows 12%
per year (only tenfold over the past two decades) [Torborg &
Kajiya, 1996]. Texture mapping in particular relies heavily on
memory, and the bandwidth of this memory is the primary factor
limiting the number and complexity of 2-D image textures

Addresses: WSU, School of EECS, Pullman. WA 99164-2752
{hart,ncarr,mkameya}@eecs.wsu.edu.
E&S (Seattle), 33400 8th Ave. S. #136, Federal Way, WA 98003

{stibbitt,tcoleman}@es.com.

6 - 1

 10-2

available in real-time. Some have overcome the memory
bandwidth limitation at the expense of increasing memory size to
hold multiple redundant copies of the texture [Akeley, 1993],
[Montrym, et al., 1997]. Others relaxed the memory bandwidth
limitation by reducing the size of the textures via compression
[Torborg & Kajiya, 1996],[Beers, et al., 1996]. Procedural
texturing hardware is a way of increasing the performance of
current graphics hardware by augmenting its existing pre-stored 2-
D image textures with a variety of procedural solid textures
without impacting the hardware’s memory requirements.

Accessing a procedural texture requires more time than an image
texture as the texture value must be computed instead of accessed
from memory. Hence, real-time procedural texturing has
previously only been available in high-end parallel graphics
systems. For example, Pixel Planes [Rhoades, et al., 1992],
PixelFlow [Molnar, et al., 1992] and the Pixel Machine [Potmesil
& Hoffert, 1989] all supported real-time procedural texturing.
Indeed, PixelFlow now has a fully-developed procedural shading
system, including support for procedural solid texturing [Olano &
Lastra, 1998].

Solid texturing is also not new to hardware implementation. The
Reality Engine, for example, has the memory bandwidth
necessary to support prestored solid texture volumes up to a
maximum resolution of 256 x 256 x 64 texture elements [Akeley,
1993]. The InfiniteReality graphics system [Montrym, et al.,
1997] has 1GB of physical texture memory that could be
organized into a 10243 pre-stored solid texture volume.

Antialiasing procedural textures is more complicated than for
stored image textures. Whereas MIP maps [Williams, 1983] and
summed-area tables [Crow, 1984] can be precomputed and stored
for image textures, procedural textures are generated on the fly
and such antialiasing techniques can not be readily applied.

Supersampling is a common technique for antialiasing procedural
textures but directly increases rendering time. For example,
supersampling was the method used to inhibit aliasing in
PixelFlow’s procedural textures [Olano & Lastra, 1998].
Bandlimiting the procedural texture is also an effective technique
[Norton, et al., 1982], but works easily and efficiently only on
procedures based completely on spectral synthesis.

1.2. Overview
Section 2 introduces a texture model capable of synthesizing the
most commonly used procedural textures (in fact all textures in
Figure 1 through Figure 6) but concise enough to implement in
hardware. The identification of this model allows the textures to
be specified by parameters to a fixed procedure which can be
simplified enough to be implemented in present-day VLSI
technology.

Section 3 introduces a new method for antialiasing procedural
textures based on computing a first order approximation of the
color index variance over the area of a pixel. This approximation
allows the antialiasing method to simulate an area sample of the
textured image faster than supersampling. Unlike bandlimiting
(which is a pre-filter), the new method is a post-filter that does not
affect the parameters of the generation of the texture.

Section 4 exhibits the results of this model, exploring the various
tradeoffs necessary to feasibly implement the model without
significantly compromising image quality. An effective but
reduced model can be implemented with as few as 100,000 gates,
which is about 10% of the real-estate of modern consumer-level
graphics processors.

Figure 1: Carved wooden teapot.

Figure 2: Marble teapot sculpture.

Figure 3: Seascape.

Figure 4: Fire.

Figure 5: Planet.

Figure 6: Moonrise.

6 - 2

 10-3

2. A MODEL FOR PROCEDURAL
TEXTURING

Various formalisms on procedural solid texture specifications
have been proposed. Perhaps the most pervasive has been the
Renderman shading language [Hanrahan & Lawson, 1990], but
there are also other alternatives (e.g. [Abram & Whitted, 1990]).
We propose a concise class of procedures capable of synthesizing
a variety of textures and effects, but simple and direct enough to
facilitate hardware implementation. The procedures are
parameterized by values that completely control the type and
character of the texture this model generates, such that these
parameters (and the texture’s color map) are the only
representation of the texture that need be stored.

2.1. Analytical Model
Procedural solid texture mapping uses a mapping of the form p:
R3→R4 from solid texture coordinates s = (s,t,r) into a color space
(R,G,B,α). (We follow the convention of using boldface to
indicate vector values and functions, and italics to indicate scalar
values and functions.) Some texture mapping techniques also
include a homogeneous texture coordinate [Segal, et al., 1992] but
it remains to be explored how such a coordinate benefits
procedural solid texturing. Often procedural solid textures
incorporate a color map. In such cases, p = c ο f consisting of an
implicit classification of the texture space f: R3→R and a color
map c: R→ R4.

For a given polygon, the texture coordinate functions s(x) =
(s(x),t(x),r(x)) indicate the range of the texture coordinates with
respect to screen coordinates x=(x,y). Hence, the procedural
texture can be evaluated with respect to screen coordinates as p(x)
= c o f o s(x).

We restrict the texture map p to the family of functions

 ,))(()()(




 += ∑ sscsp i

i
i Tnaq (1)

where q: R3→R is a quadric classification function and n: R3→R
is a noise function. The combination of quadrics and noise yields
a specification sufficient to generate a wide variety of commonly
used procedural solid textures. The affine transformations Ti
control the frequency and phase of the noise functions.

2.1.1. Color Map

The color map c associates a color (R,G,B) with each index
returned by the classification function f. The color map c is
typically implemented as a lookup table

 c(f) = clut[round(n modclamp(f))] (2)

where clut[] is an array of n RGB color vectors. Color map
indices returned by f are, depending on a flag parameter, either
clamped to [0,1] or taken modulo one to map within the bounds of
the lookup table.

2.1.2. Quadric Classification Function

The function q: R3→R in (1) is the quadric

JIrHrGtFtrEt

DsCsrBstAsrtsq

+++++
++++=

222

222),,(
22

2
 (3)

which can more conveniently be represented homogeneously as

 []




































==

1

1,,,)(
r

t

s

JIGD

IHFC

GFEB

DCBA

rtsQq T sss
 (4)

treating s as a homogeneous column vector [Blinn, 1982].

The quadric function supports the spherical, cylindrical,
hyperbolic and parabolic classification of space for texturing.

2.1.3. Noise Function

The function n: R3→R in (1) is an implementation of the Perlin
noise function [Perlin, 1985]. The values ai control the amplitude
of the noise function, whereas the affine transformation Ti controls
the frequency and phase of each noise component. There are a
fixed number of noise components available, and this limit is
typically between four and eight in typical texturing examples.

2.2. Texture Examples
The space of solid textures spanned by (1) covers the textures
most commonly found in procedural solid texturing. The four
fundamental procedural solid textures are: wood, clouds, marble
and fire.

2.2.1. Wood

The texture model generated the wood texture shown in Figure 1,
by using the quadratic function to classify the texture space into a
collection of concentric cylinders [Peachey, 1985]. Waviness in
the grain is created by modulation of a noise function

).,4,4(),,(22 rtsntsrtsf ++= (5)

The color map consists of a modulo-one linear interpolation of a
light “earlywood” grain and a darker “latewood” grain. The
quadric classification makes the early rings wider than the later
rings, which is to a first approximation consistent with tree
development.

2.2.2. Clouds

Cloudy skies are made with a fractal 1/f sum of noise

).2(2)(
4

1

ss i

i

inf ∑
=

−= (6)

The texture described by (6) is mapped onto a very large high-
altitude polygon parallel to the ground plane in Figure 3, resulting
in clouds that become more dense in the distance due to
perspective-corrected texturing coordinate interpolation. The color
map is a clamped linear interpolation from blue to white. The
water is the same procedural texture with a blue-to-black
colormap.

2.2.3. Marble

Marble uses the noise function to distort a linear ramp function of
one coordinate [Perlin, 1985]

)).2,2,2(2),,(
4

1

rtsnrrtsf iii

i

i∑
=

−+= (7)

6 - 3

 10-4

The color map consists of a modulo-one table of colors from a
cross section of the marble. Figure 2 demonstrates the marble
texture on a cube, and the solid texturing again aligns the texture
details on the edges of the cube. Continuously increasing the noise
amplitude animates the formation of the ripples in the marble,
simulating the pressure and heating process involved in the
development of marble [Ebert, 1994].

2.2.4. Fire

Like marble, fire is simulated by offsetting a texture coordinate
with fractal noise [Musgrave & Mandelbrot, 1989]. The fire
example shown in Figure 4 was textured onto a single polygon
and modeled as

)).2,0,2(2),,(
4

1

�
++= ∑

=

− rsnrrtsf ii

i

i (8)

Continuously varying the noise phase term � animates the fire
texture.

2.2.5. Planet

A wide variety of different worlds, such as the one shown in
Figure 5, can be generated by applying fractal textures, such as
(6), to spheres. The color map for such images resembles a
cartographic “legend.” The cloudy atmosphere was rendered on
the same sphere “over” the planet in a second pass using a color
map with varying opacity values.

2.2.6. Moonrise

The moonrise in Figure 6 was rendered completely using
synthesized textures, without any other kind of shading. The
moon is a sphere with a fractal texture. The clouds were rendered
on a single polygon perpendicular to the viewer and imposed over
the moon. The water was rendered with a single polygon
extending off to infinity. The highlight on the water was faked
with two triangles textured using (7) with a partially transparent
color map.

3. ANTIALIASING
Image texture aliases occur due to texture magnification and
minification. Texture magnification occurs when the texture
image itself contains too few samples such that a single texture
element projects to several screen pixels. Text ure minification
results when the projection of the texture image covers too few
pixels and several texture elements project to the same screen
pixel. Modern texture mapping hardware inhibits aliases due to
texture magnification by bilinear or bicubic interpolation of the
appropriate texture elements. Such hardware inhibits texture
minification aliases through the use of a MIP map that
precomputes lower resolution versions of the texture, and samples
the MIP map using trilinear or tricubic interpolation of
neighboring pixels at the appropriate resolution level.

Aliases of synthesized textures do not fall into such categories
since there is no fixed image resolution. Each such texture will
exhibit some form of aliasing if sampled below twice the highest
frequency in the texture’s spectrum, which may be infinite for
some textures. Hence, procedural textures do not suffer from
magnification aliases, but require filtering to remove frequencies
above the Nyquist limit to avoid minification aliases.

Synthetic textures could be antialiased by precomputing them,
storing the results in MIP-mapped image textures. However, such

an antialiasing technique would remove the flexibility such
textures provided, and would also consume a tremendous amount
of space when used on solid textures. Band limiting the output of
the texture map removes aliases by prefiltering the texture before
sampling [Norton, et al., 1982], but is difficult to implement in a
generalized texturing environment. Supersampling the texture
degrades time perfomance and arbitrarily increases the complexity
of the hardware implementation.

Instead, we analyze the function p(x) that textures pixels to
determine the width of a box filter that would eliminate the
aliasing frequencies from the spectrum of the synthesized texture.
Several have described techniques for antialiasing procedural
textures by antialiasing the textures’ colormaps [Rhoades, et al.,
1992], [Worley, 1994]. In the next section, we provide a more
rigorous mathematical justification and derivation of the
technique, resulting in an ideal filter width for the texture which is
used to box filter to the procedural texture by averaging the
elements of the color table that the texture procedure generates
over the support of the filter.

3.1. Texture Filtering via Color Table
Filtering

Consider a domain D on the screen consisting of pixels whose
color is determined solely by the projection of a single
procedurally texture mapped polygon. We assume the color map
indices generated by the procedural texture are continuous across
the polygon. Let a = minD f(x) be the least possible color map
index used in the pixels in D, and let b = maxD f(x) be the greatest
such index. Then we assume

ab

dff

d

d b

a

D

D

−
≈ ∫

∫

∫)()(c

x

xxp
 (9)

the average color in D is sufficiently approximated by the average
of the color table entries between indices a and b. As shown in
Figure 7, we provide a first-order approximation of the bounds a
and b used in the RHS of (9) by differentiating the texture
function f(x) and setting a = f(x) - ||∇f(x)||/2 and b = f(x) +
||∇f(x)||/2. If either a or b or both fall outside the bounds of the
color table, then the boundary of the color table is extended using

x

 f(x)
1

df/ dx1

df/dx

pixels

clut
indices

Figure 7: The derivative df/dx approximates the extent of the color

map indices one pixel in either direction. Half of the derivative
estimates the variation in color map indices half of a pixel in either

direction.

6 - 4

 10-5

either the modulo or clamp operators according to the modclamp
flag.

The remainder of this section describes this differentiation in
detail, applies efficient methods for integrating the color map to
determine the numerator of the RHS of (9), and demonstrates the
results.

3.2. Differentiating the Texture
Procedure

The magnitude of the gradient ∇f = (∂f/∂x,∂f/∂y) indicates the
width of the appropriate filter on the color map. From (1), we
have that the gradient of f is

i

i
i

naqf ∇+∇=∇ ∑ (10)

where ni is the ith noise function: n(Ti(s)). From (3) we have that
the gradient of q is

[]

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂



















=

=






+=∇

00

 0 2

2

)(

x
r

x
r

y
t

x
t

y
s

x
s

JIGD

IHFC

GFEB

DCBA

rts

d
d

Q

Q
d
d

d
d

Qq

T

T

T

x
s

s

s
x
s

x
s

sx (11)

since Q is symmetric.

