Chapter 5
PixelFlow Shading

Marc Olano

OpenGL Extensions and Restrictions for PixelFlow

Jon Leech
University of North Carolina

April 20, 1998

Abstract

This document describes the extensions to OpenGL supported by the PixelFlow API,
restrictions forced by the architecture, and as-yet unimplemented features.

Copyright (©1995, 1996, 1997 The University of North Carolina at Chapel Hill.

This document contains unpublished proprietary information. Any copying, adapation, or
distribution of this document without the express written consent of the University of North
Carolina at Chapel Hill is strictly prohibited. The receipt or possession of this document does
not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture,
use, or sell anything that it may describe, in whole or in part.

READERS OUTSIDE UNC-CH AND HEWLETT-PACKARD PLEASE
NOTE: This is an internal working document. The final implementation may differ sub-
stantially.

PixelFlow is a trademark of the University of North Carolina.

OpenGL is a trademark of Silicon Graphics, Inc.

Contents

1

Introduction

1.1 Roadmap

1.2 Change Log e

Frame Generation

2.1 Frame Setup

2.2 Geometry Definition

2.3 Endof Frame

2.4 Example e e

Controlling Primitive and State Distribution

3.1 Primitive Distribution Algorithm oo

Extending the OpenGL Namespace

4.1 Functions

4.2 Enumerants e

4.3 New Namespaces oo v v
4.3.1 Names of OpenGL Objects

Loading Application-Defined Code

Programmable Rasterization

6.1 Loading and Using Rasterizer Functions
6.1.1 Example.
6.2 Rasterizer API Definitions L
6.3 glVertex() and Sequence Points Lo Lo
6.4 Vertex Array Extensions for Rasterizers and Shaders
6.5 Interpolators
6.6 Interpolator API Definitions
Programmable Shading
7.1 Creating Shaders
7.1.1 Example.
7.2 Using Shaders L
7.2.1 Example.
7.3 Shading API Definitions Lo
74 ToBeDone e
Programmable Lighting
8.1 Creating Lights
8.1.1 Example.
8.2 Using Lights.
8.2.1 Example.
8.3 Light API Definitions L

10
10

12
12
12
12
13

13

14
15
16
16
17
17
18
18

19
20
20
21
21
23
26

9 Programming Other Pipeline Stages - to be written 30

9.1 Atmospheric. 30
9.2 Warping e 30
10 Transparency and Other Blending Effects 30
10.1 Transparency o o o v v v v e e 30
10.1.1 Determining Transparencyo 31

11 Display List Optimization - to be written 31
12 Multiple Application Threads - to be written 31
13 OpenGL Variances - to be written 31
14 Unsupported OpenGL Features - to be written 32
15 Function, Enumerant, and Name Tables 32
15.1 Light Function and Parameter Names 32
15.2 Rasterizer Function and Parameter Names 33
15.3 Shader Function and Parameter Names 33
15.4 Atmospheric Function and Parameter Names 33
15.5 Interpolator Names 33
15.6 Defined Constants 35
16 Glossary 35
17 Credits 36
References 37

List of Tables

1 Built-in light source parameter nameso 32

2 Built-in rasterizer functions o000 33

3 Built-in material parameters o000 34

4 Built-in atmospheric parameterso 34

5 Built-in interpolator nameso 34

6 Defined constants 35
4

1 Introduction

This document describes the PzGL graphics APT for the UNC/Hewlett-Packard PizelFlow
[3] architecture. PxGL is based on the OpenGL [1] API with extensions, restrictions, and
unimplemented features'. Only material which differs between PxGL and a conformant
OpenGL implementation is covered; readers are expected to be conversant with OpenGL
proper.

PixelFlow has enormous flexibility because almost all stages of the graphics pipeline
- transformation, rasterization, and shading - are implemented with user-programmable
hardware. In order to exploit this capability in the framework of a traditional graphics API,

we have extended OpenGL to specify

e When to load and invoke application-defined code (rather than built-in functionality,
such as rendering lit, Gouraud-shaded triangles).

e Which stage of the pipeline to invoke it at.

e What parameters to pass when the code 1s executed.

To optimize performance of OpenGL code on PixelFlow, some architectural details of the
machine are exposed to the API. Using these features may relax some OpenGL guarantees
or invariants in return for greatly improved performance. They include

¢ Primitive and state distribution, which balances rendering load across the parallel
geometry processors while affecting the order in which primitives are composited into
the frame buffer.

e Display list optimization, which increases performance of upper stages of the
pipeline while relaxing knowledge of global state.

While PixelFlow has far more flexibility in most respects than more traditional graphics
accelerators, it also has certain constraints not present in those machines. Most notably, the
nature of the image-composition architecture forces a frame oriented paradigm on the API,
and implies that there is no valid frame buffer containing pixel colors until after rasterization
and shading of all primitives in that frame is complete. PixelFlow also uses a deferred
shading model, in which pixel color is not computed until after visibility determination.
The consequences of these and other minor architectural and design decisions are that

e Additional, non-standard OpenGL calls are required to delimit the start and end of
frame generation.

e Much of the global rendering state (textures, lights, view matrices, and other state
which is not associated to individual primitives) must be defined prior to start of frame
and may not change within the frame.

e Many API calls are only allowed at specific points in the process of generating a frame.

1PixelFlow will support a fully conformant OpenGL API, but in general that mode will not be used
because of its expected substantial performance cost.

e Most types of blending and stenciling are not supported, and composition order of
primitives is not guaranteed.

e Access to the frame buffer may only take place after end of frame.

Finally, many features of the rich OpenGL API are not implemented in PxGL at this
time, though they may be added later.

1.1 Roadmap

The remainder of this document will address the following areas:

e Frame generation (§2).

e Controlling primitive and state distribution (§3).
e Extending the OpenGL namespace (§4).
¢ Loading application-defined code (§5).

e Programmable rasterization (§6).

e Programmable shading (§7).

e Programmable lighting (§8).

e Used-defined functions (§77).

e Other programmable pipeline stages (§9).
e Transparency and shadows effects (§10).
e Display list optimization (§11).

e Multiple application threads (§12).

e OpenGL variances (§13).

e Unsupported OpenGL features (§14).

1.2 Change Log

This is revision Revision : 1.9 of Source : /tmppnt/net/hydra/pp0/doc/software/opengl/tex/RCS/prgl.tex, v.
Changes from the next most recent revision are delimited by change bars (or approximations
thereof in the HTML version).

Changes in revision 1.9 (July 22, 1997):
e Changed all uses of glinquireParameterEXT() to

glGetMaterialParameterNameEXT() or glGetRastParameterNameEXT()
as appropriate.

e Note that glGetLightParameterNameEXT() and other stage-specific inquiry
functions will need to be documented and created.

e Added to section on primitive and state distribution, including
pxDistributionMode() and glGenDataEXT().

o Added section on user-defined functions.
Changes in revision 1.8 (August 1, 1996):

e Changed references from Division to Hewlett-Packard to reflect PFX sale to HP.

e Added new inquiry calls for rasterizer and shader parameters (though details remain
to be documented).

e Rearranged glossary entries in section 7 to group parameter terminology together, at
Rich Holloway’s suggestion.

e Added section on transparency and blending effects, including
glTransparencyEXT().

Changes in revision 1.7 (March 22, 1996):
e glShaderEXT() now allows different shaders on front and back faces of primitives.

e Added discussion to glSurfaceEXT() definition of the restriction of a single value
for uniform and nonvarying parameters, regardless of whether the front or back face
of a primitive is being rasterized.

e Added discussion to glMaterialVaryingEXT() definition of the reason for the
apparently-redundant shaderid argument.

¢ Added glLightModelEXT() to lighting chapter, specifying that user-defined shader
parameters are handled in the same way as OpenGL material parameters.

Changes in revision 1.6 (February 12, 1996):

e First version released to outside readers; added disclaimers.

e Removed definitions of hardware-specific terms like composition/geometry network
parameters, and changed definitions of varying/nonvarying/uniform parameters to
eliminate dependence on those terms.

e Added face argument to glSurfaceEXT().
Changes in revision 1.5 (December 17, 1995):

e Added calls for light groups and loadable light functions.

e Removed glGenShaderEXT() and folded its functionality into
glNewShaderEXT().

o Added sections (though little text yet) for atmospheric and image warping shader
stages.

e Changed glSurfaceParamEXT() to glRastParamEXT() to avoid too-close simi-
larity to glSurfaceEXT().

e Updated to reflect separate-namespace model for parameters and separation of in-
stance and current values. In particular, glBindParameterEXT() has been replaced
by glSurfaceEXT(), although the name of the latter may change.

e Rewrote interpolator introduction.
Changes in revision 1.4 (November 14, 1995):
e Moved document from ETEX 2.09 to IXTEX 2¢.
e Added changebars using changebar.sty.
Changes in revision 1.3 (November 11, 1995):

e Added flat interpolator for per-primitive constant parameters.

¢ Added glBindParameterEXT() and glGetParameterEXT().

e glShaderEXT() now takes a face argument. Added GL_FRONT_SHADER EXT and
GL_BACK_SHADER EXT as targets to glGet().

e Worked on definitions of composition network and geometry network parameters; more

work 1s needed.

2 Frame Generation

The underlying hardware model in OpenGL is that primitives are specified by the application
and immediately drawn - vertices are transformed and lit, rasterization and texturing are
done, and final pixel colors are copied into the frame buffer, or blended with existing frame
buffer contents. Global parameters affecting transformation, rasterization, and shading of
primitives, such as the projection matrix, light bindings, blending modes, and so on, may
be changed at any time.

This model is not compatible with PixelFlow’s image composition and deferred shading
paradigms. In order to achieve good performance on the machine, the API must be frame-
oriented; that is, 1t must specify several stages in the process of generating a frame, and
different types of OpenGL operations may occur only during specific stages. The stages and
the types of calls that may take place during them are:

e Frame setup - establish viewing, lighting, and shading parameters that will apply
throughout the frame.

¢ Geometry definition - traverse the database, rasterizing primitives.

e End of frame - perform image composition, shade pixels, and read/write directly to
the frame buffer.

2.1 Frame Setup

The setup stage begins by calling glBeginFrameEXT(). In this stage, parameters which
globally affect the scene are defined. This includes defining the projection matrix, loading
light functions, creating lights and light groups, changing light source parameters, loading
shader functions, creating shaders, changing nonvarying shader parameters, loading ras-
terizer functions, binding textures, and any other operations that must be known before
primitives can be rasterized and shaded (a complete list of OpenGL calls and the stages
they may be called for is in section 13). Parameters of the scene such as the viewport size,
antialiasing kernel, and background color are also set here; these must be known to define
the rendering recipe.

PxGL currently allows only a single projection matrix to be used during a frame. Many
lighting environments may be used, but they must be defined as light groups. Many textures
may be used, but they must be defined during frame setup using the texture object calls?.