The derivative of the noise terms are given by

x
s

s
xs

xs
d
d

T
d
Tdn

aTna i
i

iii

))((
))((=∇ . (12)

The gradient dn/ds = [∂n/∂s ∂n/∂t ∂n/∂r 0] is also known as the
function DNoise [Perlin, 1985].

The value ds/dx is the Jacobian of the texture coordinates s with
respect to the screen coordinates x. The values of ds/dx is
computed during the scan conversion of the polygon as the
perspective-corrected pixel increments. The values of ds/dy can be
computed for each triangle using the plane equation and
performing a perspective-correcting division.

3.3. Filtering the Color Table
The filtering of color map values can be evaluated efficiently
using either a color table MIP map or a summed area color table.

3.3.1. Color table MIP map

MIP maps are commonly used in standard texturing systems to
prefilter image textures and sample from the prefiltered texture
when the texture is minified (insufficiently sampled by the image
pixels) [Williams, 1983].

One may also create a MIP map of a color table. The process
begins with the n-element full resolution color table clut1[]. Then
neighboring colors in the table are averaged to create a half-
resolution n/2-element color table clut2[]. This process is repeated
until a one-element color table clutlg n[] results, representing the
average color of the entire color table.

Given a filter width w, let i = floor(lg w). Then the proper
resolution color table from the mip map is selected and the color
indexed is returned as clut i[f/i] (or more accurately the linear or
cubic interpolation of the values of clut i[f/i] and clut i+1[f/(i+1)]).

(a)

(b)

Figure 8: Zone plate aliased (a) and filtered (b).

6 - 5

 10-6

3.3.2. Summed area color table

Image textures are also antialiased efficiently using the summed
area table [Crow, 1984]. A summed area table transforms
information into a structure that can quickly perform integration,
specifically a box filtering operation.

The summed area color table consists of a table where each entry
consists of the sum of all elements in the color table including the
current entry’s element

 ∑
=

=
i

j

ji
0

][][clutcsat (13)

or recurrently as csat[i] = csat[i-1] + clut[i]. The current entry’s
element can be recovered by subtracting the previous summed
area element from the current summed area element as

 clut[i] = csat[i] – csat[i-1] (14)

for i > 0. Box filtering the color map entries for a given filter
width is computed as

 (csat[f + w/2] - csat[f - w/2])/w. (15)

Special care must be taken for the cases where the support of the
filter crosses the bounds of the color table. For the following cases
let N is the number of entries in the color table.

• w ≥ N: Return the average of the entire color map: csat[N-1]/N.

• f + w/2 ≥ N:

mod: (csat[f + w/2 – N] + csat[N-1] – csat[f – w/2 - 1])/w.
clamp: ((f+w/2–(N-1))clut[N-1] + csat[N-1] – csat[f–w/2-1])/w.

• f - w/2 < 0:
mod: (csat[f + w/2] + csat[N-1] - csat[N + f - w/2 - 1])/w.
clamp: (-(f - w/2) clut[0] + csat[f + w/2])/w.

An alternative to performing the above computations at render
time is to use the above formulae to precompute a color summed
area table three times as long, ranging from –N to 2N – 1.

3.4. Examples
The derivations in Section 3.2 show that procedural textures
produce aliasing artifacts from three possible places.
1. Quadric Variation: The quadric classification changes too

quickly: ||dq/ds|| too large.
2. Noise Variation: The noise changes too quickly:

ai||dn(Tis)/ds|| too large.
3. Texture Coordinate: The texture coordinates change too

quickly: ||ds/dx || too large.
Each of these components can create a signal containing
frequencies exceeding the Nyqist limit of the pixel sampling rate.

Figure 8 demonstrates quadratic variation aliasing (type #1) with a
zone plate constructed from the procedure

 22 5050),,(tsrtsf += . (16)

rendered with an extremely harsh “zebra” color map. Analysis of
(16) shows that the aliases are governed by ∇f = dq/ds ds/dx, with
dq/ds = (100 s,100 t). The zone plate was plotted at a resolution of
2562 and over the unit square in texture coordinate space, hence
∂s/∂x = ∂t/∂y = 1/256. Setting the colormap filter width to (100 s
+ 100 t)/256 reduces the aliases to the point of being barely
noticable.

Noise variation aliases (type #2) happen in concert with texture
coordinate aliasing (type #3), since in a single scene the frequency
and amplitude of noise is constant, and only varies across the
image with distance from the viewer. For example, the clouds on
the horizon in Figure 3 do not alias near the horizon because the
filter width is scaled in part by the noise function derivative, and
increases as the magnitude of ds/dx increases. In the distance as
the projection of the noise reaches the Nyquist limit, the filter
width reaches the size of the entire color table, yielding a
homogeneous hazy blue color.

Figure 9 illustrates all three types of texture aliasing on a torus.
The centerline of the woodgrain rings passes through the left side
of the torus, creating grain of increasing frequency on the right.
Hence the filterwidth increases from the left to the right side of

(a)

(b)

(c)
Figure 9: Torus rendered with wood texture (a) is antialiased

(b) using filterwidths shown in (c) ranging from one (black) to

256 (white).

6 - 6

 10-7

the torus demonstrating quadric variation (type #1) aliasing. The
amplitude and frequency of the noise term remains constant over
the torus object, and so causes a uniform increase of the
filterwidth due to noise variation (type #2) aliasing. The polygons
on the silhouette of the torus have larger filterwidths than their
neighbors, demonstrating texture coordinate (type #3) aliasing.

4. Results
The goal of the previous sections was to simplify the synthesis of
antialiased solid textures. In this section, we describe and
demonstrate software and simulated hardware implementations,
and document some of the tests performed in the process.

4.1. Software Implementation
The basic tool of this research is a simulator that implements in
fixed point arithmetic the texture synthesis model along with its
associated filtering and color table mechanisms, as well as a
prototype rasterizer. This simulator is responsible for all of the
textured images in this paper. While the textures themselves were
antialiased, the polygon edges were not. In fact, we avoided the
temptation to use many small polygons to create smoother
surfaces and silhouettes in order to better demonstrate the ability
of procedural textures instead of geometry to provide visual detail.

This simulator serves as an antialiasing procedural texturing
shader, and could be incorporated as a plug-in to existing software
rendering systems. This simulator also serves as the basis of an
extension to OpenGL, which already supports solid texture
coordinates. The current implementation uses the OpenGL
feedback buffer to collect the transformed polygons in screen
coordinates for rasterization by the simulator [Carr & Hart, 1999].
The resulting textured raster image generated by the simulator is
then combined with the raster image generated by OpenGL’s
rasterization engine using the associated z-buffers to negotiate
visibility. Hence the simulator integrates synthesized solid
textures into OpenGL’s existing texturing, lighting and modeling
system.

4.2. Hardware Implementation
A complete implementation of the model can be realized in VLSI
with 1.25 million gates, resulting in the image quality shown in
Figure 1 through Figure 6. A reduced and approximated version
of the texture synthesis model can be implemented in as few as
100,000 gates. Sample images from such an implementation are
exhibited in Figure 11.

Overall, the compromises in image quality necessary to
implement the model in 100,000 gates appear minor, and the
effects are very subtle. Some texture coordinate aliasing is
noticable on the polygons of the teapots closest to the viewer. The
character of the water, sky, planet and moonrise are slightly
smoother due to a reduction in the number of noise function
evaluations. The teapots and fire have noticable artifacts due to a
linear approximation to the noise function.

4.3. Precision Tests
Several tests have been conducted to determine the texture
coordinate precision necessary to avoid magnification aliases
[Kameya & Hart, 1999]. Figure 10 shows the results of tests with
a 5122-pixel scene of a coarsely-triangulated objects computed
using a variety of texture coordinate precisions.

4.4. Animation Tests
The seascape was animated to determine the effectiveness of the
antialiasing technique. The seascape scene (Figure 3) was the
most taxing on the colormap filtering algorithm because it
textures infinite planes. Two animations of flights into the horizon
were generated, one with and one without filtering. The unfiltered
animation resulted in severe aliasing in the form of distracting
noise near the horizon. The filtered animation significantly
reduced these aliases, although some very slight flicker is still
observable. This subtle flicker seems to be an inevitable
compromise of the colormap-averaging filter in that removing the
flicker results in textured planes that get too blurry too soon
before reaching the horizon.

4 bits

5 bits

6 bits

7 bits

8 bits

16 bits

Figure 10: The effect of numerical precision on texture appearance.

6 - 7

 10-8

The flame shown in Figure 11 was also animated to determine
how effectively they would appear in the hardware
implementation. The rectilinear grid basis of the noise functions is
clearly evident due to the reduced number of noise octaves and
the tri-linear interpolation. However the animation does clearly
resemble burning flames and would sufficently represent such in
typical consumer real-time graphics applications.

5. Conclusion
We set out to formalize a model for synthesizing popular
procedural solid textures, and analyzed this model to derive an
effective antialiasing scheme and an efficient hardware
implementation. We showed that the model is capable of
simulating the common procedural text ures of wood, clouds,
marble and fire, but is also simple enough to adequately
implement in hardware.

Often textures are animated, to simulate fire, billowing clouds and
other dynamic effects. Animation of texture map images requires
a significant amount of texture memory and fast CPU access to
the texture memory. The procedural texturing hardware will be
capable of real-time animation of clouds billowing, fire burning
and marble forming.

PixelFlow defered shading until after all of the rasterization was
completed [Molnar, et al., 1992]. It stored all of the shading
information in the frame buffer, such that each pixel was shaded
only once regardless of the number of polygons that overlapped it.
The procedural texturing hardware described in this paper could
be used to texture such pixels if the texture index, coordinates and
Jacobian were stored in the framebuffer.

5.1. Future Work
This work only scratches the surface of procedural texturing
hardware. Procedural texturing inexpensively overcomes the
fundamental graphics texture rendering problems of memory
bandwidth. With the success of this particular model, we expect
other more sophisticated texturing models will be developed. The
connotation of procedural texturing is that an actual program is
run to generate the texture. While our model uses a fixed program
with parameters controlling the character of its output, future
procedural texturing hardware might be designed to permit
uploading of texture programs. While such machines already exist
(e.g. the Pixel Machine, Pixel Planes) there is no restriction on the
texturing programs. Hence the user is burdened responsibility of
antialiasing. Restricting the language used to write a procedural
shader can increase the quality of its output, as it allows the
hardware to better analyse the program to predict the aliases its
output may contain, and automatically take measures to inhibit
those aliases.

The antialiasing technique was derived from the model, but there
is nothing specific to the model that makes this antialiasing
technique work. Hence the color map antialiasing technique could
be generalized and applied to any procedural texture so long as
the derivatives are available. Computation of these derivatives is
straightforward for this simple model, but could be quite
complicated for true procedural textures described in a
programming language. The error associated with approximation
(9) should also be investigated further.

The colormap of the planet in Figure 5 is not continuous, jumping
from a sandy color to an aquamarine to mark the coastlines of the
world. As the filterwidth increases due to the noise contributions,
this sharp coastline diffuses into a muddy color inbetween. A

Figure 11: 100,000 gate simulations of Figure 1 through Figure 6.

6 - 8

 10-9

more sophisticated antialiasing system might mark such jump
discontinuities in the colormap and affect the filterwidth in these
areas to further inhibit this artifact.

The noise function used was adapted from Rayshade [Skinner &
Kolb, 1991], which uses cubic blending functions on a lattice of
random numbers. This particular version lends itself to efficient
hardware implementation, but the details of such an
implementation are left as future work.

Procedural hardware need not be limited to just texture.
Procedural hardware bump mapping, displacement mapping and
shading in general seem to be logical extensions of this work.
Recently, minor extensions to existing graphics pipelines for
increased shading language support have been proposed [McCool
& Heidrich, 1999]. Further extension might lead to the generation
of procedural geometry that would overcome the bandwidth
problem of transmitting polygons from the host to the graphics
processor.

5.2. Acknowledgments
This research is supported in part by Evans and Sutherland
Computer Corp., with a matching grant by the Washington
Technology Center. This research was performed in part using the
facilities of the Image Research Laboratory in the School of EECS
at Washington State University.

Bibliography
[Abram & Whitted, 1990] Abram, Gregory D. and Turner

Whitted. Building block shaders. Computer Graphics
24(4), (Proc. SIGGRAPH 90), Aug. 1990, pp. 283-288.

[Akeley, 1993] Akeley, Kurt. Reality engine graphics. Computer
Graphics 27, Annual Conference Series, (Proc.
SIGGRAPH 93), July 1993, pp. 109-116.

[Beers, et al., 1996] Beers, Andrew C., Maneesh Agrawala and
Navin Chaddha. Rendering from Compressed Textures.
Computer Graphics , Annual Conference Series, (Proc.
SIGGRAPH 96), Aug. 1996, pp. 373-378.

[Blinn, 1982] Blinn, James F., A generalization of algebraic
surface drawing. ACM Transactions on Graphics 1(3),
July 1982, pp. 235-256.

[Carr & Hart, 1999] Carr, Nate and John C. Hart. APST
Antialiased Procedural Texturing Interface for OpenGL.
Proc. Western Computer Graphics Symposium. March
1999, pp. 46-55.

[Crow, 1984] Crow, Franklin C. Summed area tables for texture
mapping. Computer Graphics 18(3), (Proc. SIGGRAPH
84), July 1984, pp. 137-145.

[Ebert, 1994] Ebert, David. Animating Solid Spaces: Animating
Solid Textures. Chapter in: Texturing and Modeling: A
Procedural Approach, Ebert, D., Ed. Academic Press
Professional, Boston, 1984, pp. 165-170.

[Hanrahan & Lawson, 1990] Hanrahan, P. and J. Lawson. A
language for shading and lighting calculations.
Computer Graphics 24(4), (Proc. SIGGRAPH 90), Aug.
1990, pp. 289-298.

[Kameya & Hart, 1999] Kameya, Masaki and John C. Hart. Bit
width necessary for solid texturing hardware. Proc.
Western Computer Graphics Symposium. March 1999,
pp. 121-126.

[Molnar, et al., 1992] Molnar, Steven, John Eyles and John
Poulton. PixelFlow: High-speed rendering using image
composition. Computer Graphics 26(2), (Proc.
SIGGRAPH 92), July 1992, pp. 231-240.

[Montrym, et al., 1997] Montrym, John S., Daniel R. Baum,
David L. Dignam and Christopher J. Migdal.
InfiniteReality: A real-time graphics system. Computer
Graphics, Annual Conference Proceedings, (Proc.
SIGGRAPH 97), Aug. 1997, pp. 293-302.

[Musgrave & Mandelbrot, 1989] Musgrave, F. Kenton and Benoit
B. Mandelbrot. Natura Ex Machina. IEEE Computer
Graphics and Applications 9(1), Jan. 1989, p. 4-7.

[McCool & Heidrich, 1999] McCool, Michael D. and Wolfgang
Heidrich. Texture Shaders. Proc. Eurographics-
SIGGRAPH Graphics Hardware Workshop, Aug.
1999.

[Norton, et al., 1982] Norton, Alan, Alyn P. Rockwood and
Phillip T. Skolmoski. Clamping: A method for
antialiased textured surfaces by bandwidth limiting in
object space. Computer Graphics 16(3), (Proc.
SIGGRAPH 82), July 1982, pp. 1-8.

[Olano & Lastra, 1998] Marc Olano and Anselmo Lastra. A
Shading Language on Graphics Hardware: The
PixelFlow Shading System. Computer Graphics, Annual
Conference Proceedings, (Proc. SIGGRAPH 98), July
1998, pp. 159-168.

[Peachey, 1985] Peachey, Darwyn. R. Solid texturing of complex
surfaces. Computer Graphics 19(3), (Proc. SIGGRAPH
85), July 1985, pp. 279-286.

[Perlin, 1985] Perlin, Ken. An image synthesizer. Computer
Graphics 19(3), (Proc. SIGGRAPH 85), July 1985, pp.
287-296.

[Potmesil & Hoffert, 1989] Potmesil, Michael and Eric M.
Hoffert. The Pixel Machine: A parallel image computer.
Computer Graphics 23(3), (Proc. SIGGRAPH 89), July
1989, pp. 69-78.

[Rhoades, et al., 1992] Rhoades, John, Greg Turk, Andrew Bellm
Andrei State, Ulrich Neumann and Amitabh Varshney.
Real-Time Procedural Textures. Proc. Interactive 3-D
Graphics Workshop, 1992. pp. 95-100.

[Segal, et al., 1992] Segal, Mark, Carl Korobkin, Rolf van
Widenfelt, Jim Foran and Paul Haeberli. Fast shadows
and lighting effects using texture mapping. Computer
Graphics 26(2), (Proc. SIGGRAPH 92), July 1992, pp.
249-252.

[Skinner & Kolb, 1991] Skinner, Robert and Craig E. Kolb.
noise.c (file in the Rayshade raytracing system).

[Torborg & Kajiya, 1996] Torborg, Jay and James T. Kajiya.
Talisman: Commodity realtime 3D graphics for the PC.
Computer Graphics Annual Conference Proceedings,
(Proc. SIGGRAPH 96), Aug. 1996, pp.353-363.

[Williams, 1983] Williams, Lance. Pyramidal parametrics.
Computer Graphics 17(3), (Proc. SIGGRAPH 83), July
1983, pp. 1-11.

[Worley, 1994] Steven Worley. Practical Methods for Texture
Design: Antialiasing. Chapter in: Texturing and
Modeling: A Procedural Approach, Ebert, D., Ed.
Academic Press Professional, Boston, 1984, pp. 117-
124.

6 - 9

 10-10

6 - 10

 10-11

 Real-Time Procedural Solid Texturing
 Nathan A. Carr John C. Hart

 Department of Computer Science
 University of Illinois, Urbana-Champaign

 (a) (b) (c) (d)

Figure 1. Solid texture coordinates stored as vertex colors of a model (a) are rasterized into a texture atlas (b). A procedural
shader replaces the interpolated solid texture coordinates with colors (c), which are applied to the object using texture mapping.

Abstract
Shortly after its introduction in 1985, procedural solid texturing
became a must-have tool in the production-quality graphics of the
motion-picture industry. Now, over fifteen years later, we are
finally able to provide this feature for the real-time consumer
graphics used in videogames and virtual environments. A texture
atlas is used to create a 2-D texture map of the 3-D solid texture
coordinates for a given surface. Applying the procedural texture to
this atlas results in a view-independent procedural solid texturing
of the object.

Texture atlases are known to suffer from sampling problems and
seam artifacts. We discovered that the quality of this texturing
method is independent of the continuity and distortion of the atlas,
which have been focal points of previous atlas techniques. We
instead develop new meshed atlases that ignore continuity and
distortion in favor of a balanced distribution of as many texture
samples as possible. These atlases are seam-free due to careful
attention to their rasterization in the texture map, and can be MIP-
mapped using a balanced mesh-clustering algorithm.

Techniques for fast procedural synthesis are also investigated,
using either the host processor or with multipass graphics
processor operations on the texture map. We used these atlas and
synthesis techniques to create a real-time procedural solid texture
design system.

CR Categories: I.3.7 [Computer Graphics] Three-Dimensional
Graphics and Realism (color, shading and texture).

Keywords: Atlas, mesh partitioning, MIP-map, multipass
rendering, procedural texturing, solid texturing, texture mapping.

1. Introduction
The concept of procedural solid texturing is well known [32][37],
and has found widespread use in graphics [6]. Solid texturing
simulates a sculpted appearance and directly generates texture
coordinates regardless of surface topology. Procedural texturing
makes solid texturing practical by computing the texture on
demand (instead of accessing a stored volumetric array), and at a

level detail limited only by numerical precision. These features
were quickly adopted for production-quality rendering by the
entertainment industry, and became a core component of the
Renderman Shading Language [11].

With the acceleration of graphics processors outpacing the
exponential growth of general processors, there have been several
recent calls for real-time implementations of procedural shaders,
e.g. [12][38]. Real-time procedural shaders would make
videogame graphics richer, virtual environments more realistic and
modeling software more faithful to its final result. Section 2
describes previous implementations of real-time procedural
texturing and shading systems, all requiring special-purpose
graphics supercomputers or processors.

Peercy et al. [35] recently took a large step toward this goal by
developing a compiler that translated Renderman shaders into
multipass OpenGL code. While complex Renderman shaders could
not yet be rendered in real-time, this compiler showed that their
implementation on graphics accelerators was at least feasible. They
created new interactive shading language, ISL, to produce more
efficient OpenGL shaders.

Unfortunately, ISL did not introduce any new techniques for solid
texturing, supporting it instead with texture volumes. While
modern graphics accelerator boards now have enough texture
memory to store a moderate resolution volume, and some even
support texture compression, storing a 3-D dataset to produce a 2-
D surface texture is inefficient and an unnecessarily wasteful use
of texture memory. Applying procedural texturing operations to an
entire texture volume also wastes processing time.

Apodaca [1] described how the texture map can be used to store
the shading of a model. His technique shaded a mesh in world
coordinates, but stored the resulting colors in a second “reference”
copy of the mesh embedded in a 2-D texture map. The mesh could
then be later shaded by applying the texture map instead of
computing its original shading.

We can use this technique to support view-independent procedural
solid texturing. Consider a single triangle with 3-D solid texture

Authors’ address: Urbana, IL 61801. {nacarr, jch}@uiuc.edu.

6 - 11

 10-12

coordinates1 si and 2-D surface coordinates ui assigned to its
vertices xi for i = 1,2,3. Figure 1a shows such triangles, plotted in
model coordinates with color indicating their solid coordinates. We
apply a procedural solid texture to the triangle (x1,x2,x3) in three
steps. The first step rasterizes the triangle into a texture map using
its surface texture coordinates (u1,u2,u3). This rasterization
interpolates its vertices’ solid texture coordinates si across its face.
Figure 1b shows each pixel (u,v) in the rasterization now contains
the interpolated solid texture coordinates s(u,v). The second step
executes a texturing procedure p() on these solid texture
coordinates, resulting in the color c(u,v) = p(s(u,v)) shown in
Figure 1c. This color table c(u,v) is a texture map that we apply to
the original triangle (x1,x2,x3) via its surface coordinates ui,
resulting in the view-independent procedural solid texturing shown
in Figure 1d.

This atlas technique was implemented as a tool to preview
procedural solid textures in recent modeling packages [2], [45]
though it suffered from sampling problems. Lapped textures [40]
also used a texture atlas to allow the lapped texture swatches to be
applied in a simple texture mapping operation, noting “the atlas
representation is more portable, but may have sampling problems.”

Section 3 describes the texture atlas in detail, and analyzes the
artifacts it can cause. Poor coverage of the texture map by the atlas
causes aliasing, whereas discontinuities in the atlas cause seams in
the textured surface. Section 4 describes new atlases that overcome
these artifacts, with atlases that cover more of the texture map and
distributing the resulting samples more evenly to reduce texture
magnification aliases. Section 4.3 describes how an atlas that can
be MIP mapped to eliminate texture minification aliases.

The use of an atlas enables procedural texturing operations to be
applied to the texture map, and Section 5 describes how this step
can be implemented efficiently on both the host and the graphics
controller. Section 6 concludes with an interactive procedural solid
texture editor, other applications of these methods and ideas for
further investigation.

2. Previous Work
There have been several implementations of real-time procedural
solid texturing over the past fifteen years, though they have either
required high-performance graphics computers or special-purpose
graphics hardware.

Procedural solid texture has been available on parallel graphics
supercomputers, such as the AT&T Pixel Machine [39] and UNC’s
Pixel Planes 5 and PixelFlow [26]. The Pixel Machine in fact was
used as a platform for exploring volumetric procedural solid
texture spaces [36].

Rhoades et al. [42] developed a specialized assembly language,
called T-code, for procedural shading on Pixel Planes 5. The T-
code interpreter included automatic differentiation to estimate the
variation of the procedure across the domain of a pixel. This
estimate of the variation was used as a filter width to antialias the
procedural texture, by averaging the range of colors the procedure
could generate within the pixel.

Olano et al. [30] implemented a real-time subset of the Renderman
shading language on Pixel Flow, including the ability to synthesize
procedural solid textures. Standard Renderman shader tools

1 To keep these two textures straight, we will use s = (s,t,r) to indicate the solid texture

coordinates and u = (u,v) to indicate the texture map coordinates. We will need to
assign both kinds of coordinates to the vertices of a mesh.

including automatic differentiation and clamping [28] were used to
antialias the procedural textures.

Hart et al. [14] designed a VLSI processor based around a single
function capable of generating several of the most popular
procedural solid textures. Procedural solid textures were
transmitted to this hardware as a set of parameters to the texturing
function. The derivative of the function was also implemented to
automatically antialias the output, à la [42].

Current graphics libraries such as OpenGL [44] and Direct3D [24]
support solid texturing with the management of homogeneous 3-D
texture coordinates, and recent versions of these libraries support
three-dimensional texture volumes that can be MIP-mapped to
support antialiasing.

Peercy et al. [35] developed a compiler that translated the
Renderman shading language into OpenGL source code. The
technique used multi-pass rendering and requires an OpenGL 1.2
implementation with its imaging subset, as well as the floating-
point-framebuffer and pixel-feedback extensions. As mentioned in
the introduction this method depends on texture volumes for solid
texturing.

3. The Texture Atlas
A (surface) texture mapping u = � (x) is a function from a surface
into a compact subset of the plane called the texture map. The
texture mapping need not be continuous, but usually consists of
piecewise continuous parts � i() called charts. The area on the
surface in model coordinates is called the chart domain whereas
the area the domain maps to in the texture map is called the chart
image. The collection of charts that forms a texture mapping

� () = ∪ � i() is called an atlas [27]. If the surface texture mapping is
one-to-one, then its inverse � -1() is a parameterization of the
surface. Atlases often (but not always) parameterize the surface,
such that each pixel in the texture map represents a unique location
on the object surface2.

Hence parameterization methods could be used to generate atlases.
For example, MAPS [19] parameterizes a mesh of arbitrary
topological type, using a simplified version of the mesh embedded
in three-space to serve as the base domain of smoothed piecewise
barycentric parameterizations. This base mesh and the
parameterization it supports could be flattened into a 2-D texture
map, but the same flattening could also create an atlas by directly
flattening the original mesh. Texture atlases do not require the
continuity and smooth differentiability that good parameterization
strive for.

Texture atlases have strived instead to minimize the distortion of
its charts, and to minimize areas of discontinuity between chart
images. Section 3.1 shows that distortion does not affect the
quality of our method. Section 3.2 describes how discontinuities
can cause seam artifacts, but we eliminate these artifacts later in
Section 4.1. We instead offer two new measures of atlas quality:
coverage (Sec. 3.3) and relative scale (Sec. 3.4), that are used to
indicate the sampling fidelity offered by the atlas. Section 4
proposed new atlas techniques that perform well with respect to
these two new measures.

3.1 Distortion
The distortion of a texture mapping is responsible for the
deformation of a fixed image as it is mapped onto a surface.

2 In topology, the atlas is used to define manifolds. In this context the atlas need not

be one-to-one and the range of its charts may overlap.

6 - 12

 10-13

Previous techniques for creating atlases have focused on reducing
the distortion of the charts [43], either by projection [1],
deformation energy minimization [20][21][22], or interactive
placement [33][34].