2.2 Geometry Definition

The geometry stage begins by calling glStart GeometryEXT(). In this stage, primitives
are defined and rasterized by different rasterizer boards. Valid calls include operations on
the modelling and texture matrices, setting material values and other attributes, changing
the current texture, and other changes to global state which affect only transformation and
rasterization. Display lists may be compiled and executed, or primitives may be issued in
immediate mode.

2.3 End of Frame

The final stage begins when glEndFrameEXT() is called. Once it returns, the frame
buffer is defined. At this time it may be accessed using functions like glReadPixels()
or glCopyTexture()3. We expect to support other frame buffer operations such as
glAccum() at a later date.

2.4 Example

This code fragment draws a frame containing a single red triangle. Lights are assumed to
have been defined previously.

glBeginFrameEXT();

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();
glFrustum(-1.0, 1.0, -1.0, 1.0, 1.0, 3.0);

2The reason for these restrictions is that while performing deferred shading, the viewing, lighting, and
texturing environment is assumed to be the same for all samples. If this were not the case, such information
would have to be encoded along with each sample, which would enormously increase the amount of pixel
memory needed for a sample. By creating named objects representing these environments, we regain this
capability, although not at OpenGL’s per-primitive granularity.

3Hopefully, for e.g. shadow maps.

glMatrixMode (GL_MODELVIEW) ;
glTranslatef(0.0, 0.0, -2.0);

glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glStartGeometryEXT();

glColor3£(1.0, 0.0, 0.0);
ngegin(GL_TRIANGLES);
glVertex3f(-1.0, -1.0, 0.0)
glVertex3f(0.0, 1.0, 0.0);
glVertex3f(1.0, -1.0, 0.0)
glEnd();

>

> 3

glEndFrameEXT();

Example - Frame generation

3 Controlling Primitive and State Distribution

The PixelFlow architecture achieves scalability by using many parallel rasterizers, each
of which is responsible for transforming and rasterizing a portion of the database, and
shaders, each of which is responsible for lighting and shading a portion of the pixels in the
image. However, primitives are defined in sequential order by the application. So to achieve
good rasterization performance, all the primitives defined in the course of a frame must be
distributed among the rasterizers.

PxGL has a built-in distribution algorithm, and in most cases, an application does not
need to be aware of or make changes in this algorithm. However, in some cases application
performance can be increased by modifying how primitives are distributed.

This section describes how primitives are distributed, the implications of the distribu-
tion algorithm on graphical state maintenance and performance, and how applications may
control distribution.

3.1 Primitive Distribution Algorithm

In the remainder of this section, we assume that a PixelFlow system with N rasterizer boards
is being used, and that M geometric primitives are to be distributed, where M > N.

To be done: call to specify processor groups + comments on ordering implications of
distributing primitives, state maintenance, per-verter state not neccessarily affecting global
state.

The calls controlling distribution are*

GLenum pxDistributionMode(GLenum type, GLenum mode, GLint param)

4The pbase headers don’t use GL types for the prototypes, and return void - this inconsistency needs to
be resolved.

10

GLenum

Changes how GL commands are distributed to rasterizers and shaders. type specifies
the type of commands to be affected, and may take on the following values:

PX PRIMITIVE EXT - affects sequences of commands delimited by a
glBegin() ...glEnd() block, which are normally rasterizer primitives such
as triangles.

PX_STATE EXT - affects all other commands not within a block®.
PX_TEXTURE_EXT - affects textures®.

mode specifies how that type of command is distributed, and may take on the
following values:

PX_DEFAULT EXT - commands are sent in according a default mapping
scheme.

PX_BROADCAST EXT - commands are sent to all rasterizers that may use
them.

PX_ROUND ROBIN_EXT - commands are sent to a single rasterizer or shader,
but successive commands are sent to different rasterizers or shaders in a
simple sequence specified by param, for load balancing purposes.
PX_ROUND ROBIN _WEIGHTED EXT - commands are sent to a single rasterizer or
shader, but successive commands are sent to different rasterizers or shaders
in a sequence determined by the cost of the commands, for load balancing
purposes” .

PX_SPECIFIED GPS_EXT - commands are sent to a set of rasterizers and
shaders specified by param?®.

param controls details of the distribution. For PX_ROUND ROBIN _EXT mode, it is
the blocking factor - param commands are sent to each rasterizer or shader before
shifting to the next. For PX_SPECIFIED GPS_EXT mode, it is the rasterizer to send
commands to. param is currently ignored for the other modes.

GL_INVALID ENUM is generated if {ype or mode are not one of the allowed values.
GL_INVALID VALUE is generated if param is less than 1 (for GL_ROUND ROBIN_EXT
mode) or an invalid rasterizer or shader ID (for GL_SPECIFIED GPS_EXT mode).

pxGetDistributionMode(GLenum type, GLenum *mode, GLint *param)

Returns the distribution mode and param used for the specified type of command.
This call may not be placed in a display list.

GL_INVALID_ENUM is generated if type is not one of the valid command types passed
to pxDistributionMode().

5Not implemented; may never be implemented

8Which commands are “textures”, exactly?

"How might this be parameterized?

8BEventually, param will specify a processor group ID, referring to an arbitrary set of processors established
with other pxgl calls. At present, it is just a rasterizer number, with rasterizers numbered starting at 0.

11

4 Extending the OpenGL Namespace

The C language binding of OpenGL [2] includes several namespaces: functions, types, and
enumerants. PxGL extends the function and enumerant namespaces and adds several new
namespaces: shader parameters, shader functions, light parameters, light functions, raster-
wzer parameters, rasterizer functions, and interpolators. Examples of these namespaces are
given.

In accordance with the ARB® guidelines for extensions to OpenGL, all additions to the
existing namespaces are postfixed by EXT for functions and _EXT for enumerants.

4.1 Functions

The function namespace refers to C calls made by an application, such as
glBegin() and glEnable(). About 20 new calls are introduced in PxGL, such as
glStart GeometryEXT() and glShaderEXT(). New calls are discussed in detail else-
where in this document.

4.2 Enumerants

The enumerant namespace refers to compile-time integral constants used to denote options,
values, flags, and other parameters to API functions. PxGL adds enumerants for the new
calls it introduces, such as GL_ALL_PRIMITIVES EXT (an allowed parameter to the function
glMaterialInterpEXT()). PxGL also allows some existing functions to accept additional
enumerant values in the context of extensions, such as passing an enumerant denoting a
user-defined sphere rasterizer to glBegin() (which normally accepts only enumerants corre-
sponding to the primitives defined in OpenGL). Finally, some existing functions will generate
or return new enumerant values, such as GL_UNSUPPORTED OPERATION_EXT (which may be
generated by calling functions in unsupported modes, and later returned by glGetError()).

4.3 New Namespaces

Application-defined code may be inserted at many stages of the graphics pipeline, primarily
for rasterization, surface shading, and lighting. To call this code and pass appropriate values
to it, several new namespaces are introduced corresponding to the various types of code and
parameters.

Because such code (with the exception of built-in functionality like triangle rasterizers
or the OpenGL shading model) is not known at compile time, a way to dynamically define
the namespaces is needed. This is accomplished by functions which map from ASCII string
names of code and parameters to numeric identifiers'® which are passed to PxGL calls'!.

The new namespaces and the sections in which their uses are discussed are

e Rasterizer functions and parameters, and parameter interpolators (§6).

20penGL Architecture Review Board.

10Should generated IDs be GLenum or GLuint? Adding enumerants at runtime is of questionable legality;
using integers causes incompatibilities with existing calls like glMaterial().

11Tt would be possible to pass names everywhere and avoid this mapping, at enormous performance cost.

12

Shader functions, instances, and parameters (§7).

Light functions, instances, and parameters (§8).
e Atmospheric functions and parameters (§9.1).

e Image manipulation functions and parameters (§9.2).

4.3.1 Names of OpenGL Objects

OpenGL parameters such as light and material properties are given string names (§15).
There are unique parameter IDs corresponding to the different parameters, such as am-
bient light color and ambient surface color. This differs from OpenGL, where the same
pname, such as GL_AMBIENT, may be used to refer to both light and material properties. For
backwards compatibility, the OpenGL IDs are accepted as aliases of the actual parameter
IDs.

Stuff to be done. ..

¢ Querying instance/global, interpolator, and default value for shader parameters
e Built-in shader function, shader parameters (also for rasterizers, lights, etc.)
e Specifying transformation of parameters (also for rasterizers, lights, etc.)

e Talk some more about the parameter namespaces and how they relate to OpenGL
pnames.

5 Loading Application-Defined Code

Adding application-defined code written in the PixelFlow shading language [5] to the PxGL
graphics pipeline is done at runtime!'?.

The application identifies such code using string names that symbolically refer to different
modules; the API hides details of how the names are mapped into object files which are
loaded into the hardware!®. For example, a light function using the Torrance-Sparrow
model might be named torrance; a sphere rasterizer function might be named sphere; and
a marble shader function might be named marble.

Application-defined code may be loaded using this call:

GLenum glloadExtensionCodeEXT(GLenum stage 14 const GLubyte *name)

12The mechanism used involves compiling code in the shading language into shared object files that are
loaded on demand.

13 Although we can expect that the name will either be a Unix filename component, or a key to look up a
filename.

14Do we want to load code for different stages with a single interface? We distinguish between stages with
glGetMaterialParameterNameEXT() and glGetRastParameterNameEXT () for example.

13

Loads application-defined code for the specified pipeline stage identified by name.
Returns an enumerated id which is passed to other calls controlling when the code
is to be used.

May be called with a built-in function or called again for application-defined code
that’s already been loaded. No action is taken, but the same valid id is returned.

stage may take on the following values:

GL_LIGHT FUNCTION EXT - load a light function. id is passed to

glNewLightEXT().

GL_RASTERIZER FUNCTION_EXT - load a rasterizer function. id is passed to
glBegin().

GL_SHADER FUNCTION EXT - load a shading function. id is passed to
glNewShaderEXT().

GL_ATMOSPHERIC FUNCTION EXT - load an atmospheric function. id 1is
passed to'®.

GL_WARPING FUNCTION_EXT - load an image warping function. id is passed
to'6.

GL_INVALID ENUM is generated if stage is not one of the allowed values, and 0 is
returned.

GL_INVALID VALUE is generated if name does not exist, and 0 is returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), and 0 is returned.

Code loaded with glLoadExtensionCodeEXT() usually has associated parameters;
rasterizers may also have associated interpolators. Loading code may have the side effect of
extending those namespaces. At present, there is a single namespace for parameters even
though they are accessed by different calls depending on the stage in which those parameters
are used. Thus, we require user-defined namespace scoping to distinguish both the stage
and the specific object within that stage which the parameter applies to; for example,
rast_sphere radius and shader_polkadot_radius”.

To map parameter names into identifiers, use the calls
glGetMaterialParameterNameEXT() or glGetRastParameterNameEXT().