Chart images are often complex polygons, and must then be
packed (without further distortion) efficiently into the texture map
to construct the atlas. Automatic packing methods for complex
polygons are improving [25], but have not yet surpassed the
abilities of human experts in this area.

Our use of a texture atlas for solid texturing is not directly affected
by chart distortion. Solid texture coordinates are properly
interpolated across the chart image in the texture map regardless of
the difference in shape between the model-coordinate and the
surface-texture-coordinate triangles. Chart distortion affects only
the direction, or “grain” of the artifacts, but not their existence, as
will be shown later in Figure 6.

3.2 Discontinuity
Texture atlases are discontinuous along the boundaries of their
charts. Texture mapping can reveal these discontinuities as a
rendering artifact known as a seam. Seams are pixels in the texture
map along the edges of charts. They appear along the mesh edges
as specks of the wrong color, either the texture map’s background
color or a color from a different part of the texture.

Previous techniques have reduced seams by maximizing the size
and connectivity of the chart images in the texture atlas. For
example, Maillot et al. [22] merged portions of the surface of
similar curvature. These partitions improved the atlas continuity,
resulting in fewer charts, though with complex boundaries. While
this method reduced seams to the complex boundaries of fewer
charts, it did not eliminate them.

Seams appear because the rasterization rules differ from texture
magnification rules. The rules of polygon scan conversion are
designed with the goal of plotting each pixel in a local polygonal
mesh neighborhood only once3. The rules for texture magnification
are designed to appropriately sample a texture when the sample
location is not the center of a pixel, usually nearest neighbor or a
higher order interpolation of the surrounding pixels.

A

B

A

B

A

B

(a) (b) (c)

Figure 2. Seams occur due to differences between texture
magnification (a) and rasterization (b), shown in red (c).

Figure 2a shows two triangles with integer coordinates in the
texture map. Figure 2b shows these two triangles rasterized using
the standard rules [7], with unrasterized white pixels in the
background. In this figure, the integer pixel coordinates occur at
the center of the grid cells. Hence the grid cell indicates the set of
points whose nearest neighbor is the pixel located at the cell’s
center. Figure 2b illustrates that some points in both triangles A
and B have background pixels as nearest neighbors, and some
points in triangle B have pixels rasterized as triangle A because

3 Missing pixels can result in holes or even cracks in the mesh, whereas plotting the

same pixel twice (once for each of two different polygons) can cause pixel flashing
as neighboring polygons battle for ownership of the pixel on their border.

triangle A’s pixels are their nearest neighbors. Figure 2c indicates
these points in red.

Higher order texture magnification, such as bilinear or bicubic can
reduce but not eliminate the effect of background pixels, and
actually exaggerate the problem along the shared edge between
triangles A and B. A common solution is to overscan the polygons
in the texture map, but surrounding all three edges of each triangle
with a one-pixel safety zone wastes valuable texture samples.

3.3 Coverage
The coverage C of an atlas measures how effectively the
parameterization uses the available pixels in the texture map. The
coverage ranges between zero and one and indicates the percentage
of the texture map covered by the image of the mesh faces

 ∑
=

=
M

j
jjjAC

1
321),,(uuu (1)

where A() returns the area of a triangle. We assume the texture
map is a unit square.

The coverage of atlases of packed complex polygons was quite
low, covering less than half of the available texture samples in our
tests. We also implemented a simple polygon packing method that
used a single chart for each triangle. This triangle packing
performed much better than the complex polygon packing, but still
covered only 70% of the available texture samples. Since distortion
does not affect the quality of our procedural solid texturing
technique, the next section shows that the chart images of triangles
can be distorted to cover most if not all of the available texture
samples.

3.4 Relative Scale
Whereas the coverage measures how well the parameterization
utilizes texture samples, the relative scale S indicates how evenly
samples are distributed across the surface. We measure the relative
scale as the RMS of the ratio of the square root of the areas before
and after each chart of the atlas is applied

 ∑∑
==









=

M

j jjj

jjj
M

j
jjj A

A

M
AS

1 321

321

1
321

2

),,(

),,(1
),,(

xxx

uuu
xxx . (2)

The additional summation factor computes the surface area of the
object in model space, and normalizes the relative scale so it can
be used as a measure to compare the quality of atlases across
different models. A relative scale less than one indicates that the
atlas is contracting a significant number of large triangles too
severely, whereas a relative scale greater than one indicates that
small triangles are taking up too large a portion of the texture map.

The relative scale of existing atlas techniques is typically less than
one half. Inefficient packing yields low coverage, such that
triangles must be scaled even smaller in order to make the complex
chart images fit into available texture space.

4. Atlases for Solid Texturing
This section describes methods for constructing texture atlases
specifically for procedural solid texturing that overcome sampling
problems and seams.

6 - 13

 10-14

4.1 Uniform Mesh Atlases
One way to take as many samples as possible is to maximize the
coverage of texture map by the atlas. Since distortion does not
affect the quality of the atlas for our application, we choose to
deform the model triangles into a form that can be easily packed.
The uniform mesh atlas arbitrarily maps all of the triangles into a
single shape, an isosceles right triangle. These right triangles are
packed into horizontal strips and stacked vertically in the texture
map.

Figure 3 demonstrates the uniform mesh atlas. Continuity is
ignored and the texture map can be thought of as a collection of
rubber jigsaw puzzle pieces that must be stretched into an
appropriate place on the model surface.

The length of each adjacent edge of the mesh triangles is given by

  
H

M
a

2/
= (3)

where H is the horizontal resolution of a square texture map. The
floor ensures that we can plot a full row of triangle pairs. Note that
a is not an integer, but non-integer edge lengths can create
problems with seams.

Seam Elimination. Seams can be avoided by the careful
rasterization of mesh triangles. Triangles A and B have been
rasterized into the texture map as shown before. The triangles in
Figure 4b are rasterized with half pixel offsets such that no
background pixe ls will be accessed by the texture’s magnification
filter. Nonetheless, samples in triangle B near its hypotenuse will
still return A’s color. Overscanning the hypotenuse of triangle B
and shifting triangle A right one pixel, as shown in Figure 4c,
eliminates the seam artifact between A and B. This overscanning
solution reduces the coverage slightly, but only costs one column
of pixels for each triangle pair in a horizontal strip.

A

B

A

B

A

B

(a) (b) (c)

Figure 4. Standard rasterization rules disagree with texture
magnification rules (a) and (b). Overscanned polygons are

sampled correctly (c).

Since seams are eliminated, triangles can be placed in any order in
the uniform mesh atlas. If the model contains triangle strips, then
these strips can be inserted directly into the uniform mesh atlas
without overscanning, as the edge they share has appropriate pixels
on either side of it.

4.2 Non-Uniform Mesh Atlases
While the uniform mesh atlas does a good job of using available
texture samples, it distributes those samples unevenly. Object
polygons both large and small get the same number of texture
samples. The uniform mesh atlas biases the sampling of texture
space in favor of areas with small triangles. While smaller
polygons may appear in more interesting areas of the model,
geometric detail might not correlate with texture detail.

Our goal is to not only use as many samples of the texture as
possible, but to distribute those samples evenly across the model.
The non-uniform mesh atlas attempts to more evenly distribute
texture samples by varying the size of triangle chart images in the
texture map.

Area-Weighted Mesh Atlas . An obvious criterion is that larger
model triangles should receive more texture samples, and so their
image under the atlas should be larger. We implement this area-
weighted NUMA by first sorting the mesh triangles by non-
increasing area. The mesh atlas is again constructed in horizontal
strips, but the size of the triangles in the strip is weighted by the
inverse of the relative scale of the triangles in the strip. This allows
larger triangles to get more texture samples. Figure 5 demonstrates
the area-weighted atlas on a rhino model.

Figure 5: Rhino sculpted from wood and its area-weighted
non-uniform mesh atlas.

Length-Weighted Mesh Atlas. Skinny triangles occupy smaller
areas, but require extra sampling in their principal axis direction to
avoid aliases. The length-weighted NUMA uses the triangle’s
longest edge to prioritize its space utilization in the texture map.

(a)

(b)

(c)

Figure 6. Effects of mesh atlas sample distribution
techniques on a poorly tesselated object containing slivers:

uniform (a), area weighted (b) and length weighted (c).

Figure 6 demonstrates the appearance of artifacts from the mesh
atlases on the cross of a chess king piece. The procedural texture in
this example is a simple striped pattern. Every triangle in the
uniform mesh atlas (a) gets the same number of texture samples,
regardless of size, resulting in the jagged sampling of the textured
stripe on the left. The area-weighted NUMA reduces these aliasing
artifacts, stealing ext ra samples from the rest of the model’s
smaller triangles. But the sliver polygon needs more samples than
its area indicates, and the length-weighted NUMA gives the sliver
triangles the same weight as their neighbors, reducing the aliasing
completely, leaving only the artifacts of the nearest-neighbor
texture magnification filter.

Figure 3. Uniform mesh atlas for a cloud textured
moon.

6 - 14

 10-15

Comparison. We plotted the relative scale of each triangle in the
meshed rhino model. The ideal relative scale is equal to the square
root of the surface area, and is plotted in green. Since all of the
uniform mesh atlas’s chart image triangles are the same size, the
plot of its relative scale simply indicates the size of the triangle in
the model. Hence larger triangles are sample starved, but as Table
1 shows, a larger number of smaller triangles are receiving too
many samples.

Mesh Atlas Coverage Relative Scale
Uniform 91% 1.75
Area-Weighted 93% 0.66
Length-Weighted 93% 0.86

Table 1. Measurement of mesh atlas performance on the
rhino model.

The area-weighted mesh atlas does a much better job of
distributing the samples, and nearly complements the sampling of
the uniform mesh atlas. The area-weighted NUMA undersamples
smaller triangles because they are assigned to the remaining scraps
of the texture map, which also results in its relative scale of less
than (but closer to) one.

(a) (b)

(c)

Figure 7. The rhino model color coded by the relative scale
of each triangle under the uniform (a), area-weighted (b)
and length-weighted (c) atlases. Green indicates optimal

sampling, blue indicates too few samples, and red indicates
too many.

Figure 7 illustrates the difference with this weighting, increasing
the samples in the belt of skinny triangles around the rhino’s waist,
and the stretched triangles around its shoulder, by sacrificing some
of the samples in the rest of the model. The length-weighting
heuristic also improves the performance statistics, resulting in a
relative scale much closer to the goal of one.

4.3 Multiresolution Mesh Atlases
Section 4.1 described how seam artifacts were removed by making
rasterization agree with texture magnification. Texture minification
also produces artifacts, aliasing when projected texture resolution
exceeds screen resolution.

The MIP-map is a popular method for inhibiting texture
minification aliases [46]. The MIP-map creates a multiresolution
pyramid of textures, filtering the texture from full resolution in
half-resolution steps down to a single pixel. Each pixel at level l of
a MIP-map represents 4l pixels of the full resolution texture map
(at level 0).

Assume we have a uniform mesh atlas where the adjacent edge a
of each of the triangles is a power of two. Then at levels up to la =
lg a, some pixels from both sides of a triangle pair will combine

into a single pixel. This averaging is correct only if the triangle
pair also shares an edge in the surface mesh.

At level la + 1, four neighboring triangle-pairs in the texture map
will be averaged together. The uniform mesh atlas cannot be MIP-
mapped at level la, + 1 or above as there is no spatial relationship
between triangles in the atlas. We can however impose a spatial
relationship on the uniform mesh atlas that permits MIP-mapping
above level la.

At level la, triangle pairs are each represented by a single pixel. At
level la + 1, the result of averaging neighboring triangles pairs is a
single pixe l. Hence, the mesh needs to have neighborhoods of
triangle pairs grouped together, but the grouping need not be in any
particular order.

We achieve this grouping by partitioning the surface mesh
hierarchically into a balanced quadtree. Each level of the quadtree
partitions the mesh into disjoint contiguous sections with
(approximately) the same number of faces.

We implement our face partitioning using a multiconstraint-
partitioning algorithm [18]. Such algorithms have found a wide
variety of applications in computer graphics, e.g. [9][17][19].

The face hierarchy is constructed using the dual of the mesh. The
partitioning algorithm uses edge collapses to repeatedly simplify
this dual graph, yielding a hierarchy. The “balanced first choice”
[18] heuristic is used to balance the hierarchy during
simplification. We then optimize this graph from the top down,
exchanging subtrees to minimize the edge length of the boundaries
of the partitions. The result is demonstrated in Figure 8.

Figure 8. Levels of texture detail in the multiresolution
uniform mesh atlas.

6 - 15

 10-16

5. Procedural Texturing onto the Atlas
The solid texture coordinates resulting from the mesh atlases
provides an efficient and direct method for applying procedural
textures to an arbitrary object. We apply procedures directly to the
texture map using the texture map containing solid texture
coordinates interpolated across the polygon faces as input,
replacing these coordinates with colors producing a texture map
that when applied yields a procedural solid texturing of the object.

Procedural textures can be generated a number of ways. We
explore two basic techniques. The first technique runs a procedure
sequentially on the host. The second technique compiles the
procedure into a multipass program executed in SIMD fashion by
the graphics controller. We will focus on the Perlin noise function
[37] as this single function is a widely used element of a large
portion of procedural textures.

5.1 Host Rasterization
The texture atlas technique allows the procedural texture to be
generated from the host. Host procedures provide the highest level
of flexibility, allowing all of the benefits of a high-level language
compiled into a broad instruction set.

Several fast host-processor methods exist for synthesizing
procedural textures. Goehring et al. [10] implemented a smooth
noise function in Intel MMX assembly language, evaluating the
function on a sparse grid and using quadratic interpolation for the
rest of the values. Kameya et al. [14] used streaming SIMD
instructions that forward differenced a linearly interpolated noise
function for fast rasterization of procedurally textured triangles.

One could use the graphics processor to rasterize the texture atlas,
and then let the host processor replace the interpolated solid
coordinates with procedural texture colors. The main drawback to
this technique is the asymmetry of the graphics bus, which is
designed for high speed transmission from the host to the graphics
card. The channel from the graphics card to the host is very slow,
taking nearly a second to perform an OpenGL ReadPixels
command on an Intel PC AGP bus.

To overcome this bottleneck, our host-procedure implementation
uses the host to rasterize the atlas directly into the texture map.
Host rasterization provides full control over the rasterization rules
and full precision for the interpolated texture coordinates. While
the host processor is not nearly as fast as the graphics processor at
rasterization, the generation and rendering of the atlas into texture
memory is an interactive-time operation, whereas examination of
the object is a real-time operation supported completely by the
graphics card’s texture mapping hardware. Its results are shown
later in Table 3.

5.2 A Multipass Noise Algorithm
Following [15][23][35][41], we can harness the power of graphics
accelerators to generate procedural textures directly on the
graphics board.

The noise function could be implemented using a 3-D texture of
random values with a linear magnification filter. A texture atlas of
solid texture coordinates can be replaces with noise samples using
the OpenGL pixel texture extension [31].

The vertex shader programming model found in Direct3D 8.0 [24]
and the recent NVIDIA OpenGL vertex shader extension [31] can
support procedural solid texturing. In fact a Perlin noise function
has been implemented as a vertex program [29]. But a per-vertex
procedural texture will produce vertex colors that are Gouraud
interpolated across faces.

Input: solid_map with R,G,B containing s,t,r coordinates.
Initialize noise = black
solid_int = solid_map >> bf

solid_intpp = solid_int + 1/(2b-1)
weight = (solid_map – (solid_int << bf)) << bi
for (k = 0; k < 8; k++) {
 corner = solid_int
 corner = solid_intpp with glColorMask(k&1,k&2,k&4)
 randomize corner
 corner *= if (k&1) then R(weight) else 1 – R(weight)4
 corner *= if (k&2) then G(weight) else 1 – G(weight)
 corner *= if (k&4) then B(weight) else 1 – B(weight)
 noise += corner
}
Output: solid noise texture map

Figure 9. Multipass noise algorithm.

We instead implemented a per-pixel noise function using multipass
rendering onto the texture atlas. Assume the three channels (R,G,B)
of our buffers have a depth of b bits5. We will assume a fixed-point
representation with bi integer bits and bf fractional bits, b = bi + bf.
The algorithm in Figure 9 computes a random value in [0,1] at the
integer lattice points, and linearly interpolates these random values
across the cells of the lattice.

SGI Implementation. We implemented the noise function in
multipass OpenGL on imaging workstations using the
glPixelTransfer and glPixelMap functions. The glPixelTransfer
function performs a per-component scale and bias, whereas
glPixelMap performs a per-component lookup. The results appear
in Table 2.

NVidia Implementation . We also implemented a noise function
for consumer-level accelerators using the NVidia chipset. Since the
NVidia driver did not accelerate glPixelTransfer and glPixelMap,
we used register combiners to shift, randomize and isolate/combine
components.

Randomization on the NVidia controller was particularly difficult,
as its driver did not accelerate logical operations like exclusive-or
on the frame buffer. Instead, we used the register combiners to
display one of two colors depending on an input color’s high bit,
then used the register combiners to shift the input color left one bit
(without overflowing and causing a clamp to one). This ended up
generating 375 passes (!). The source code for these operations can
be found on the accompanying CD-ROM.

 Implementation Execution Time
SGI Solid Impact 1.3 Hz
SGI Octane 2.5 Hz
NVidia GeForce 256 0.9 Hz

Table 2. Execution times for the multipass noise algorithm.

Table 2 shows the NVidia implementation did not perform as well
as the SGI implementation. Profiling the code revealed that the
main bottleneck was the time it took to save the framebuffer in a
texture, adding an average of 3 ms per pass for 354 of the passes.
OpenGL currently does not support rendering directly to texture,
and the register combiner did not directly support the blending of
its output with the destination pixel currently in the frame buffer.

4 The functions R(), G() and B() return a luminance image of t he channel.

5 Framebuffers currently hold only 8 or 12 bits per channel though there is an
extension that supports 32-bit floating point, and indications that floating point
buffers may soon be supported by a larger variety of graphics hardware and drivers.

6 - 16

 10-17

The randomization step in the SGI implementation produced white
noise using a glPixelMap lookup table of random values, whereas
the NVidia implementation blended random colors, yielding
Gaussian noise. If desired, one could redistribute the Gaussian
noise into white noise with a fixed histogram equalization step.

6. Conclusion
We have shown how the texture atlas can facilitate the real-time
application of solid procedural texturing. We showed that for this
application, the texture atlas need not be concerned with distortion
nor discontinuity, but should instead focus on sampling fidelity.
We introduced new mesh-based atlas generation schemes that
more efficiently used available texture samples, and non-uniform
variations of these meshes distributed these samples more evenly
across the object. We also used a mesh partitioning method to
construct a MIP-mappable atlas.

The texture atlas allows solid texturing procedures to be applied to
the texture map, allowing efficient multipass programming using
the accelerated operations available on the graphics controller as
they become feasible.

The system makes effective use of preprocessing. The procedural
texture needs to be resynthesized only when its parameters change,
and the texture atlas needs to be reconstructed only when the
object changes shape. Specifically, if the position of the object’s
vertices move, but the topology of the mesh remains invariant, then
the procedural solid texturing generated by this method will adhere
to the surface [1]. This is a useful property that prevents texture
“swimming,” such that for example the grain of a warped wood
plank follows the warp of the plank.

6.1 Interactive Procedural Solid Texture Design
We used the methods described in this paper to create a procedural
solid texture design system that would allow the user to load an
object and apply a procedural solid texture. This system can be
found on the accompanying CD-ROM. Since the procedural solid
texturing is applied as a standard 2-D surface texture mapping, the
design system supported full real-time observation of a
procedurally solid textured object. Using the techniques of Section
4, the object did not suffer from any seam artifacts, and aliasing
was reduced by making good use of the available texture samples.

We also allowed the user to interactively change the procedural
solid texturing parameters. Using the techniques described in
Section 5.1, we were able to support interactive-rate feedback to
the user, such that the user could observe the result of a parameter
on the procedural solid texture while dragging a slider.

The software procedural texture renderer simultaneously rasterized
the texture atlas into texture memory and applied the texturing
procedure to the texture atlas. We increased the responsiveness of
our system by having this renderer render a lower resolution
interpolated version of the atlas during manipulation, and replace it
with a higher resolution version at rest. The rendering speed of this
system is shown in Table 3.

 Noise Octaves Atlas Res. Procedural Synthesis Speed
 1 2562 9.09 Hz (18 Hz)
 1 5122 2.56 Hz (4.55 Hz)
 1 10242 0.72 Hz (1.30 Hz)
 4 2562 6.25 Hz (10 Hz)
 4 5122 1.82 Hz (3.03 Hz)
 4 10242 0.40 Hz (0.76 Hz)

Table 3. Execution times for procedural texture synthesis
into the texture atlas. Parenthetic times measure lower

resolution synthesis during interaction.

6.2 Applications
We have focused this paper on the application of real-time
procedural solid texturing, though the techniques described appear
to impact other areas as well.

Solid Texture Encapsulation. Unlike surface texture coordinates,
solid texture coordinates are not uniformly implemented by
graphics file formats. Using surface texture of a solid texture
allows the texture coordinates to be more robustly specified in
object files and also allows the solid texture to be included as a
more compact texture map image instead of a wasteful 3-D solid
texture array.

3-D Painting. The meshed atlas techniques can also be used to
support 3-D painting onto surfaces [13]. The atlas provides an
automatic parameterization. The discontinuities of the
parameterization do not impact painting as the texture atlas
maintains a per face correspondence between the surface and the
texture map. The meshed atlas techniques presented in Section 4
also improve surface painting by using as many texture samples as
possible distributed evenly across the surface.

Normal Maps. The normal map [3][8] is a texture map whose
pixels hold a surface normal instead of a color. Normal maps are
used for real-time per-pixel bump mapping using dot-product
texture combiners found in Direct3D and extensions of OpenGL.
The meshed atlas generation techniques can be used to create well-
sampled normal maps since normal maps do not require continuity
between faces.

Real-Time Shading Languages . Recent real time shading
languages [35][41] have been developed to support procedural
shaders, including texturing and lighting, by converting shader
descriptions into multipass graphics library routines. In particular,
Proudfoot et al. [41] focuses on the difference between per object,
per vertex and per fragment processes in real-time shaders. The
texture atlas supports additional categories of view-dependent and
view-independent processes. View dependent processes utilize
multipass operations to the framebuffer, whereas view independent
processes utilize multipass operations to the texture map, ala
Section 5.2. The results of view independent processes can be
stored and accessed directly from the texture map, accelerating the
rendering of real time shading language shaders.

6.3 Future Work
While this work achieved our goal of real-time procedural solid
texturing, it has also inspired several directions for further
improvement.

Direct Manipulation of Procedural Textures . The interactive
procedural solid texture design system is a first step. Another step
would be to allow the sliders to be bypassed, supporting direct
manipulation of procedural textures. The user could drag a texture
feature to a desired location and have the software automatically
reconfigure the parameters appropriately.

Preservation of Mesh Structure . The mesh atlases do not
preserve the object’s original mesh structure, and our mesh atlas
processing program outputs multiple copies of shared mesh
vertices with different surface texture coordinates. This increases
the size of the model description files, and may cause the resulting
models to render more slowly. Preservation of mesh structure, or at
least triangle strips, would be a useful addition to this stage of the
process.

Higher-Order Texture Magnification. Section 4.1 described the
special overscanning measures taken during rasterization of the
texture atlas to eliminate seam artifacts. This overscanning works
when a nearest neighbor texture magnification filter is used. A

6 - 17

 10-18

linear texture magnification filter would make the textures appear
less blocky, but will require overscanning by one pixel along all
edges reduces the number of available samples on polygon faces
creating additional seldom used samples on polygon edges.

Atlas Compression . The texture atlas resembles the codebook
used in vector quantization. The number of faces in the atlas could
be reduced by allowing the atlas to no longer be one-to-one, and to
let triangles with similar procedural texture features to map to the
same location in the texture atlas. This kind of atlas compression
would increase the number of available texture samples with larger
chart images in the texture atlas.

6.4 Acknowledgments
This research was funded in part by the Evans & Sutherland
Computer Corp. overseen by Peter K. Doenges. The research was
performed using facilities at both Washington State University and
the University of Illinois. Jerome Maillot was instrumental in
showing us the state of the art in this area, including
Alias|Wavefront’s work. Pat Hanrahan observed that the UMA
biases the MIP map in favor of smaller triangles.

References
[1] Apodaca, A.A. Advanced Renderman: Creating CGI for Motion Pictures.

Morgan Jaufmannm 1999. See also: Renderman Tricks Everyone Should
Know, in SIGGRAPH 98 or SIGGRAPH 99 Advanced Renderman Course
Notes.

[1] Bennis, C. J Vezien, and G. Iglesias. Piecewise surface flattening for non-
distorted texture mapping. Proc. SIGGRAPH 91, July 1991, pp. 237 -246.

[2] Brinsmead, D. Convert solid texture. Software component of Alias|Wavefront
Power Animator 5 , 1993.

[3] Cohen, J., M. Olano and D. Manocha. Appearance-Preserving Simplification.
Proc. SIGGRAPH 98, July 1998, pp. 115-122.

[4] Crow, F.C. Summed area tables for texture mapping. Computer Graphics
18(3), (Proc. SIGGRAPH 84), July 1984, pp. 137-145.

[5] DoCarmo, M. Differential Geometry of Curves and Surfaces. Prentice-Hall,
1976.

[6] Ebert, D., F.K. Musgrave, D. Peachey, K. Perlin and S. Worley. Texturing and
Modeling: A Procedural Approach, Academic Press.1994.

[7] Foley, J.D., A. van Dam, S.K. Feiner and J.F. Hughes. Computer Graphics,
Principles and Practice, Second Edition, Addison-Wesley, 1990.

[8] Fournier, A. Normal distribution functions and multiple surfaces. Graphics
Interface '92 Workshop on Local Illumination, May 1992, pp. 45-52.

[9] Garland, M., A. Willmott and P.S. Heckbert. Hierarchical face clustering on
polygonal surfaces. Proc. Interactive 3D Graphics, March 2001, To appear.

[10] Goehring, D. and O. Gerlitz. Advanced procedural texturing usi ng MMX
technology. Intel MMX Technology Application Note, Oct. 1997.
http://developer.intel.com/software/idap/
resources/technical_collateral/mmx/proctex2.htm

[11] Hanrahan, P. and J. Lawson. A language for shading and lighting calculations.
Computer Graphics 24(4), (Proc. SIGGRAPH 90), Aug. 1990, pp. 289 -298.

[12] Hanrahan, P. Procedural shading (keynote). Eurographics / SIGGRAPH
Workshop on Graphics Hardware, Aug. 1999.
http://graphics.standford.edu/hanrahan/talks/rts1/slides.

[13] Hanrahan, P. and P.E. Haeberli. Direct WYSIWYG Painting and Texturing on
3D Shapes, Computer Graphics 24 (4), (Proc. SIGGRAPH 90), Aug. 1990, pp.
215-223.

[14] Hart, J. C., N. Carr, M. Kameya, S. A. Tibbits, and T.J Colemen. Antialiased
parameterized solid texturing simplified for consumer-level hardware
implementation. 1999 SIGGRAPH/Eurographics Workshop on Graphics
Hardware, Aug. 1999, pp. 45-53.