6 Programmable Rasterization

The programmable rasterization model used in PxGL extends the glBegin() / glEnd()
mechanism used to define built-in primitive types such as triangles and lines. These new
terms are introduced:

15Yes, to what?
16 And again, to what?
17We should recommend namespace conventions.

14

Interpolator - A method for combining parameter values specified at one or more discrete
locations on a primitive being rasterized to generate values for that parameter at
all other locations on the primitive where it is not specified. The most common
interpolators are named constant (corresponding to flat shading on a primitive), flat
(corresponding to glShadeModel(GL FLAT), e.g. flat shading on individual polygons
within a primitive), and and linear (corresponding to glShadeModel (GL_SMOOTH),
e.g. Gouraud shading on polygons within a primitive). Other interpolator types may
be defined for user-specified rasterizer functions.

Since interpolation considered as a mathematical process is tightly bound to the geo-
metrical definition of a surface, most interpolators are only defined for specific types of
primitives. Interpolators have string names and corresponding enumerated parameter
IDs, referred to as interpname and interpid in code examples

Rasterizer Function - A function which takes as input a set of rasterizer parameters and
generates screen-space samples at which the function is visible. A rasterizer function
represents a type of geometric primitive; its parameters determine a specific instance
of that geometry. In abstract terms, the function creates geometry, transforms it
according to the current model-view and projection matrices, and samples it. At
visible samples, shader parameters defined for the current shader are computed using
a specified parameter interpolator and copied into the sample buffer.

Rasterizer Parameter - A parameter to a rasterizer function. Some examples include
vertices of polygons, sphere radii, or control points of parametric patches.

Sequence Point - Specifies the binding time for a group of rasterizer and shader parame-
ters. A rasterizer function may require one or more sequence points to define a specific
instance of its geometry. In many cases, including all the OpenGL primitive types, the
rasterizer parameters bound at the sequence point will simply be vertices of a surface.
Other examples include center and radii of spheres, twist vectors of Hermite patches,

or coefficients of general quadric surfaces'S.

6.1 Loading and Using Rasterizer Functions
To use an application-defined rasterizer function, the following steps must be taken:
e Load the rasterizer function and obtain its ID with glLoad ExtensionCodeEXT()

e Obtain parameter 1Ds of rasterizer parameters using
glGetRastParameterNameEXT().

e Call glBegin() with the rasterizer ID to start delimiting sequence points of a rasterizer
function.

e Specify rasterizer parameters using glRastParamEXT() and bind them using
glSequencePointEXT().

18 Rasterizer writers will have to document which parameters are per-block and which are per-sequence-
point.

15

e Call glEnd() to finish delimiting sequence points of the function and call the rasterizer
function.

6.1.1 Example

In the following example, a rasterizer function named spheres is loaded. The function
has two parameters, the center and radius of the sphere; each sequence point defines a
separate sphere. Two unit-radius spheres which touch at the origin and are centered at

(1,0,0) and (-1,0,0) are drawn.

// Load the rasterizer and obtain its ID
GLenum spherefuncid =
glLoadExtensionCodeEXT(GL_RASTERIZER_FUNCTION_EXT, "spheres");

// Obtain IDs for named parameters
GLenum centerid = glGetRastParameterNameParameterEXT("rast_sphere_center");
GLenum radiusid = glGetRastParameterNameParameterEXT("rast_sphere_radius");

glBeginFrameEXT();
glStartGeometryEXT();

GLfloat vertminus[3] = { -1, 0, 0 };
GLfloat vertplus[3] = { 1, 0, 0 };

// Draw the two spheres

glRastParamfEXT(radiusid, 1.0);

glBegin(spherefuncid);
glRastParamfvEXT(centerid, &vertminus);
glSequencePointEXT();

glRastParamfvEXT(centerid, &vertplus);
glSequencePointEXT();
glEnd();

Example - Using rasterizer functions

6.2 Rasterizer API Definitions

There is currently an naming inconsistency where some calls use RastParam and others
use RastParameter. This should be resolved, probably in favor of the latter.

void glGetRastParamEXT(GLenum paramid, TYPE *params)

Returns the value of the specified parameter in params.

GL_INVALID ENUM is generated if paramid is not a valid rasterizer parameter.

16

GLenum glGetRastParameterNameEXT(GLchar *name_string)

Returns the parameter ID corresponding to the string name.

GL_INVALID NAME_STRING_EXT is generated if string is not a parameter of any ras-
terizer, and 0 is returned.

GLchar * glGetRastParameterStringEXT(GLenum pname)

Returns the string name corresponding to the specified parameter 1D.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and NULL is
returned.

void glSequencePointEXT()

Binds parameters of the rasterizer and shader functions in use.

GL_INVALID OPERATION is generated when glSequencePointEXT() is called other
than between glBegin() and glEnd().

void glRastParamEXT(GLenum paramid, TYPE params)

glRastParam assigns values to rasterizer parameters. paramid specifies which
parameter will be modified. params specifies what value or values will be assigned
to the parameter.

GL_INVALID VALUE is generated if param:d is not a defined rasterizer parameter 1D.

6.3 glVertex() and Sequence Points

Vertices defining built-in primitive types are rasterizer parameters. The following two code
sequences have identical effects:

glVertex3f(x,y,z);

Defining a vertex using glVertex()

GLenum vertid = glGetRastParameterNameEXT('"gl_vertex");
GLfloat point[4] = { x, y, z, 1.0 };

glRastParamfvEXT(vertid, &point);
glSequencePointEXT();

Defining a vertex using rasterizer extensions

6.4 Vertex Array Extensions for Rasterizers and Shaders

These will be needed, but can’t be finalized until the GL 1.1 specification is out.

17

6.5 Interpolators

Every rasterizer function has one or more interpolators associated with its geometry, which
take shader parameters specified at control points and generate parameter values at all
samples. All rasterizers may use the constant interpolator, which copies a single value into
all samples. Rasterizers defined by OpenGL all support the flat interpolator, which copies
a separate constant value into each successive primitive (triangle, line segment, quadrilat-
eral, etc.) in a group, and the linear interpolator, which fits a linear function (possibly
perspective-corrected) to the first two or three vertices of a primitive.

There is also an implicit interpolator, which ignores parameter values specified at se-
quence points. Its exact function varies depending on the rasterizer and parameter type.
For built-in rasterizers, the implicit interpolator can only be applied to texture coordinates,
implementing the functionality of glTexGen().

Other types of rasterizers may use these interpolators, if they make sense, or define new
interpolators corresponding to their geometry!'®. For example, a triangle with 3 additional
sequence points at the midpoints of its edges might define a quadratic interpolator, to al-
low smoother shading between triangles. A parametric patch might define an interpolator
which applies the same weights to shader parameters as to control points. A sphere or gen-
eral quadric surface rasterizer might interpret the tmplicit interpolator to generate texture
coordinates and normals based on the intrinsic geometry of the surface.

6.6 Interpolator API Definitions

void glGetMaterialInterpEXT(GLenum paramid, GLenum primtype, GLenum
*xinterpid)

Returns the interpolator used for rasterizing the specified shader parameter for the
specified primitive type.

GL_INVALID_ENUM is generated if paramid is not a valid shader parameter or if prim-
type 1s not a valid primitive type.

void glMaterialInterpEXT(GLenum paramid, GLenum primtype, GLenum interpid)

Sets the interpolator to be used for rasterizing the specified shader parameter for
the specified primitive type. A primitive type is required because most interpolators
are defined only for specific types of geometry.

interpid 1s usually an interpolator ID for a specific primitive. Five interpolators are
built-into PxGL:

GL_IMPLICIT_INTERPOLATOR_EXT is implemented for texture coordinates in built-in
rasterizers, according to the glTexGen() parameters?’. When rasterizing user de-
fined primitives, it is intended to allow generating normals and texture coordinates
based on the intrinsic geometry of the object.

GL_CONSTANT _INTERPOLATOR EXT copies the parameter value current when

19We don’t have a way to get IDs for interpolators loaded as part of rasterizers, yet - something like a
glGetInterpolatorNameEXT() call is needed.
20D we want to implement it for surface normals, too?

18

glBegin() is called into all samples rasterized for that primitive or group of prim-
itives. It is guaranteed to be implemented for all primitive types and all parameter

types.

GL_FLAT_INTERPOLATOR EXT copies the parameter value current when the last vertex
or sequence point defining a primitive is called into all samples rasterized for that
primitive. Unlike the constant interpolator, a group of primitives defined in a
glBegin() / glEnd() block may have a different value specified for each primitive.
This corresponds to glShadeModelEXT (GLFLAT).

GL_LINEAR_INTERPOLATOR EXT is implemented for all built-in primitive types and
parameters, and corresponds to glShadeModel (GL_SMOOTH)?!.

GL_DEFAULT_INTERPOLATOR EXT is a way to specify the most “natural” type of in-
terpolator for a primitive; linear for a polygon, implicit for a sphere, bicubic for a
patch, and so on.

primtype is either a valid primitive type or the special value
GL_ALL PRIMITIVES EXT. In the latter case, only GL_CONSTANT INTERPOLATOR EXT,
GL_FLAT_INTERPOLATOR EXT, or GL_DEFAULT_INTERPOLATOR_EXT may be specified.

GL_INVALID ENUM is generated if paramidis not a valid shader parameter, if primtype
is neither a valid primitive type nor GL_ALL_PRIMITIVES EXT, or if interpid is not a
valid interpolator.

GL_INVALID OPERATION is generated if interpid is not defined for the specified
paramid and primtype.

To be added: glGenDataEXT() and glDeleteDataEXT().

7 Programmable Shading

The programmable shading model used in PxGL is based on the RenderMan [4] shading
language, but use of some terms differ and these new terms are introduced:

Shader Function - A function, either built-in to PxGL or loaded at runtime, which takes
as input a set of shader parameters and generates as output a color. A shader function
is conceptually applied to each sample of a primitive which was rasterized with a cor-

responding shader applied??. Shader functions have string names and corresponding

enumerated IDs, referred to as shaderfunc and shaderfuncid in code examples.

Shader - An instance of a shader function which binds a subset of the function’s parameters
to be nonvarying for all samples to which the shader is applied. This is done primarily
to increase rasterization and shading speed and to reduce traffic on the PixelFlow
image composition network. Shaders have enumerated IDs, referred to as shaderid
in code examples.

2INote that in PxGL, interpolation is applied to shading parameters before lighting, rather than to color
after lighting, as in OpenGL. This allows true Phong shading, avoiding the artifacts caused by OpenGL’s
Gouraud interpolation of Phong-lit vertices.

22Deferred shading means that in practice, only samples which affect visibility are actually shaded.

19

Shader Parameter - An input argument to a shader function. These fall into three types
depending on how they arrive at the shading hardware: wuniform, nonvarying, and
varying parameters. Shader parameters have string names and corresponding enu-
merated IDs, referred to as paramname and paramid?? in code examples.