[15] Heidrich, W. and H.-P. Seidel. Realistic hardware-accelerated shading and
lighting. Proc. SIGGRAPH 99 , Aug. 1999, pp. 171-178.

[16] Kameya, M. and J.C. Hart. Bresenham noise. SIGGRAPH 2000 Conference
Abstracts and Applications , July 2000.

[17] Karni, Z. and C. Gotsman. Spectral compression of mesh geometry. Proc.
SIGGRAPH 2000, July 2000, pp. 279-286.

[18] Karypis, G. and V. Kumar. Multilevel algorithms for multi-constraint graph
partitioning. Proc. Supercomputing 98, Nov. 1998.

[19] Lee, A.W.F., W. Sweldens, P. Schröder, L. Cowsar, D. Dobkin. MAPS:
Multiresolution Adaptive Parameterization of Surfaces. Proc. SIGGRAPH 98,
July 1998, pp. 95-104.

[20] Levy, B. and J.L. Mallet. Non-distorted texture mapping for sheared
triangulated meshes. Proc. SIGGRAPH 98, July 1998, pp. 343-352.

[21] Ma, S. and H. Lin. Optimal texture mapping. Proc. Eurographics ’88 , Sept.
1988, pp. 421 -428.

[22] Maillot, J., H. Yahia and A. Verroust. Interactive texture mapping. Proc.
SIGGRAPH 93, Aug. 1993, pp. 27-34.

[23] McCool, M.C. and W. Heidrich. Texture Shaders. 1999
SIGGRAPH/Eurographics Workshop on Graphics Hardware, Aug. 1999, pp.
117-126.

[24] Microsoft Corp. Direct3D 8.0 specification. Available at:
http://www.msdn.microsoft.com/directx.

[25] Milenkovic, V.J. Rotational polygon overlap minimization and compaction.
Computational Geometry: Theory and Applications 10, 1998, pp. 305-318.

[26] Molnar, S., J. Eyles, and J. Poulton. PixelFlow: High -speed rendering using
image composition. Computer Graphics 26 (2), (Proc. SIGGRAPH 92), July
1992, pp. 231 -240.

[27] Munkres, J.R. Topology; A First Course. Prentice Hall, 1974.

[28] Norton, A., A.P. Rockwood, and P.T. Skolmoski. Clamping: A method of
antialiasing textured surfaces by bandwidth limiting in object space. Computer
Graphics 16(3), (Proc. SIGGRAPH 82), July 1982, pp. 1 -8.

[29] NVidia Corp. Noise, component of the NVEffectsBrowser. Available at:
http://www.nvidia.com/developer.

[30] Olano, M. and A. Lastra. A shading language on graphics hardware: The
PixelFlow shading system. Proc. SIGGRAPH 98, July 1998, pp. 159-168.

[31] OpenGL Architecture Review Board. OpenGL Extension Registry. Available
at: http://oss.sgi.com/projects/ogl -sample/registry/

[32] Peachey, D.R. Solid texturing of complex surfaces. Computer Graphics 19(3),
July 1985, pp. 279 -286.

[33] Pedersen, H.K. Decorating implicit surfaces. Proc. SIGGRAPH 95, Aug. 1995,
pp. 291-300.

[34] Pedersen, H.K. A framework for interactive texturing operations on curved
surfaces. Proc. SIGGRAPH 96, Aug. 1996, pp. 295-302.

[35] Peercy, M.S., M. Olano, J. Airey and P.J. Ungar. Interactive multi-pass
programmable shading, Proc. SIGGRAPH 2000, July 2000, pp. 425-432.

[36] Perlin, K and E.M. Hoffert. Hypertexture. Computer Graphics 23(3), July
1989, pp. 253 -262.

[37] Perlin, K. An image synthesizer. Computer Graphics 19(3). July 1985, pp.
287-296.

[38] Pixar Animation Studios. Future requirements for graphics hardware. Memo,
12 April 1999.

[39] Potmesil, M., and E.M. Hoffert. The Pixel Machine: A parallel image computer.
Computer Graphics 23(3), (Proceedings of SIGGRAPH 89), July 1989, pp. 69-
78.

[40] Praun, E., A. Finkelstein and H. Hoppe. Lapped Textures, Proc. SIGGRAPH
2000, July 2000, pp. 465-470.

[41] Proudfoot, K., W.R. Mark and Pat Hanrahan. A framework for real-time
programmable shading with flexible vertex and fragment processing.
Manuscript, Jan. 2000. See also: http://graphics.stanford.edu/projects/shading.

[42] Rhoades, J., G. Turk, A. Bell, U. Neumann, and A. Varshney. Real-time
procedural textures. 1992 Symposium on Interactive 3D Graphics 25(2), March
1992, pp 95 -100.

[43] Samek, M. Texture mapping and distortion in digital graphics. The Visual
Computer 2(5), 1986, pp. 313 -320.

[44] Segal, M. and K. Akeley. The OpenGL Graphics System: A Specification,
Version 1.2.1. Available at: http://www.opengl.o rg/.

[45] Thorne, C. Convert solid texture. Software component of Alias|Wavefront
Maya 1 , 1997.

[46] Williams, L. Pyramidal parametrics. Computer Graphics 17(3), July 1983, pp.
1-11, Proc. SIGGRAPH 83.

[47] Wyvill G., B. Wyvill, and C. McPheeters. Solid texturing of soft objects. IEEE
Computer Graphics and Applications 7(4), Dec. 1987, pp. 20-26.

6 - 18

 10-19

Perlin Noise Pixel Shaders

John C. Hart

University of Illinois, Urbana-Champaign

Abstract
While working on a method for supporting real-time procedural
solid texturing, we developed a general purpose multipass pixel
shader to generate the Perlin noise function. We implemented
this algorithm on SGI workstations using accelerated OpenGL
PixelMap and PixelTransfer operations, achieving a rate of
2.5 Hz for a 256x256 image. We also implemented the noise
algorithm on the NVidia GeForce2 using register combiners.
Our register combiner implementation required 375 passes, but
ran at 1.3 Hz. This exercise illustrated a variety of abilities and
shortcomings of current graphics hardware. The paper concludes
with an exploration of directions for expanding pixel shading
hardware to further support iterative multipass pixel-shader
applications.

Keywords: Pixel shaders, Perlin noise function, hardware
shading, register combiners.

1. Introduction
The concept of procedural shading is well known [17][19], and
has found widespread use in graphics [3]. Procedural shading
computes arbitrary lighting and texture models on demand.
Procedural textures efficiently support high resolution, non-
repeating features indexed by three-dimensional solid texture
coordinates. These features were quickly adopted for
production-quality rendering by the entertainment industry, and
became a core component of the Renderman Shading
Language [5].

With the acceleration of graphics processors outpacing the
exponential growth of general processors, there have been
several recent calls for real-time implementations of procedural
shaders, e.g. [6][20]. Real-time procedural shading makes
videogames richer, virtual environments more realistic and
modeling software more faithful to its final result. Real-time
procedural texturing, in particular, allows modelers to use solid
textures to seamlessly simulate sculptures of wood and stone. It
yields complex animated environments with billowing clouds
and flickering fires. Designers and users can interactively
synthesize and investigate new procedural worlds that seem

vaguely familiar to our own but with features unique to
themselves.

Several have researched techniques for supporting procedural
shading with real-time graphics hardware [15][18][21][22].
These shading methods reorganize the architecture of the
graphics API to suit the needs of procedural shading, applying
API components to tasks for which they were not originally
designed [8][11].

One such technique supports real-time procedural solid texturing
[2] by using the texture map to store the shading of an object [1].
The technique maintains a texture atlas that maps triangles from
a surface mesh into a non-overlapping array in texture memory.
The triangles are plotted in texture memory using their solid
texture coordinates as vertex colors. Rasterization then
interpolates solid texture coordinates across their faces in the
texture map. A procedural texturing pass replaces the solid
texture coordinates in the texture map with the procedural
texture color. Finally, this color is reapplied to the object surface
via standard texture mapping. The result is a view-independent
procedural solid texturing of the object.

One of the most common components of a procedural shading
system is the Perlin noise function [19], a correlated three-
dimensional field of uniform random values. This versatile
function provides a deterministic random function whose
bandwidth can be controlled to inhibit aliasing. Moreover, 1/fβ
sums of noise functions can be used to form turbulence and
other fractal structures whose statistics can be set to match those
of various kinds of natural phenomena.

 (a) (b)

Figure 1. Perlin noise function (a) and a 1/f sum (b).

We integrated the Perlin noise function into our real-time
procedural solid texturing system in a variety of different ways,
both as a CPU process and as a GPU process. This paper
describes an algorithm for implementing the Perlin noise
function as a multipass pixel shader. It also analyzes this noise
implementation on a variety of systems. We used the available
accelerated implementations of the OpenGL API and its device-
dependent extensions on two SGI systems and an NVidia
GeForce2. The paper concludes with suggestions for further

Contact info: Dept. of Computer Science, 1304 W. Springfield
Ave., Urbana, IL 61801, (217) 333-8740, jch@cs.uiuc.edu.

6 - 19

 10-20

hardware accelerator development that would facilitate faster
implementations of the Perlin noise function as well as a broader
variety of texturing procedures.

2. Previous work
Because the Perlin noise function has become a ubiquitous but
expensive tool in texture synthesis, it has been implemented in
highly optimized forms on a variety of general and special
purpose platforms.

Several fast host-processor methods exist for synthesizing Perlin
noise. Goehring et al. [4] implemented a smooth noise function
in Intel MMX assembly language, evaluating the function on a
sparse grid and using quadratic interpolation for the rest of the
values. Kameya et al. [10] used streaming SIMD instructions
that forward differenced a linearly interpolated noise function
for fast rasterization of procedurally textured triangles.

One can also generate solid noise with a 3-D texture array of
random values [13], using hardware trilinear interpolation to
correlate the random lattice values stored in the volumetric
texture. Fractal turbulence functions can be created using
multitexture/multipass modulate and sum operations. A texture
atlas of solid texture coordinates would then be replaced with
noise samples using the OpenGL pixel texture extension, ala [9].

The vertex-shader programming model found in Direct3D 8.0
[12] and the recent NVIDIA OpenGL vertex shader extension
[16] can support procedural solid texturing. A Perlin noise
function has been implemented as a vertex program [14]. But a
per-vertex procedural texture produces vertex colors that are
Gouraud interpolated across faces, such that the frequency of the
noise function must be at, or less than half, the frequency of the
mesh vertices. This would severely restrict the use of turbulence
resulting from 1/f sums of noise. Hence the Perlin noise vertex
shader is limited to low-frequency displacement mapping or
other noise effects that can be mesh frequency bound.

Our favorite implementation of the Perlin noise function is from
the Rayshade ray tracer [24]. This implementation created its
own pseudorandom numbers by hashing integer solid texture
coordinates with a scalar function
Hash3d(i,j,k), then interpolated these
random values with a simple smooth cubic
interpolant SCURVE(u) = 3u2 – 2u3 to
yield the final result.

Given solid texture coordinates s,t,r, the Rayshade noise
function effectively returned noise as the value

     ∑∑∑
= = =

+++
1

0

1

0

1

0

),(),(),(),,(Hash3d
k j i

krwjtwiswkrjtis

where

w(s,i) = SCURVE(s - s)i (1-SCURVE(s - s)1-i

is a weighting function. Hence, the noise function returns a
weighted sum of the random values at the eight corners of the
integer lattice cube containing s,t,r.

 (a) (b)

Figure 2. Result of the Rayshade implementation of the
Perlin noise function, using cubic interpolation (a) and
linear interpolation (b) of corner lattice random values.

Figure 2 demonstrates the result of the Rayshade
implementation of the Perlin noise function. The random values
result from the drand48() function of the standard C math
library. Noise is defined on an integer coordinate lattice, which
results in the strong horizontal and vertical correlation.

We will use this sample as a reference to compare our pixel-
shader implementations of the Perlin noise function. The
average brightness of the (s,t) slice of the noise is due to the
fixed r coordinate. This average intensity will differ from across
implementations, resulting in variations in brightness for a given
(s,t) slice of the three-dimensional noise field.

3. A Multipass Noise Algorithm
We based our real-time implementation of the Perlin noise
function on the concise Rayshade implementation. We
implemented a per-pixel noise function using multipass
rendering onto a texture atlas initialized with solid texture
coordinates stored as pixel colors.

The Perlin noise function is defined on a field of real values,
where the integer subset of its domain defines the base
frequency of the noise. Implementation of the noise function
requires coordinates s,t,r to range over multiple integers, though
color components only range over [0,1]. Hence, given three
channels (R,G,B) each with a depth of b bits1, we use a fixed-
point representation with bi integer bits and bf fractional bits, b =
bi + bf.

Following the form of the Rayshade noise implementation, the
algorithm in Figure 3 computes a random value in [0,1] at the
integer lattice points, and linearly interpolates these random
values across the cells of the lattice.

1
 Framebuffers currently hold only 8 or 12 bits per channel though there is an

extension that supports 32-bit floating point, and indications that floating point
buffers may soon be supported by a larger variety of graphics hardware and
drivers.

u SC
U

R
V

E(
u

)

6 - 20

 10-21

Input: 2-D texture solid_map with R,G,B containing s,t,r
coordinates.
Initialize texture noise = black
texture solid_int = solid_map >> bf

texture solid_intpp = solid_int + 1/(2b-1)
texture weight = (solid_map – (solid_int << bf)) << bi
for (k = 0; k < 8; k++) {
 texture corner = solid_int
 overwrite corner = solid_intpp with glColorMask(k&1,k&2,k&4)
 randomize corner
 corner *= if (k&1) then R(weight) else 1 – R(weight)2
 corner *= if (k&2) then G(weight) else 1 – G(weight)
 corner *= if (k&4) then B(weight) else 1 – B(weight)
 noise += corner
}
Output: solid noise texture map

Figure 3. Multipass noise algorithm.

The input to the algorithm is an image solid_map whose R,G,B
colors consist of solid texture coordinates. The first half of the
algorithm decomposes solid_map into its integer part solid_int
shifted right bf times and a fractional part weight shifted left bi
times.

 (a) (b) (c)

Figure 4. Solid texture coordinates solid_map (a),
tex_int shifted left by bf (b) and weight (fractional part

shifted left by bf) (c).

Figure 4 shows a sample texture map as a plane of two-
dimensional solid texture coordinates spanned by s and t. We set
bf = 4 bits. The solid texture coordinates s,t,r range from
(0.0,0.0,0.0) to (15.9375,15.9375,0.0) and are represented in the
solid texture coordinate texture map Figure 4(a) with RGB
colors from (0,0,0) to (1,1,0). Internally in the 24bpp
framebuffer, these RGB colors range from (0,0,0) to
(255,255,0). These coordinates are shifted right by bf to form
tex_int, which is shown Figure 4(b) shifted left by bf to increase
contrast and brightness. Subtracting (b) from (a) leaves tex_frac,
which is shifted left by bf to create a normalized weight function
Figure 4(c).

The color (R,G,B) of each pixel (x,y) in solid_map corresponds
to a solid texture point (s=R,t=G,r=B) that falls within some
lattice cell. The corner of this cell is given by the coordinates in
the corresponding pixel (x,y) stored in solid_int. The opposite
corner of this cell is found in the corresponding pixel in
solid_intpp (whose colors are increments of those in solid_int).

Each of the eight corners of the cell can be found by
combinations of the coordinates in solid_int and solid_intpp.
The second half of the algorithm iterates over all eight corners,
creating a random value indexed by the integer value at that
corner. These random values are weighted by the fractional
portion of the solid texture coordinates found in weight or its
additive inverse. Summing the products of these weights for
each of the eight corners performs a trilinear interpolation of the

2
 The functions R(), G() and B() return a luminance image of the corresponding

channel.

random values at the corners, resulting in result of the noise
function.

We will spend the next two sections implementing this
algorithm using the available accelerated features of two
different graphics architectures. These implementations are each
divided into two sections, on implementing the logical shift
operations needed for the first half of the algorithm, and the
random value synthesis needed for the second half.

4. SGI Implementation
The SGI graphics accelerators have focused on high-end real-
time rendering for the scientific visualization and entertainment
production communities. Hence accelerated features have
included scientific imaging functions that support algebraic and
lookup-table operations on pixels.

We focused our implementation on low end and midline SGI
workstations, which are commonly deployed for digital content
creation and design in both the videogame and animation
communities.

4.1 PixelTransfer and PixelMap
We implemented the noise function in multipass OpenGL on
SGI workstations using accelerated PixelTransfer3 and PixelMap
functions. The PixelTransfer function performs a per-component
scale and bias, whereas PixelMap performs a per-component
lookup into a predefined table of values.

We defined an assembly language of useful PixelTransfer
functions. Specifically, the function setPixelTransfer(a,b) sets
OpenGL to perform an ax + b operation during the next image
transfer operation, where x represents each component of the
RGBA color. The function setPixelMap(table) uses PixelMap to
replace colors channels with their corresponding entries in a
lookup table. We also defined a blendtex(i) operation that draws
the texture image corresponding to texture index i. The
instruction savetex(i) saves the current framebuffer as texture
image i.

Unlike the previous section, the SGI implementation begins with
three luminance images tex_s, tex_t and tex_r instead of a
single RGB image solid_map. We could perform all of the
decompositions on a single texture, but we would later need to
break its red, green and blue channels into individual luminance
textures, and we found it impossible to perform this efficiently
with the OpenGL extension set available to low-end and midline
SGI workstations that lacked the color_matrix extension.

 (a) (b) (c)

Figure 5. RGB image weight (a) is equal to (1,0,0) *
luminance image tex_s (b) + (0,1,0) * luminance image

tex_t (c) + (0,0,1) * luminance image tex_r (not
shown).

3
 Following the convention of the OpenGL ARB, we avoid the use of the “gl”

prefix for functions and the “GL_” prefix for tokens when describing elements
of the OpenGL API.

6 - 21

 10-22

4.2 Logical Shift Operations
The task of decomposing a texture map of fixed point solid
texture coordinates into integer and fractional textures used
PixelTransfer multiplication to achieve shifting operations. We
defined an integer shift = 1 << bf. We modulated the texture by
shift to perform a logical shift left by bf, and by 1/shift to
perform a logical shift right. (Some hardware required us to
round instead of truncate, which was performed by a
PixelTransfer bias of -0.5/255.0.) We also defined fracshift as
255.0/((1 << bf) - 1). This allowed us to scale our fractional
portions into normalized weights.

The following code fragment demonstrates the decomposition of
the s coordinate. Similar decompositions need to be performed
on tex_t and tex_r as well.

// shift s right to remove fractional part, save as si
blendtex(tex_s);
setPixelTransfer(1.0/shift, 0.0 /* or –0.5/255.0 */);
savetex(tex_si);
resetPixelTransfer();

// shift si back left
blendtex(tex_si);
setPixelTransfer(shift, 0.0);
CopyPixels(0,0,HRES,VRES,COLOR);
resetPixelTransfer();

// subtract si (floor of s) from s to get fractional part of s
Enable(BLEND);
BlendEquation(SUBTRACT);
BlendFunc(1, 1);
blendtex(tex_s);
Disable(BLEND);

// scale fractional part into normalized weight in [0,1]
setPixelTransfer(fracshift, 0.0);
savetex(tex_sf);
resetPixelTransfer();

4.3 Random Value Synthesis
We implemented randomization using a lookup table. This
lookup table was accessed using the accelerated PixelMap
OpenGL function. Recall the value k ranges from 0 to 7
denoting the current corner. The following code fragment
synthesizes a random field based on the s coordinate.

// tex_sin = random(si) or random(si++)
blendtex(tex_si);
setPixelTransferf(1.0, (k&1) ? 1.0/255.0 : 0.0);
setPixelMap(sran);
savetex(tex_sin);

Similar code fragments apply to the t and r coordinates, using
(k&2) and (k&4) in the PixelTransfer, respectively. At this point
tex_sin, tex_tin and tex_rin contain random values indexed by
the s,t,r values at the kth corner of the cell. The following code
fragment combines these three random values into a single
random value.

// now tex_sin, tex_tin and tex_rin are random
// add them up into a single random number4
blendtex(tex_sin);
Enable(BLEND); BlendFunc(ONE,ONE);
blendtex(tex_tin);
blendtex(tex_rin);
Disable(BLEND);

This combination of random values is highly correlated due to
the componentwise combination of random values. We reduce
this correlation with an additional randomization pass.

// one more randomization (in place)
setPixelMap(nran);
CopyPixels(0,0,HRES,VRES,COLOR);
resetPixelTransfer();

 (a) (b) (c) (d)

Figure 6. The sum of random numbers indexed by s (a).
and t (b) is highly correlated (c). This correlation is
reduced by indexing into a final randomization (d).

The random number tables sran, tran and rran are uniform
random number distributions over the range [0,1/3]. These three
random values are added to form the final distribution, which is
slightly non-uniform and heavily coordinate correlated, as
shown in Figure 6(c). An additional randomization reduces this
correlation as shown in Figure 6(d).

 (a) (b) (c) (d)

Figure 7. The random values at integer lattice locations
for corners (s,t) (a), (s+1,t) (b), (s,t+1) (c)

and (s+1,t+1) (d).

Figure 7 shows the random values generated at the four corners
of the lattice. Note that in this example these are all translates of
each other.

The random value is then weighted by the fractional part of the
original texture coordinates s,t,r. Note that we have broken out
the original RGB image weight from the previous section into
three luminance images tex_sf, tex_tf and tex_rf. We also use
the built-in additive complement blending operation to invert the
weight appropriately depending on the cell corner.

// displayed texture now random value at corner k
// weight this contribution by fractional parts of s,t,r
Enable(BLEND);
BlendFunc(0, (k&1) ? SRC : 1 - SRC);
blendtex(tex_sf);
blendFunc(0, (k&2) ? SRC : 1 - SRC);
blendtex(tex_tf);
BlendFunc(0, (k&4) ? SRC : 1 - SRC);
blendtex(tex_rf);

4
 Note the addition of the component random values introduces a slight Gaussian

bias to the resulting noise. This could be eliminated if an accelerated exclusive-
or blending mode was available.

6 - 22

 10-23

 (a) (b) (c) (d)

Figure 8. Random values scaled by the weight functions
(1 - tex_sf)(1-tex_tf) (a), tex_sf(1-tex_tf) (b), (1-

tex_sf)tex_tf (c) and tex_sf tex_tf (d).

Figure 8 shows the random values at the corners (Figure 7)
scaled by the product of weighting functions tex_sf and tex_tf.
These weighting functions are luminance textures corresponding
to the individual channels of Figure 4(c), such that
weight = (tex_sf, tex_tf, tex_rf).

The resulting weighted random value corresponding to the
current corner is then added into a running total, as show in the
following fragment.

// add noise component into noise sum
BlendFunc(1,1);
blendtex(tex_noise);
Disable(BLEND);

// keep track of sum
savetex(tex_noise);

The texture tex_noise is initialized to black. After all eight
corners have been visited, tex_noise contains the final noise
values corresponding to the solid texture coordinates in the input
luminance images tex_s, tex_t and tex_r.

Figure 9. Noise function resulting from the sum of
Figure 8 (a-d).

4.4 Results
Figure 9 shows the final noise function resulting from summing
the images in Figure 8. The correlation from Figure 6(c) was
reduced by the randomization in Figure 6(d) but is still evident,
particularly in the final interpolated version, as strong horizontal
and vertical tendencies in the noise. However, this correlation is
also found in the reference noise implementation in Figure 2,
and is primarily due to the integer lattice of noise values.

We implemented this algorithm at a resolution of 2562 on a SGI
Solid Impact, a SGI Octane, and an NVidia GeForce2. The SGI
workstations are designed for advanced imaging applications
and have hardware accelerated PixelTransfer and PixelMap
operations whereas the NVidia card designed for mainstream
consumer applications does not. The execution times are given
in Table 1.

 Implementation Execution Time (Rate)
SGI Octane 0.4 sec. (2.5 Hz)
SGI Solid Impact 0.75 sec. (1.3 Hz)
NVidia GeForce 256 5 sec. (0.2 Hz)

Table 1. Execution results for the multipass noise
algorithm.

5. NVidia Implementation
We also implemented a noise function for consumer-level
accelerators using the NVidia chipset. The NVidia products
have been designed to accelerate commodity personal computer
graphics, especially videogames. Hence the drivers did not
accelerate PixelTransfer and PixelMap. We instead used register
combiners to shift, randomize and isolate/combine components.

5.1 Register Combiners
Register combiners support very powerful per-pixel operations
by combining multitextured lookups in a variety of manners.
They support the addition, subtraction and component-wise
multiplication (and even a dot product) of RGB vectors. They
also support conditional operations based on the high-bit of the
alpha channel of one of the inputs. They support signed byte
arithmetic with a full 9 bits per channel, though can only store 8
bit results. They also provide several mapping functions for
signed/unsigned conversion, and the ability to modulate output
values by one-half, two and four.

The Direct3D 8.0 specification includes a register-combiner
based assembly language [12]. However, our implementation
sought to squeeze the best possible performance out of the
NVidia chipset. We chose instead to use the OpenGL register
combiner extensions, which provide complete, though device
dependent, access to the graphics accelerator.

Figure 10 illustrates the register combiner functionality used in
this paper. The register combiner has four inputs A,B,C,D that
can be any combination of the incoming fragment, a pixel from
multitexture unit 0 or 1, and the contents of a scratch register
called Spare0. The constants zero and one (via a special
unsigned invert operation) can also be used as inputs, and other
constant values can also be loaded via special registers.

The outputs of the register combiners include A*B, C*D, A*B +
C*D and the special A*B | C*D. This latter output yields A*B if
the alpha component of the register Spare0 is less than 0.5,
otherwise the output yields C*D. These outputs can also be
optionally scaled by ½, 2 or 4. For this paper, it is safe to assume
the output is always contained in the register Spare0. The
register combiner has separate but comparable functions for the
RGB values and the alpha values of the inputs and registers.

6 - 23

 10-24

Tex0 Tex1 incoming
fragment

Mult iplexor

A B C D

A*B C*D A*B+C*D (A*B | C*D)

Mult iplexor, x1/2, x2, x4

Spare0

outgoing
fragment

Figure 10. Partial block diagram of the register combiner
functionality used in this paper.

There can be any number of register combiners that form a
pipeline, using the temporary registers such as Spare0 to hold
data between stages. The GeForce2 used to implement the pixel
shaders in this paper contains two register combiners which
allow two register combiner operations per pass. The GeForce3
is expected to have eight register combiners.

5.2 Logical Shift Operations
In order to perform the decomposition of the input solid texture
coordinate image into integer and fractional components, we
developed a logical shift left register routine. This routine used
the modulate-by-two output mapping, but this causes values
greater than one half to clamp to one. We avoided this overflow
by using the conditional mode of the register combiners. The
following example sets up the register combiners to perform
such a logical shift left on a luminance value (R=G=B) in
multitexture unit 0.