Nonvarying Parameter - A shader parameter whose value is the same for all sam-
ples rasterized using that shader. A non-uniform parameter of a shader function

may be chosen to be either nonvarying or warying on a per-shader basis using
glMaterial VaryingEXT().

Uniform Parameter - A shader parameter whose value is the same for all samples ras-
terized using that shader. Uniform parameters cannot be made varying®*.

Varying Parameter - A shader parameter whose value may be different in each sample
rasterized using that shader.

7.1 Creating Shaders

To create a shader, the following steps must be taken:

e Load a shader function and obtain its ID with glLoadExtensionCodeEXT().

Create the new shader and obtain a shader ID using glNewShaderEXT().

Obtain parameter IDs of shader parameters using
glGetMaterialParameterNameEXT().

Specify which shader parameters are varying using glMaterialVaryingEXT() (all
parameters not otherwise specified are assumed to be uniform).

¢ Instantiate the shader with glEndShaderEXT().

After creating the shader, nonvarying parameter values may be set using
glSurfaceEXT(). These parameter values can be changed at any time before start of
geometry.

7.1.1 Example

This code fragment loads a hypothetical shader function named phong shader. The
shader function has two parameters, named gl shader_color (intrinsic color) and

230penGL uses pname to refer to material parameters such as emission color, which are shader parameters
of the builtin OpenGL shading model. This discrepancy should be resolved; Rich suggests an explanation
of parameter names vs. parameter IDs.

24The distinction between uniform parameters and nonvarying parameters is subtle from the user’s point
of view, and these definitions need work: both are sent to the shader GPs over the geometry network, but
uniform parameters are held on the GP during shading code execution, while nonvarying parameters are
copied into pixel memory. The distinction is primarily an efficiency measure to reduce composition network
bandwidth requirements.

20

gl _shader normal (surface normal)?®. Two shaders are created. The first, phongshader,
allows both color and normal to vary. The second, redshader, has a nonvarying intrinsic

color of red.

// Load the named shader and obtain its ID
GLenum phongfuncid =
glLoadExtensionCodeEXT (GL_SHADER_FUNCTION_EXT, 'phong_shader");

// Obtain IDs for named parameters
GLenum colorid = glGetMaterialParameterNameEXT("gl_shader_color");
Glenum normalid = glGetMaterialParameterNameEXT("gl_shader_normal");

// Create a shader with ID ’phongshader’, allowing both parameters to vary

GLenum phongshader = glNewShaderEXT(phongfuncid);
glMaterialVaryingEXT(phongshader, colorid);
glMaterialVaryingEXT(phongshader, normalid);

glEndShaderEXT();

// Create ’redshader’, allowing only normals to vary and

// binding the nonvarying color to red.

GLfloat red[3] = { 1, 0, 0 };

GLenum redshader = glNewShaderEXT(phongfuncid);
glMaterialVaryingEXT(redshader, normalid);

glEndShaderEXT();

glSurfacefvEXT(redshader, colorid, &red);

Example - Creating shaders

7.2 Using Shaders
To use a shader once it has been created, the following steps must be taken:
o Select the shader using glShaderEXT().

e Specify the interpolation method to be used for warying shader parameters using
glMaterialInterpEXT().

e Define a primitive, setting values of varying shader parameters using glMaterial().

7.2.1 Example

This continues the previous example, defining three triangles. The first uses redshader
to draw a red phong-lit triangle with linearly interpolated normals. The second uses
phongshader to draw a vertex-colored triangle using linear interpolation of the vertex colors.
The third uses phongshader to draw a green triangle using constant interpolation.

25Note that these parameters are also parameters of the built-in OpenGL shader; they are used by the
loadable shader so the example can make shortcut calls like gINormal() and glColor() to specify shader
parameters, rather than glMaterial().

21

// Select the red-colored shader
glShaderEXT(GL_FRONT_AND_BACK, redshader);

// Choose a linear interpolator for normals and draw a red
// phong-shaded triangle.
glMaterialInterpEXT(normalid, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);

glBegin(GL_TRIANGLES) ;
for (i = 0; i < 3; i++) {
glNormal3fv(normal[il);
glVertex3fv(vertex[i]);
}
glEnd();

// Select the phong shader, use linear interpolation for color,
// and draw a vertex-colored phong-shaded triangle
glShaderEXT(GL_FRONT_AND_BACK, phongshader);

glMaterialInterpEXT(colorid, GL_TRIANGLES, GL_LINEAR_INTERPOLATOR_EXT);

glBegin(GL_TRIANGLES) ;
for (i = 0; i < 3; i++) {
glColor3fv(color[il);
glNormal3fv(normall[il);
glVertex3fv(vertex[i]);
}
glEnd();

// Change to constant interpolation for color, and draw a green
// phong-shaded triangle.
glMaterialInterpEXT(colorid, GL_TRIANGLES, GL_CONSTANT_INTERPOLATOR_EXT);

GLfloat green[3] = { 0, 1, 0 };
glColor3fv(green);

glBegin(GL_TRIANGLES) ;
for (1 = 0; i < 3; i++) {
glNormal3fv(normal[il);
glVertex3fv(vertex[i]);
}
glEnd();

Example - Using shaders

There is a subtle difference between the first and third triangles: the first uses a shader
where color is nonvarying, so that all primitives rendered using that shader will be red. The
third triangle uses a shader where color is varying, but the constant interpolator causes the

22

color to be fixed on that particular triangle?®.

7.3 Shading API Definitions

void glDeleteShaderEXT(GLuint shaderid)

Removes the definition of the specified shader; shaderid is unused after this call.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

void glEndShaderEXT()

Instantiates a shader created by glNewShaderEXT(). All shader parameters
which are not explicitly specified in previous calls to glMaterialVaryingEXT()
are made nonvarying; values of these parameters are set with glSurfaceEXT().

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), or when not preceded by a corresponding
glNewShaderEXT().

void glGet(GLenum pname, TYPE *params)

glGet() is extended to accept parameters GL_FRONT_SHADER EXT and
GL_BACK_SHADER _EXT, which return the current front and back face shaders
as specified via glShaderEXT().

void glGetMaterial(GLenum face, GLenum paramid, TYPE *params)

glGetMaterial() is extended so that paramid can refer to shader parameters de-
fined by dynamically loaded shaders.

GL_INVALID_ENUM is generated if paramid is not a valid shader parameter.
GLenum glGetMaterialParameterNameEXT(GLchar *name_string)

Returns the parameter ID corresponding to the string name_string.
GL_INVALID NAME_STRING_EXT is generated if name_string is not a parameter of any
shader, and 0 is returned.

void glGetMaterialParametersEXT(GLuint shaderid, GLenum *pnames)

Returns a list of parameter IDs wused by the specified shader.
pnames must have room for at least the number of IDs specified by
glGetNumMaterialParametersEXT().

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

26 The purpose of the constant interpolator is to reduce work done during rasterization; it’s appropriate
when performing (for example) flat shading. The same visual effect could also be achieved by using the
linear interpolator and specifying the same color at each vertex, but rasterization speed would be lower.

23

GLchar * glGetMaterialParameterStringEXT(GLenum pname)

GLuint

Returns the string name corresponding to the specified parameter 1D.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and NULL is
returned.

glGetNumMaterialParametersEXT(GLuint shaderid)

Returns the number of material parameters accepted by the specified shader. Used
in conjunction with glGetMaterialParametersEXT().

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

void glGetSurfaceEXT(GLuint shaderid, GLenum face, GLenum paramid, TYPE
*params)

Retrieves the value of a nonvarying parameter of the specified shader. Bound values
are set by glSurfaceEXT().

GL_INVALID ENUM is generated if face is not GL_FRONT or GL_BACK, or if param:d is
not a bound parameter of shaderid.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GLboolean glIsMaterialParameterEXT(GLuint shaderid, GLenum pname)

Returns TRUE if pname is a parameter of the specified shader, FALSE otherwise.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID, and FALSE is

returned.

GL_INVALID ENUM is generated if pname is not a valid parameter 1D, and FALSE is
returned.

GLboolean glIsMaterialUniformEXT(GLuint shaderid, GLenum pname)

Returns TRUE if pname is a uniform parameter of the specified shader, FALSE oth-
erwise.

GL_INVALID VALUE is generated if shaderid is not a defined shader 1D, and FALSE is
returned.

GL_INVALID ENUM is generated if pname is not a valid parameter ID, and FALSE is
returned.

GLboolean glIsShaderEXT(GLuint shaderid)

Returns TRUE if shaderid is used for an existing shader, FALSE otherwise.

void glMaterial(GLenum face, GLenum paramid, TYPE params)

glMaterial() is extended so that paramid can refer to shader parameters defined
by dynamically loaded shader functions.

GL_INVALID ENUM is generated if paramid is not a shader parameter either of the
built-in OpenGL shading function or of a shader function previously loaded.

24

void glMaterialVaryingEXT(GLuint shaderid, GLenum paramid)

GLuint

Specifies that a parameter is varying for this shader. All parameters of a shader are
uniform or nonvarying unless specified as varying by the time glEndShaderEXT ()
is called?7.

GL_INVALID_ENUM is generated if param:d is not a valid shader parameter or a uni-
form parameter.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GL_INVALID OPERATION is generated if called other than between
glNewShaderEXT() and glEndShaderEXT().

glNewShaderEXT(GLenum shaderfuncid)

Creates and returns a shader ID for a new instance of the specified shader function.

GL_INVALID_ENUM is generated if shaderfuncid does not refer to a valid shader func-
tion, and 0 is returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT(), and 0 is returned.

void glShaderEXT(GLenum face, GLuint shaderid)

Sets the shader to be used for shading the specified face of primitives defined fol-
lowing the call. face may be GL_FRONT, GL_BACK, or GL_FRONT_AND BACK.

GL_INVALID_ENUM is generated if face is not one of the allowed values.
GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

void glSurfaceEXT(GLunit shaderid, GLenum paramid, TYPE params)

Sets the value of nmonvarying parameters of a shader instance. The values of
varying parameters are set with glMaterial().

Nonvarying parameters cannot be specified separately for front and back faces; there
is a single value used regardless of whether the front or back face of a primitive is
rasterized. This can be addressed by using different shaders on front and back faces.

A nonvarying parameter has an initial value defined by the shader using that pa-
rameter. The value is set when the shader is loaded.

GL_INVALID_ENUM is generated if paramid does not refer to a nonvarying parameter
of the specified shader.

GL_INVALID VALUE is generated if shaderid is not a defined shader ID.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

2TWhile shaderid appears redundant, keeping the parameter allows the possibility of changing a parameter
between varying and nonvarying on the fly, in a possible future implementation.

25

7.4 To Be Done

e Parameter Transformation (normals, texture matrix).

e Parameter Generation (glTexCoord(), sphere normals).

Implicit Parameters (texture scale factors, texture 1D, normals).

e GL _FRONT_AND BACK vs. uniform parameters and optimized lists.

8 Programmable Lighting
The programmable lighting model used in PxGL introduces these new terms:

Light Function - A function which takes as input a set of light source parameters and a
set of shader parameters at a sample, and generates an illumination at that sample
which is used by a shader function to compute color of the sample.

Light Group - A subset of all existing light instances, used to illuminate specified primi-

tives during shading. Only one light group may be active at any time.

8.1 Creating Lights

To create a light, the following steps must be taken:
e Load a light function and obtain its ID with glLoadExtensionCodeEXT()
e Create the new light and obtain a light ID using glNewLight EXT().

e Obtain parameter IDs of light source parameters using
glGetLightParameterName?EXT().

e Call glLight() to specify light source parameters.

8.1.1 Example

I don’t have a good example of a user-defined light function. This example just creates a
new instance of the built-in OpenGL light function, which is named gl light _function.
The light is made a red, diffuse, infinite light in direction -Z.

glBeginFrameEXT();

// Get the light function ID for the built-in light model
// by "loading" it.
GLenum lightfuncid =
glLoadExtensionCodeEXT(GL_LIGHT_FUNCTION_EXT, "gl_light_function");

// Create a new instance of the OpenGL light function

28 This call needs to be added.

26

GLenum lightid = glNewLightEXT(lightfuncid);

// Get IDs of light source parameters. We do not really

// need to do this for the built-in light function; GL_POSITION

// and GL_DIFFUSE could be used instead.

GLenum positionid = glGetLightParameterNameEXT("gl_light_position");
GLenum diffuseid = glGetLightParameterNameEXT("gl_light_direction");

0.0, -1.0, 0.0 };

GLfloat position[4] = { 0.0,
=4{1.0, 0.0, 0.0, 1.0 };

GLfloat diffusecolor[4]
glLightfv(lightid, positionid, &position);
glLightfv(lightid, diffuseid, &diffusecolor);

Example - Creating a light

8.2 Using Lights

There is no limit on the number of lights which may be created (above and beyond the
built-in OpenGL lights). Lights are placed in light groups, which are arbitrary subsets of
the defined lights with enumerated IDs; the current light group may be changed at any time
and that set of lights is applied when shading primitives. Initially a single light group,
GL_DEFAULT LIGHT _GROUP _EXT, exists and is the current light group.

To change the lighting environment, the following steps must be taken:

e Optionally create a new light group.

e Place desired lights in the light group.

e Specify the current light group.

e Render primitives with the specified light group illuminating them.

8.2.1 Example

This continues the previous example, placing the new light in a new light group, selecting
that as the current light group, and drawing a triangle.

// Create a new light group
GLuint groupid = glNewLightGroupEXT();

// Add the new light to this group
glEnableLightGroupEXT(groupid, lightid);

glStartGeometryEXT();
glLightGroupEXT(groupid);

// Primitives drawn now are lit by the new light

27

8.3

void

void

void

void

void

void

void

void

Example - Using a light

Light API Definitions

glDeleteLightEXT(GLenum lightid)

Removes the definition of the specified light; lightid is unused after this call.
GL_INVALID_VALUE is generated if lightid is not a defined shader 1D.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

glDeleteLightGroupEXT(GLuint groupid)

Removes the definition of the specified light group; groupid is unused after this call.
GL_INVALID_VALUE is generated if groupid is not a defined light group.
GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

glDisable(GLenum cap)

glEnable(GLenum cap)
glDisable() and glEnable() are extended to operate on light groups. When cap
is GL_LIGHT %, the specified built-in light is removed from or added to the current
light group?®.

glDisableLightGroupEXT(GLuint groupid, GLenum lightid)

glEnableLightGroupEXT(GLuint groupid, GLenum lightid)

Removes or adds the specified light to the specified light group.

GL_INVALID VALUE is generated if groupid is not a valid light group ID or lightid is
not a valid light ID.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().
glGet (GLenum pname, TYPE *params)

glGet() is extended to accept parameter GL_LIGHT_GROUP_EXT, which returns the
current light group as specified via glLightGroupEXT().

glGetLight (GLenum lightid, GLenum paramid, TYPE *param)

glGetLight() is extended so that paramid can refer to light source parameters
defined by dynamically loaded light functions.

GL_INVALID ENUM is generated if lightid is not a valid light or if paramid is not a
light source parameter of the light

29GL_LIGHTING could be implemented as a flag on the entire light group; at present it has no effect.

28

void glGetLightFunctionEXT(GLenum lightid, GLenum *lightfuncid)

Returns in lightfuncid the light function used by the specified light.
GL_INVALID_ENUM is generated if lightid is not a valid light.

GLboolean glIsLightEXT(GLenum lightid)

Returns TRUE if lightid is used for an existing light, FALSE otherwise.
GLboolean glIsLightGroupEXT(GLuint groupid)

Returns TRUE if groupid is used for an existing light group, FALSE otherwise.

void glLight(GLenum lightid, GLenum paramid, TYPE param)

glLight() is extended so that paramid can refer to light source parameters defined

by dynamically loaded light functions.

GL_INVALID_ENUM is generated if paramid is not a light source parameter either of

the built-in OpenGL light function or of a light function previously loaded.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT().

void glLightGroupEXT(GLuint groupid)

Sets the light group to be used for lighting primitives specified following the call.

GL_INVALID VALUE is generated if groupid is not a defined light group ID.

void glLightModelEXT(GLenum pname, TYPE param)

glLightModel() is extended so that when two-sided lighting is enabled via
GL_LIGHT MODEL _TWO_SIDE, it includes all varying parameters of the shader being
used for a primitive. This allows texture coordinates, texture IDs, and user-defined

shader parameters to differ on front and back faces of a primitive.

GLenum glNewLightEXT(GLenum lightfuncid)

Creates and returns a light ID for a new instance of the specified light function.

GL_INVALID_ENUM is generated if lightfuncid does not refer to a valid light function,

and 0 1s returned.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT(), and 0 is returned.

GLuint glNewLightGroupEXT()

Creates a new light group and returns the group ID. Initially no lights are in the

group; lights may be added with glEnableLight GroupEXT().

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()

and glEndFrameEXT().

29

9 Programming Other Pipeline Stages - to be written

9.1 Atmospheric
Talk about glFog() here.

9.2 Warping
To be defined.

10 Transparency and Other Blending Effects

Because PixelFlow is an image composition architecture, in which there is not a single frame
buffer during rasterization, the effects possible via blending in OpenGL must be done via
alternate methods.

Further discussion about blending across frame boundaries and such will go here later.

10.1 Transparency

Transparent primitives may be handled in one of two ways. The first is screen-door trans-
parency. This supports a limited number of levels of transparency, depending on the number
of samples/pixel being rasterized, but is the most general method. The second method is a
multipass algorithm which extracts all transparent primitives and renders them properly in
sorted order using multiple rendering passes to resolve visibility (Apgar paper citation goes
here). Unlike alpha blending in OpenGL, neither approach relies on the database being
traversed in any particular order.
To use transparent primitives, several steps must be taken:

e Enable transparency on a per-frame basis using glTransparencyEXT().
e Enable transparency on a per-primitive basis using glEnable().

e Specify transparent primitives by defining colors with non-unitary alpha components.
The new calls are:

void glTransparencyEXT(GLenum mode)
Specifies the method by which transparent primitives are rendered. Must be called
during the frame setup stage (section 2.1).

mode may take on the following values:

GL_TRANSPARENCY NONE_EXT - transparency is not handled. All primitives
are treated as opaque regardless of alpha values.

GL_TRANSPARENCY SCREEN DOOR_EXT - transparency is done by turning on
a fraction of the samples in each pixel corresponding to the alpha value of

30

that fragment. This is usually the fastest and lowest quality mode.

GL_TRANSPARENCY MULTIPASS EXT - transparency is done by multipass ren-
dering of potentially transparent primitives. This is usually the slowest and
highest quality mode.

GL_INVALID OPERATION is generated if called between glStartGeometryEXT()
and glEndFrameEXT().

void glDisable(GLenum cap)

void glEnable(GLenum cap)

glDisable() and glEnable() are extended to support potentially transparent prim-
itives. When cap is GL_TRANSPARENCY EXT and is enabled, primitives may be han-
dled using the transparency mode determined by glTransparencyEXT(). When
disabled, primitives are treated as opaque regardless of their alpha values.

For maximum performance, GL_TRANSPARENCY EXT should be enabled only when
potentially transparent primitives are being rasterized.

10.1.1 Determining Transparency

Determining whether or not primitives are transparent at rasterization time is difficult in a
deferred-shading architecture, since user-defined shaders need not have an input parameter
analogous to the alpha value used by OpenGL. At present, transparency is only handled for
primitives using the built-in OpenGL shader®C.

11 Display List Optimization - to be written
e How to specify optimization; types of optimizations.

e Inheriting state from environment for constant-interpolated params, binding at
glBegin().

o Interaction with glShadeModelEXT().

12 Multiple Application Threads - to be written

Discuss multiple AP contexts, ordering issues, frame synchronization points, global names-
paces for lights, shaders, and rasterizers, local (perhaps) namespaces for display lists.

13 OpenGL Variances - to be written

Tables of (enumerant,relevant calls) and (call,valid frame stages) will go here.

3015 this true? We've gone around on possible approaches to shaders generating transparent samples
before, but there has been no resolution yet. What does the current implementation do?

31

Depth buffer always enabled.

Depth function always GL_LESS.

e Transparency specially handled (see section 10.1).

And lots more. ..

14 Unsupported OpenGL Features - to be written

Lee’s lengthy document should be referenced here.

15 Function, Enumerant, and Name Tables

Parameters of the built-in light, shader, and rasterizer functions have all been assigned string
names which map to enumerated IDs. Existing OpenGL enumerants (such as GL_AMBIENT or
GL_LIGHTO) are recognized as aliases for the actual IDs. String names of built-in parameters,

and the corresponding OpenGL enumerants, are listed below.

15.1 Light Function and Parameter Names

There is a single built-in light function corresponding to the OpenGL lighting model, named
gl light function. Table 1 lists parameters of this function, which correspond to OpenGL

light source parameters.

gl light spot_direction

gl light spot_exponent

gl light spot_cutoff

gl light_constant_attenuation
gl light linear_attenuation

gl light_quadratic_attenuation

String Name OpenGL ID
gl light_ambient GL_AMBIENT
gl light diffuse GL_DIFFUSE
gllight _specular GL_SPECULAR
gl light_position

GL_POSITION

GL_SPOT DIRECTION
GL_SPOT_EXPONENT
GL_SPOT_CUTOFF
GL_CONSTANT _ATTENUATION
GL_LINEAR_ATTENUATION
GL_QUADRATIC_ATTENUATION

Table 1: Built-in light source parameter names

32

15.2 Rasterizer Function and Parameter Names

Table 2 lists the built-in rasterizer function names and the corresponding OpenGL IDs.