// first stage
// spare[α] = texture0[b]
A[α] = texture0[b]
B[α] = 1 (zero with unsigned_invert)
spare0[α] = A[α]*B[α]
// spare0 rgb = texture0 less its high bit (or zero if less than ½)
A[rgb] = texture0[rgb]
B[rgb] = white (zero with unsigned_invert)
spare0[rgb] = A[rgb]*B[rgb] - 0.5 // via bias_by_negative_one_half

// second stage
// spare0 rgb = (spare0[α] < 0.5 ? texture0[rgb] : spare0[rgb]) << 1
A[rgb] = texture0[rgb]
B[rgb] = white
C[rgb] = spare0[rgb]
D = white
spare0[rgb] = 2*(spare0[α]<0.5 ? A[rgb]*B[rgb] : C[rgb]*D[rgb])

We could also generate a register combiner to perform a logical
shift right using the scale_by_one_half mode, but found it was
much simpler to perform a multitextured modulate-mode blend
with a texture consisting of the single pixel containing the RGB
color (0.5,0.5,0.5).

5.3 Random Value Synthesis
Randomization on the NVidia controller was particularly
difficult. The driver (and presumably the hardware) accelerated

neither pixel transfer/mapping operations, nor logical operations
like exclusive-or.

We instead implemented a register combiner random number
generator by shifting each of the components of the integer
values of the coordinates left one bit at a time. All four bits of
each of the three components are at one point the high bit in
multitexture unit 0. We then used the register combiner’s
conditional mode to display one of two colors depending on the
high bit of the current texel of multitexture unit 0. The following
code fragment implements this technique.

for (kk = 0; kk < 4; kk++) {
 for (comp = 0; comp < 3; comp++) {
 // display either tex_ranzero or tex_ranone
 // depending on hi bit of tex_comp
 setupblendhibit(ranzero[comp][kk],ranone[comp][kk]);
 blend2tex(tex_comp[comp],tex_corran);
 savetex(tex_corran);
 if (kk < 3) {
 // shift tex_comp left one
 setupshift1();
 blendtex(tex_comp[comp]);
 savetex(tex_comp[comp]);
 }
 }
}

The operation blend2tex(tex_a,tex_b) displays a multitextured
image with tex_a as multitexture unit 0 and tex_b as
multitexture unit 1.

The arrays ranzero and ranone were initialized with random
luminances. These random luminances were used as input to the
function setupblendhibit(rgba0,rgba1). This function set up a
register combiner that would display either constant color rgba0
or rgba1 depending on the high bit of texture0, and would blend
the color (rgba0 or rgba1) with texture1.

We found that setting the alpha channel of rgba0 and rgba1 to
1/8 provided a reasonable balance of colors after twelve
successive blending operations. These blends were accumulated
in tex_corran (corner random). Note that this loop involves
12 randoms + 9 shifts = 21 passes, which expands to 168 passes
for all eight corners.

 (a) (b)

Figure 11. Heavily correlated random values generated
by blending random colors depending on the bits of the

integer lattice value (a). Using (a) to index into a random
value reduces the correlation (b).

The resulting tex_corran still exhibited some coordinate
correlation, which we reduced with an additional eight single-bit
randomizations on tex_corran, yielding tex_corranran. This step
resulted in an additional 8 randoms + 7 shifts = 15 passes per
corner for a total of 120 passes.

Due to the successive blending, the register combiner noise
function is Gaussian distributed. A normal distribution could be
recovered through a histogram equalization step, though such
operations are not yet accelerated on consumer-level hardware.

6 - 24

 10-25

Figure 12. Noise function resulting from register
combiners.

5.4 Results
The register combiner implementation resulted in 375 passes,
but runs in .77 seconds at a resolution of 2562 on a GeForce2
using version 12.0 of the “developer” driver. This results in a
1.3 Hz performance, which is suitable for interactive
applications but is not yet real-time. A discussion of the reasons
why the performance is slower than necessary is given later in
Section 6.2.

The resulting noise is shown in Figure 12. The NVidia
implementation blended random colors, yielding Gaussian noise,
whereas the reference and SGI implementations produced white
noise. If desired, one could redistribute the Gaussian noise into
white noise with a fixed histogram equalization step, though no
such operation is currently accelerated on NVidia GPUs.

6. Discussion
The implementation of the Perlin noise function on SGI and
NVidia GPUs has been successful in that we found it was
feasible, but disappointing in that subtle hardware limitations
prevent truly efficient implementations. These limitations
included the limited precision available in the 8 bit per
component framebuffer, the delay in performing a
CopyTexSubImage transfer from the framebuffer to the texture
memory, and the lack of acceleration of loginal operation blend
modes such as exclusive-or. The process has also been
illuminating, and has inspired us with several ideas for further
advancement in hardware design to overcome these limitations
and better support efficient multipass pixel shading.

6.1 Limited Precision
Most of the per-pixel operations need only a single channel, and
set R=G=B since this is the most efficient mode of operation.
The register combiners can be implemented to a higher
precision, but their input and output precision is limited to the
framebuffer precision.

The register combiners currently support a conversion between
8-bit unsigned external values and 9-bit signed internal values.
These conversions perform the function f(x) = 2x – 1 on an
input, and f-1(x) = 0.5x + 0.5 on the output, where x is each of the
components of an RGBA pixel.

We could likewise create a packed luminance conversion to the
input and output of the register combiners. The input mapping
would perform the function L = R << 16 | G << 8 | B yielding a
24-bit luminance value on which one could perform scalar
register combiner operations. Internally, the register combiner
could maintain a 16.8 fixed-point format, and support operations
such as addition, subtraction, multiplication and division using
the extended range and precision of the new format. Once the
operation is completed, the result may then be unpacked into the

8-bit framebuffer with the output mapping R = L >> 16, G =
(L>>8)&0xff and B & 0xff.

6.2 Swizzle-Blits
Given the number of passes required, the register combiner
performance was astounding, currently 1.3 Hz on a GeForce2
graphics accelerator at a resolution of 256x256. Profiling the
code revealed that the main bottleneck was the time it took to
save the framebuffer to a texture, adding an average of 2 ms per
pass for 354 of the passes. OpenGL currently does not support
rendering directly to texture, and the register combiner does not
allow the framebuffer to be used as an input.

Whereas framebuffer memory is organized in scanline order,
modern texture memory is organized into blocks and other
patterns to better capitalize on spatial coherence. This coherence
allows texture pixels to be more effectively cached during
texture mapping operation. However, in this case the layout of
texture memory is counterproductive. The cost to “swizzle” the
memory into the clustered arrangement when saving a
framebuffer image to texture memory dominates the execution
time of iterative multipass shaders.

We have verifies this delay with a profile of the code, revealing
that our CopyTexSubImage operations were taking longer than
any other component of our shader. We also experimented with
various resolutions and found a direct 1:1 correspondence
between the number of pixels and the execution time.

Perhaps a mode can be incorporated into the graphics
accelerator state that optionally defeats the spatial-coherent
clustering of texture memory. This mode could be enabled
during multipass shader evaluation, to eliminate the shuffled
memory delay incurred during the CopyTexSubImage
operations.

Alternatively, upcoming modes that support rendering directly
to texture may also ameliorate this problem.

6.3 Logical Blend Modes
Blending modes such as exclusive-or and logical shifts left and
right are extremely valuable when generating random values.
Unfortunately these operations are not accelerated under current
graphics drivers. Such operations are of the simplest to
implement in hardware, and we suspect they will become
accelerated as demand for them increases.

7. Conclusion
We have investigated the implementation of the Perlin noise
function as a multipass pixel shader. We have developed a
general algorithm and implemented it using the accelerated
features from two different manufacturers.

The SGI implementation based on PixelTransfer and PixelMap
operations remains faster than the NVidia implementation based
on register combiners. However, we expect the additional
register combiner stages available in the upcoming GeForce3
will close this gap.

The process of implementing a general-purpose procedure using
GPU accelerated operations has been illuminating. We are
excited by the prospect of using the GPU as a SIMD-based
supercomputer. However, this vision has been stifled by the low
precision available in the buffers and processors, and the latency
due to slow framebuffer-to-texture memory transfers. We
believe both problems can be solved with moderate changes to
existing graphics accelerator architectures, and have suggested
possible solution implementations.

6 - 25

 10-26

Our noise implementation uses linear interpolation of random
values on an integer lattice. One can also implement cubic
interpolation at the expense of four extra passes. The function
SCURVE(u) = 3u2 – 2u3 can also be expressed as uu(3-2u). The
function 1/4 SCURVE(u) can be implement by modulating the
images u, u and 3/4 – 1/2 u. Note the latter is necessarily scaled
by ¼ to fall within the legal [0,1] OpenGL range. This result can
then be scaled by 4 (either through PixelTransfer or a register
combiner) to yield SCURVE(u).

We have investigated numerous methods for enhancing the
performance of these multipass pixel shaders. The 2-D s-t plane
examples suggested that image processing applications such as
translation and convolution could be applied, but such
techniques would not work for arbitrarily shaped objects in the
solid texture coordinate image, such as in Figure 13.

 (a) (b)

Figure 13. Application of the noise function (b) on a
sphere of solid texture coordinates (a).

The source code and an executable for both implementations of
the Perlin noise pixel shader can be found at:

http://graphics.cs.uiuc.edu/~jch/mpnoise.zip

Acknowledgments
Conversations with Pat Hanrahan and Henry Moreton were
helpful in determining the cause of the 3ms CopyTexSubImage
delay. This research was supported in part by a grant from the
Evans & Sutherland Computer Corp. Thanks also to Nate Carr
for proofreading the paper.

References
[1] Apodaca, A.A. Advanced Renderman: Creating CGI for Motion

Pictures. Morgan Jaufmannm 1999. See also: Renderman Tricks
Everyone Should Know, in SIGGRAPH 98 or SIGGRAPH 99
Advanced Renderman Course Notes.

[2] Carr, N.A. and J.C. Hart. Real-Time Procedural Solid Texturing.
Manuscript, in review. Apr. 2001.

[3] Ebert, D., F.K. Musgrave, D. Peachey, K. Perlin and S. Worley.
Texturing and Modeling: A Procedural Approach, Academic
Press.1994.

[4] Goehring, D. and O. Gerlitz. Advanced procedural texturing using
MMX technology. Intel MMX Technology Application Note, Oct.
1997. http://developer.intel.com/software/idap/
resources/technical_collateral/mmx/proctex2.htm

[5] Hanrahan, P. and J. Lawson. A language for shading and lighting
calculations. Computer Graphics 24(4), (Proc. SIGGRAPH 90),
Aug. 1990, pp. 289-298.

[6] Hanrahan, P. Procedural shading (keynote). Eurographics /
SIGGRAPH Workshop on Graphics Hardware, Aug. 1999.
http://graphics.standford.edu/hanrahan/talks/rts1/slides.

[7] Hart, J. C., N. Carr, M. Kameya, S. A. Tibbits, and T.J Colemen.
Antialiased parameterized solid texturing simplified for consumer-

level hardware implementation. 1999 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, Aug. 1999, pp. 45-53.

[8] Heidrich, W. and H.-P. Seidel. Realistic hardware-accelerated
shading and lighting. Proc. SIGGRAPH 99, Aug. 1999, pp. 171-
178.

[9] Heidrich, W., R. Westermann, H-P Seidel and T. Ertl. Applications
of Pixel Textures in Visualization and Realistic Image Synthesis.
Proc. ACM Sym. on Interactive 3D Graphics, Apr. 1999, pp. 127-
134.

[10] Kameya, M. and J.C. Hart. Bresenham noise. SIGGRAPH 2000
Conference Abstracts and Applications, July 2000.

[11] McCool, M.C. and W. Heidrich. Texture Shaders. 1999
SIGGRAPH/Eurographics Workshop on Graphics Hardware, Aug.
1999, pp. 117-126.

[12] Microsoft Corp. Direct3D 8.0 specification. Available at:
http://www.msdn.microsoft.com/directx.

[13] Mine, A. and F. Neyret. Perlin Textures in Real Time using
OpenGL. Research Report #3713, INRIA, 1999. http://www-
imagis.imag.fr/Membres/Fabrice.Neyret/publis/RR-3713-
eng.html

[14] NVidia Corp. Noise, component of the NVEffectsBrowser.
Available at: http://www.nvidia.com/developer.

[15] Olano, M. and A. Lastra. A shading language on graphics
hardware: The PixelFlow shading system. Proc. SIGGRAPH 98,
July 1998, pp. 159-168.

[16] OpenGL Architecture Review Board. OpenGL Extension Registry.
Available at: http://oss.sgi.com/projects/ogl-sample/registry/

[17] Peachey, D.R. Solid texturing of complex surfaces. Computer
Graphics 19(3), July 1985, pp. 279-286.

[18] Peercy, M.S., M. Olano, J. Airey and P.J. Ungar. Interactive multi-
pass programmable shading, Proc. SIGGRAPH 2000, July 2000,
pp. 425-432.

[19] Perlin, K. An image synthesizer. Computer Graphics 19(3). July
1985, pp. 287-296.

[20] Pixar Animation Studios. Future requirements for graphics
hardware. Memo, 12 April 1999.

[21] Proudfoot, K., W.R. Mark, S. Tzvetkov and P. Hanrahan. A real-
time programmable shading system for programmable graphics
hardware. Proc. SIGGRAPH 2001, Aug. 2001, to appear.

[22] Rhoades, J., G. Turk, A. Bell, U. Neumann, and A. Varshney.
Real-time procedural textures. 1992 Symposium on Interactive 3D
Graphics 25(2), March 1992, pp 95-100.

[23] Segal, M. and K. Akeley. The OpenGL Graphics System: A
Specification, Version 1.2.1. Available at: http://www.opengl.org/.

[24] Skinner, R. and C.E. Kolb. noise.c component of the Rayshade ray
tracer, 1991.

6 - 26