String Name OpenGL ID
1 teri int
gl rasterizer points GL_POINTS
gl rasterizer_ lines 6L LINES
gl rasterizer line_strip

GL_LINE_STRIP
gl rasterizer_line_loop

GL_LINE_LOOP

gl rasterizer triangles GL TRIANGLES

gl rasterizer triangle strip GL TRIANGLE.STRIP

gl rasterizer triangle fan GL_TRIANGLE FAN

1 teri d
gl rasterizer _quads GL_QUADS

1 teri d_stri
gl _rasterizer quad_strip GL_QUAD_STRIP

gl rasterizer polygon GL_POLYGON

Table 2: Built-in rasterizer functions

There is a single parameter of built-in rasterizers, named gl_vertex. Vertices are nor-
mally specified using glVertex() rather than glRastParamEXT() (§6.3).

15.3 Shader Function and Parameter Names

There is a single built-in shader function corresponding to the OpenGL shading model,
called gl_shader function. Table 3 lists parameters of this function and the corresponding
OpenGL material parameter names.

15.4 Atmospheric Function and Parameter Names

There is a single built-in atmospheric function corresponding to the OpenGL fog model,
called gl fog function. Table 4 lists parameters of this function and the corresponding
OpenGL fog parameter names.

15.5 Interpolator Names

Table 5 lists the built-in interpolator functions which may be used with the built-in rasterizer
functions. The constant and implicit interpolators may also be used with any application-
defined rasterizer function.

33

String Name OpenGL ID
glshader_ambient GL_AMBIENT
glshader diffuse GL_DIFFUSE

gl_shader_color
gl_shader_specular

gl _shader_emission
gl _shader_shininess

gl _shader_textureid
gl_shader normal

gl_shader_u, gl shader_v
gl_shader_du, gl shader_dv

Use glColor()
GL_SPECULAR
GL_EMISSION

GL_SHININESS

Use texture object calls
Use glNormal()

Use glTexCoord()
Implicitly generated

Table 3: Built-in material parameters

String Name OpenGL ID
glfog-mode GL_FOG_MODE
glfog_density GL_FOG_DENSITY
gl fog start GL_FOG_START
gl fog_end

GL_FOG_END

gl _fog_color

GL_FOG_COLOR

Table 4: Built-in atmospheric parameters

String Name

OpenGL ID

gl interpolator_implicit

gl interpolator_constant

gl _interpolator flat

gl interpolator_linear

gl _interpolator_default

GL_IMPLICIT_INTERPOLATOR_EXT
GL_CONSTANT_INTERPOLATOR_EXT
GL_FLAT_INTERPOLATOR_EXT
GL_LINEAR_INTERPOLATOR_EXT
GL_ DEFAULT_INTERPOLATOR_EXT

Table 5: Built-in interpolator names

34

15.6 Defined Constants

Table 6 lists manifest constants in PxGL which are not in OpenGL, along with the corre-
sponding commands these constants are used in.

Constant Associated Commands
GL_BACK_SHADER EXT, glGet()
GL_FRONT _SHADER _EXT,

GL_LIGHT _GROUP_EXT

GL DEFAULT LIGHT _GROUP_EXT glLight GroupEXT()

GL_CONSTANT_INTERPOLATOR EXT, glMateriallnterpEXT()
GL_DEFAULT_INTERPOLATOR_EXT,

GL_FLAT_INTERPOLATOR EXT,

GL_IMPLICIT_INTERPOLATOR EXT,
GL_LINEAR_INTERPOLATOR EXT

GL_ATMOSPHERIC FUNCTIONEXT, glLoadExtensionCodeEXT()
GL_LIGHT FUNCTION_EXT,

GL_RASTERIZER FUNCTION_EXT,

GL_SHADER FUNCTION_EXT,

GL_WARPING_FUNCTION_EXT

GL_TRANSPARENCY EXT glEnable()

GL_TRANSPARENCY NONE_EXT, glTransparencyEXT()
GL_TRANSPARENCY _SCREEN_DOOR_EXT,
GL_TRANSPARENCY MULTIPASS_EXT

many

GL_UNSUPPORTED_OPERATION_EXT

Table 6: Defined constants

16 Glossary

Interpolator - A method for combining parameter values specified at one or more
discrete locations on a primitive being rasterized to generate values for that param-
eter at all other locations on the primitive where 1t 1s not specified.

Light Function - A function which takes as input a set of light source parameters
and a set of shader parameters at a sample, and generates an illumination at that
sample which is used by a shader function to compute color of the sample.

Light Group - A subset of all existing light instances, used to illuminate specified
primitives during shading. Only one light group may be active at any time.

Nonvarying Parameter - A shader parameter whose value is the same for all
samples rasterized using that shader.

Rasterizer Function - A function which takes as input a set of rasterizer param-
eters and generates screen-space samples at which the function is visible.

Rasterizer Parameter - A parameter to a rasterizer function.

Sequence Point - Specifies the binding time for a group of rasterizer and shader
parameters.

Shader Function - A function, either built-in to PxGL or loaded at runtime, which
takes as input a set of shader parameters and generates as output a color.

Shader Parameter - An input argument to a shader function.

Shader - An instance of a shader function which binds a subset of the function’s
parameters to be nonvarying for all samples to which the shader is applied.

Uniform Parameter - A shader parameter whose value is the same for all samples
rasterized using that shader.

Varying Parameter - A shader parameter whose value may be different in each
sample rasterized using that shader.

Rasterizer Boards - Hybrid MIMD/SIMD parallel processors which transform
subsets of the primitives making up an image, rasterizing shader parameters into
local sample buffers These buffers are later combined using the image composition
network as directed by the rendering recipe.

Rendering Recipe - A list of instructions describing how to combine rasterized
screen regions containing shading parameters using the image composition network,
shade the resulting visible samples, and combine shaded samples into the frame
buffer. The rendering recipe is normally defined by state such as viewport size and
number of supersamples used for antialiasing.

Sample Buffer - buffers on rasterizer boards which contain samples of locally-
visible surfaces and shading parameters for those samples.

17 Credits

The PixelFlow API has developed by discussion among the following people®!:

Dan Aliaga, Jon Cohen, Lawrence Kestleoot, Anselmo Lastra, Jon Leech, Jonathan
McAllister, Steve Molnar, Marc Olano, Greg Pruett, Yulan Wang, and Rob Wheeler (UNC),
and Rich Holloway, Roman Kuchkuda, and Lee Westover (HP)

317 think this covers everyone who had significant input, but please correct me - JPL.

36

References

[1] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A Specification
(Version 1.1). Silicon Graphics, Inc., 1995. Unpublished; available at UNC in
file:/home/pxfl/doc/software/SGI/glspec.ps

[2] OpenGL Architecture Review Board. OpenGL Reference Manual. Addison-Wesley Pub-
lishing Company, Inc., 1992.

[3] Steve Molnar, John Eyles, and John Poulton. PizelFlow: High-Speed Rendering Using
Image Composition. Computer Graphics vol. 26 no. 2, July 1992.

[4] Steve Upstill. The RenderMan Companion: A Programmer’s Guide to Realistic Com-
puter Graphics. Addison-Wesley Publishing Company, Inc., 1990.

[5] Marc Olano. PizelFlow Shading Language. Unpublished; talk to Marc for a copy.

37

Index

atmospheric effects 30
atmospheric function names 33
atmospheric parameter names 33
blending effects 30

changelog 6

code example - creating lights 26
code example - creating shaders 20
code example - frame generation 9
code example - using lights 27
code example - using rasterizers 16
code example - using shaders 21
credits 36

defined constants 35

determing transparency 31

display list optimization 31

end of frame 9

enumerant namespace 12

frame generation 8

frame setup 9

function and enumerant tables 32
function namespace 12

geometry definition 9
glDeleteLight EXT 28
glDeleteLightGroupEXT 28
glDeleteShaderEXT 23
glDisableLightGroupEXT 28
glDisable 28

glDisable 31
glEnableLightGroupEXT 28
glEnable 28

glEnable 31

glEndShaderEXT 23
glGetLightFunctionEXT 29
glGetLight 28
glGetMateriallnterpEXT 18
glGetMaterialParameterNameEXT 23
glGetMaterialParametersEXT 23
glGetMaterialParameterStringEXT 24
glGetMaterial 23
glGetNumMaterialParametersEXT 24
glGetRastParameterNameEXT 17
glGetRastParameterStringEXT 17
glGetRastParamEXT 16

38

glGetSurfaceEXT 24

glGet 23

glGet 28

gllsLight EXT 29
gllsLightGroupEXT 29
gllsMaterial ParameterEXT 24
gllsMaterialUniformEXT 24
gllsShaderEXT 24
glLightGroupEXT 29
glLightModel EXT 29

glLight 29
glLoadExtensionCodeEXT 13
glMateriallnterpEXT 18
glMaterial VaryingEXT 25
glMaterial 24
gINewLight EXT 29
gINewLightGroupEXT 29
gINewShaderEXT 25

glossary 35

glRastParamEXT 17
glSequencePoint EXT 17
glShaderEXT 25
glSurfaceEXT 25
glTransparency EXT 30
glVertex() and sequence points 17
image warping 30

interpolator API definitions 18
interpolator names 33
interpolators 18

interpolator 14

introduction 5

light API definitions 28

light function names 32

light function 26

light group 26

light parameter names 32
lights, creating 26

lights, using 27

loading application-defined code 13
multiple application threads 31
names of OpenGL objects 13
namespace 12

new namespaces 12

nonvarying parameter 20
OpenGL variances 31
pipeline programming 30
primitive distribution algorithm 10
primitive distribution 10
programmable lighting 26
programmable rasterization 14
programmable shading 19
pxDistributionMode 10
pxGetDistributionMode 11
rasterizer API definitions 16
rasterizer function names 33
rasterizer function 15
rasterizer parameter names 33
rasterizer parameter 15
rasterizers, using 15
roadmap 6

sequence point 15

shader function names 33
shader function 19

shader parameter names 33
shader parameter 19
shaders, creating 20
shaders, using 21

shader 19

shading API definitions 23
transparency 30

uniform parameter 20
unsupported features 32
varying parameter 20
vertex array extensions 17

39

PixelFlow Shading Language
Marc Olano
Revised: 15 September 1997

1 Overview

The PixelFlow shading language is a special purpose C-like language for describing the shading of
surfaces on the PixelFlow graphics system. On PixelFlow, some shading function written in the shading
language is associated with each primitive. The shading function is executed for each visible pixel (or
sample for antialiasing) to determine its color. The language is based heavily on the RenderMan shading
language!.

2 Data

2.1 Built in types

Only a few simple data types are supported. The simplest type is void. As with C, it is only used as a
return type for functions that have no return value. There is a floating point type, float, used for most
scalar values. There is a fixed point type, fixed, provided for efficiency. And there are literal strings,
useful for print formatting?. Note that, unlike RenderMan, the string type is not used as an identifier for
texture maps, instead a scalar ID is used.

The fixed type has two parameters: the size in bits and an exponent. So it is really a class of types,
given as fixed<size, exponent>. For exponents between zero and the bit size, the exponent can also be
thought of as the number of fractional bits. Note however, that an exponent larger than the size or less
than zero is perfectly legal. A two byte integer would be fixed<16, 0>, while a two byte pure fraction
would be fixed<16, 16>. It is possible to translate back and forth between the real value and stored value
using these equations:

real_value = stored_value

stored_value = real_value
However, it is much less confusing to always think of the real value. For example, with a fixed<8,8>,
never think of the value as 128, instead think 0.5. An unspecified fixed point type can also be used,
declared simply as fixed, and its size and exponent will be chosen automatically?.

It is also possible to have arrays of these basic types, declared in a C-like syntax (i.c. float color[3]).
The declaration float color[3], declares color to be a 1D array of three floats, color[0], color[1], and
color[2]. You can also look at color as a variable of type float[3], and an equivalent definition would be
float[3] color. Note the behavior of mixing these two types of definitions: float[2][3] color_list, float[3]
color_list[2] and float color_list[2][3] are all equivalent. As with C, it is not necessary to give all of the
indices for an array at once. While color_list[1][1] is a float, color_list[0] and color_list[1] arc each
float[3] 1D arrays. Where RenderMan uses separate types for points, vectors, normals, and colors, pfman
uses arrays.

-exponent

exponent

2.2 Type attributes

As with RenderMan, types may be declared to be cither uniform or varying. A varying variable is
one that might vary from pixel to pixel, similar plural in MasPar’s mpl. A uniform variable is one that
will not vary from pixel to pixel, similar to singular in MasPar’s mpl. It deserves mentioning again that
declaring a variable to be varying does not imply that it will vary, only that it might. If not specified,
shader parameters default to uniform and local variables default to varying.

Variables of the fixed type may be declared signed or unsigned. The size of a fixed point type does
not include the extra sign bit added by signed. So a signed fixed<15,0> takes 16 bits. If not specified, all
fixed point variables default to signed.

1 Upsill, Steve, The RenderMan Companion, Addison-Wesley, 1990.

2 As of September 13, 1997, strings for calls to printf are not supported.

3 As of September 13, 1997, automatic fixed point variables are not supported. The sizes produced by
automatic fixed types will have to be pessimistic in their size estimation. Error analysis and explicit fixed
point sizes is sure to make better use of memory.

There are a number of additional attributes for shader parameters. One transformation type can be
given for any parameter. These are transform_as_vector, transform_as_normal, transform_as_point,
transform_as_plane, or transform_as_texture*. A parameter can also be declared to be unit if it should
be unit length. For example, you might declare a parameter

unit transform_as_vector float v[3];
These attributes only affect what happens to the parameter before it is passed to the shader. They do not
affect how the parameter is used inside the shader. For example, a unit parameter will not remain unit
length. These attributes also cannot be used to distinguish versions of an overloaded function.

2.3 User defined types
Aliases can be defined for types with a C-like typedef statement. typedef is only legal outside
function definitions. The typedef statement only provides aliases for types, no distinction is made
between equivalent types with different names. The statement
typedef float Point[3], Normal[3];
declares Point and Normal to both be types which can be used completely interchangably with float[3].

3 Expressions

3.1 Operators
The set of operators and operator precedence is fairly similar to that of C (it was based on a grammar
for ANSI C). The full list of operators and their precedence is given in Figure 1.

Operation Associativity | Purpose
() — expression grouping
++ —= [] — postfix increment and decrement, array index
++ = = ! — prefix increment and decrement, arithmetic and
logical negation
() — type cast
~ left xor / cross product / wedge product®
* /% left multiplication, division, mod
+ - left addition, subtraction
& left bitwise and’
| left bitwise or®
<< >> left shift?
< <= >= > left comparison
== I= left comparison
&& left logical and
[left logical or
?: right conditional expression
= 4= —= *= /= ~= right assignment!®
, — expression list

Figure 1. Operator precedence

3.2 Operations on arrays!l
Operations on arrays are defined as the corresponding vecor, matrix, or tensor operation. The unary
operations act on all elements of the array. Addition, subtraction, and assignment require arrays of equal

4 As of March 4, 1995, vectors and points are transformed the same and normals and planes are
transformed the same.

3 As of September 13, 1997, unit has no affect (parameters declared unit are not normalized).

6 As of March 4, 1995, none of xor, cross product, or wedge product are implemented.

7 & only works between identical fixed point types.

8 | only works between identical fixed point types.

9 As of September 13, 1997, left and right shift are only implemented for varying integer shift values
10 As of September 13, 1997, = is not implemented

1T As of September 13, 1997, Array cross product, and inverse do not work.

5- 42

dimension and do the operation between corresponding elements (i.e. a + b gives the standard matrix
addition of a and b). The comparison operations also require arrays of equal dimension, though only ==
and != are defined.

Multiplication between vectors gives a dot product, between vector and matrix, matrix and vector, or
matrix and matrix gives the appopriate matrix multiplication. More generally, multiplication between any
two arrays gives the tensor contraction of the last index of the first array against the first index of the
second array. In other words, for float a[3][3][3], float b[3][3][3] and float ¢[3][3][3][3],

c=a*bh;
is equivalent to
float i, j, k, I;
for(i=0; i<3; i++)
for(j=0; j<3; j++)
for(k=0; k<3; k++)
for(1=0; 1<3; 1++) {
c[il[jlk]] = 0;
for(m=0; m<3; m++)
c[il[j1Kk]] += a[i][jl[m] * b[m][K][1];
}

Division can also be used as a matrix inverse. 1/ a is the inverse of a square matrix aand b/ a
multiplies b by the inverse of square matrix a.

Finally, the # operator gives the cross product between two vectors or the tensor wedge product
between two arrays.

3.3 Inline arrays!2

C-style array initializers are allowed in any expression as an anonymous array. So a 3x3 identity
matrix might be coded as {{1,0,0},{0,1,0},{0,0,1}}, while the computed elements of a point on a
paraboloid might be filled in with {x, y, x*x+y*y}.

3.4 Einstein summation notationl3

Inside any statement block, the uniform integer variables $1, $2, ... are automatically defined. For
example for float a[3], b[3], the expression a[$1] * b[$1] is equivalent to a[0]*b[0] + a[1]*b[1] +
a[2]*b[2] (which in this case, is equivalent to a * b).

4 Statements

4.1 Compound statements
As with C, anywhere a statement is legal, a compound statement is legal as well. A compound
statement is just a list of statements delimited by § and }.

4.2 Expression statements
Any expression followed by a ; is a legal statement.

4,3 Standard control statements
Most of the control statements are borrowed directly from C.14

if (condition expression) statement for true
if (condition_expression) statement_for_true else statement_for false
while (condition_expression) loop_statement
do loop_statement until (condition_expression);
for (initial expression; condition expr; increment expression) loop_statement
break;
continue;

12 As of September 13, 1997, inline arrays can only have constants for their array elements.

13 As of September 13, 1997, Einstein summation notation is not implemented

14 Due to limitations of PixelFlow, the condition_expression’s must be uniform for all of the looping
control statements. The condition for an if can be either uniform or varying.

5-43

return;
return return_value expression;
In addition, there are several control statements taken from the RenderMan shading language to aid
in shading. They are illuminance, illuminate, and solar.
The illuminance statement,
illuminance () statement
illuminance (position_expression) statement
illuminance (position_expression, axis_expression, angle expression) statement
acts like a loop over the available light sources. It can also be thought of as an integral over the incoming
light. For each light that can hit a pixel at the given position, or can hit a surface at the given position
with the given orientation and visibility angle, the light source function is run, returning a light color and
intensity that can be used in the statement. The light direction can be accessed using the px_rc_1
parameter to the shader. The light color can be accessed using the px_rc¢_cl parameter to the shader.
The illuminate and solar statements,
illuminate (position_expression) statement
illuminate (position_expression, axis_angle, angle_expression) statement
solar (axis_angle, angle expression) statement
solar () statement
provide the information the illuminace statement uses to tell if a light source function should be run or
not. They can also be thought of as conditional statements that only execute the associated statement if
the current pixel position falls within the light’s area. The four statements above correspond to a point
light, a spot light, a directional light, and an ambient light!5.

4.4 Declaration statements

Variable declarations can occur anywhere a statement can. They consist of a type and a list of new
variable names to declare. Each variable name can have additional array dimensions and an expression
for the initial value.

float a[3], b=2%x, ¢;
declares a as an uninitialized 1D float array with 3 elements, b as a float with an initial value twice
whatever is in the x variable at the declaration time, and ¢ as an uninitialized float.

Each compound statement defines a new scope, so variables can be redefined within a compound
statement without conflicting with function or variable names in other scopes. It is illegal, however, to
have a variable in any scope with the same name as any user defined type. This is true even if the typedef
occurs after the variable declaration.

5 Functions

5.1 Overloading

Function overloading similar to C++ is supported. So functions of the same name that can be
destinguished by their input parameters are considered distinct. This provides the ability to have seperate
versions of functions for uniform and varying parameters, float and fixed, or different fixed point types.
Note that functions cannot be overloaded based on their return parameters and operator overloading is not
supported.

5.2 Definition
A function definition gives the return type, name, parameters, and body that define the function.
Function definitions cannot be nested. By default, function parameters and return types are uniform. A
simple function definition:
float factorial(float n) {
if(m>1)
return n * factorial(n);

151 don’t really like the way this works in RenderMan. Is there a use to placing some of the light code
within an illuminate statement and some outside? Is it too specialized for a couple of particular light
types? Whether I understand it or not, it’s there.

else
return 1;
}
The formal parameters to a function have their own scope level between the global scope and the function
body, so their names can hide the global function names. As with variables, it is illegal to have a function
or parameter with the same name as a user defined type, regardless of where in the source the typedef
occurs.

5.3 Shading functions!6

There are several special return types to indicate that a function has some special rendering purpose
and may need to be called by the PixelFlow rendering library. These are primitive, interpolator, surface,
light, and image. A primitive function computes which pixels are in some rendering primitive like a
triangle or sphere; an interpolator function computes the value for some shading parameter across a
number of pixels; a surface function computes the shading on a surface (the archetypal shading function);
a light function computes the color and intensity of a light; and an image computes the final color and
location of the image pixels (handling image warping, fog effects, etc.). For all of these functions, each
parameter can have a default value in case the graphics library is not given a value for that parameter.
These are given just by putting an = value (just like variable initialization) in the parameter list. These
default values must be compile-time constants. It is perfectly legal to call a surface shading function from
inside another surface shading function!”?. In this case, only one illuminance statement can occur in
cither the original surface shader or any called by it.

5.4 Prototypes
Any function that is to be used before it is defined, or that is defined in a different source file, must
have a prototype. A function prototype is just like a function definition, but with a ; instead of the
function body
float factorial(float n);

5.5 Internal details and External linkage

The pfman shading language compiler turns shading language source code into C++ source code that
must be further compiled with a C++ compiler. The function definitions created by the compiler and
function calls made by it correspond directly to C++ function definitions and function calls. It is possible
(and supported) to call C++ functions from shading language functions and to call shading language
functions from C++. This facility is limited to functions using types that the shading language supports.

Pfman adds some additional arguments added by the compiler. The new first argument is a pointer to
the PixelFlow IGCStream where the instruction stream for the pixel processors should go. The new
second argument is a pointer to a PixelFlow GLStage class, which contains information about the
rendering context. The new third argument is a pointer to the PixelFlow pixel memory map class. For
functions with a varying return value, the new third argument is the address for the return value. All the
other arguments follow. There are C++ classes for varying float and fixed parameters giving their
address, and in the case of fixed parameters, their size and binary point position. Details of these types
and the prototypes for the different kinds of shading functions are beyond the scope of this document.

Standard C or C++ functions can be used by pfman by prefixing their prototype with extern “C” or
extern “C++”. All of the uniform math library routines are declared this way. These tell pfman not to
add the extra function parameters. Similarly, pfman functions that contain only uniform operations can be
declared extern “C” or extern “C-++” for use by code outside of pfman.

16 As of September 13, 1997, only surface and light are supported.
17 As of September 13, 1997, it is not possible to call either surface shaders from inside surface shaders.

5-45

Implementing PixelFlow Shading

Marc Olano

In the previous sections of this chapter, we covered the interface seen by both application
and shader writers. In this section, we cover the basic knowledge of the PixelFlow
hardware required to understand the implementation issues. For more details on the
PixelFlow architecture, see [Molnar91][Molnar92][Eyles97]. We also cover some
intermediate levels of abstraction between PixelFlow and an abstract graphics pipeline
and explain how our procedural stages fit into the real PixelFlow pipeline.

Our abstract pipeline consists of procedures for each stage in the rendering process.
Since these can be programmed completely independently, it is possible (and expected)
that a particular hardware implementation may not have procedural interfaces for all
stages. While PixelFlow is theoretically capable of programmability at every stage of the
abstract pipeline, our implementation only provided high-level language support for
surface shading, lighting, and primitives. The underlying PixelFlow software includes
provisions for programmable testbed-style atmospheric and image warping functions,
but we did not supply any special-purpose language support for these.

1. High-level view

PixelFlow consists of a host workstation, a number of rendering nodes, a number of
shading nodes, and a frame buffer node. The hardware and lower level software handle
the scheduling and task assignment between the nodes, so we can consider the flow of
data in the system as the pipeline shown in Figure 1. This view is based on the passage of
a single displayed pixel through the system. Neighboring pixels may have been operated
on by different physical nodes at each stage of this simplified pipeline. This will be
covered in more detail later in this chapter. For the purposes of mapping the abstract
pipeline onto PixelFlow, the simplified view of the physical PixelFlow pipeline is sufficient.

rendering
node

|

shading
node

frame buftler
node

Figure 1. Simplified view of the PixelFlow system

1.1. Applying the abstract pipeline

The mapping of an abstract pipeline onto PixelFlow is shown in Figure 2. This abstract
pipeline is divided into stages based on a set of logical rendering tasks. Contrast this with
the abstract model presented later in Chapter 8, in which a single shader spans several
computational units.

The modeling, transformation, primitive, and interpolation stages are handled by the
rendering node. The shading, lighting, and atmospheric stages are handled by the
shading node. Finally, the image warping stage is handled by the frame buffer node.

3D geometry

» YO
rendering

{

model transform |

1

I primitive interpolate |

i

shade i-—-} light I shading

atmospheric

. frame buffer
image

]

image pixels
Figure 2. Procedure pipeline.

When mapping the abstract pipeline onto PixelFlow, we maintain the interfaces to the
pipeline stages. Thus, the procedures written for PixelFlow should look exactly the same
as the procedures written for a different machine with a different organization. The code
for each stage is written just as if it were part of some arbitrary rendering system
implementing the abstract pipeline.

It is important to notice that the abstract pipeline only provides a conceptual view for
programming the stages. It allows the procedure programmer to pretend that the
machine is just a simple pipeline instead of a large multicomputer. The real stages do not
need to be executed strictly in the order given (and, in fact, are not). The user writing code
for one of the stages does not need to know the differences between the execution order
given in the abstract pipeline and the true execution order. The mapping of the abstract
pipeline onto PixelFlow exhibits several different forms of this.

The first example is the overall organization of the processes on PixelFlow. PixelFlow
completes all of the modeling, transformation, primitives, and interpolation in the
rendering nodes before sending the shading parameters for the visible pixels on to a
shading node. PixelFlow then completes all of the shading, lighting, and atmospheric

5-48

effects before sending the completed pixels on to the frame buffer node for warping. On a
different graphics architecture, it might make more sense to complete all of the stages for
every pixel in a primitive before moving on to the next primitive. Either choice appears the
same to users who write the procedures. The abstract pipeline does not include
information about the stage scheduling to allow just such implementation flexibility.

The procedures running on the PixelFlow rendering nodes provide another example. The
abstract pipeline presents transformation, primitive, and interpolation as if they were a
sequential chain of processes. On PixelFlow, the primitive stage drives transformation
and interpolation. A procedural primitive function is invoked for each primitive to be
rendered. This function calls both transformation and interpolation functions on demand
as needed. The results stored for each pixel include its depth, an identifier for which
procedural shader to use and the shading parameters for that procedural shader. Once
again, the user writes procedures as if they were independent sequential stages and is not
aware of the true ordering within the PixelFlow implementation.

The final example is with the shading and lighting stages. The abstract pipeline presents
shading and lighting as if the shading stage called the lighting stage for each light. On
PixelFlow, the linkage between these stages is not as direct. These two stages run with an
interleaved execution scheduled by the PixelFlow software system. This interleaving is
explained in more detail in [Olano98]. And again, the interleaved scheduling is hidden from
anyone who writes a shading or lighting procedure.

1.2. Parameter manager

Supporting this pipeline is a software framework that handles the details of the rendering
process and the communication between the programmable procedures. That
communication is assisted by a global parameter manager, implemented on PixelFlow by
Rich Holloway. The parameter manager allows each node in the system to find values or
pixel memory addresses of the parameters. It also keeps track of other attributes of each
parameter - its type and size, default values, whether it needs to be transformed (and
how), etc. Whenever a procedure is compiled, an extra load function is generated. This
load function is run when the procedure is loaded by the application. The load function
registers all of the parameters used or produced by the procedure. The parameter
manager collects this information and makes sure each parameter is available when it is
needed. This global parameter space is similar to the shared memory "blackboard" idea
used by MENV [Reeves90].

2. Low-level view

The PixelFlow system data-flow was show in Figure 1. A view of the hardware at that
level was sufficient to understand how the abstract pipeline maps onto PixelFlow. We
must delve deeper to understand some of the issues that impacted our implementation.
Where Figure 1 showed only a single stage for rendering and shading, PixelFlow may
have many nodes (see Figure 3). There are also two networks connecting the nodes in the
PixelFlow system, the geometry network and composition network. The rendering nodes
and shading nodes are identical, so the balance between rendering performance and
shading performance can be decided on an application by application basis. The frame
buffer node is also the same, though it includes an additional daughter cardto produce

5-49

video output.

host

workstation .
rendering =y
node =
T
=
=
shading F
node ,'S-
=]
frame buffer =
node

Figure 3. PixelFlow machine organization.

Each rendering node is responsible for rasterizing an effectively randomly chosen subset
of the primitives in the scene. The rendering nodes work on one 128x64 pixel region at a
time (or 128x64 image samples when antialiasing). Many of our examples and tests are
based on either an NTSC video screen size of 640x512 pixels with four samples per pixel,
or a high-resolution screen size of 1280x1024 pixels. There are 40 regions in an NTSC
image with no antialiasing. With antialiasing using four samples per pixel, the NTSC
image has 160 regions. Without antialiasing, the high-resolution image also has 160
regions. Therefore, our target is to be able to handle 160-128x64 regions at NTSC video

rates of 30 frames per second.

Since each rendering node has only a subset of the primitives, a region rendered by one
node will have holes and missing polygons. The different versions of the region are
merged using image composition. PixelFlow includes a special high-bandwidth network
called the composition network with hardware support for these comparisons. As all of the
rendering nodes simultaneously transmit their data for a region, the network hardware on
each node compares, pixel-by-pixel, the data it is transmitting with the data coming in
from the upstream nodes. It keeps only the closest of each pair of pixels to send
downstream. By the time all of the pixels reach their destination, one of the shading

nodes, the composition is complete.

Once a shading node has received the data, it does the surface shading for the entire
region. The technique of shading after the pixel visibility has been determined is called
deferred shading [Deering88][Ellsworth91]. Deferred shading only spends time shading the
pixels that are actually visible, and allows us to do shading computations for many more
pixels in parallel. With non-deferred shading, each primitive is shaded separately. With
deferred shading, all primitives in a region that use the same procedural shader can be

shaded at the same time.

In a PixelFlow system with n shading nodes, each shades every n*" region. Once each
region has been shaded, it is sent over the composition network (without compositing) to

the frame buffer node, where the regions are collected and displayed.

3. PixelFlow node

The nodes on PixelFlow all look quite similar (See Figure 4). Each node of the PixelFlow
system has two RISC processors (HP-PA 8000's), a 128x64 custom SIMD array of pixel
processors, and a texture memory store. Only the rendering nodes make use of the
second RISC processor, where the primitives assigned to the node are divided between
the processors. The existence of the second RISC processor does not impact our
implementation, so we can take the simplified view that there is only one processor on the
node and let the lower level software handle the scheduling between the physical
processors. The RISC processors share 128 MB of memory, while each pixel processor
has access to 256 bytes of local memory. The texture memory exists in several replicated
banks for access speed, but the apparent size is 64 MB.

SC |4 sn =
< el RISC [SIMD [E
= processor array | =
& : D
o =
2 A texture/ E
= <A frame buffer | =
= | memory =

Figure 4. Simple block diagram of a PixelFlow node

Each node is connected to two communication networks. The geometry network, carries
information about the scene geometry and other data bound for the RISC processors.
This network is four bytes wide and operates at 200 MHz. It can simultaneously send data
in both directions, giving a total bandwidth of 800 MB/s in each direction. The composition
network handles transfers of pixel data from node to node. It also operates in
simultaneously in both directions at 200 MHz. However, the composition network is

32 bytes wide, giving a bandwidth of 6.4 GB/s in each direction. Four bytes of every
transfer is reserved for the pixel depth, reducing the effective bandwidth to 5.6 GB/s.

3.1. Compiler target

Every procedural stage on PixelFlow has a testbed-style interface, which allows new
stage procedures to be created using the internal libraries of the PixelFlow system.
Writing code new procedures using this interface requires a deep understanding of the
implementation and operation of PixelFlow, more than will be provided in this dissertation.
We provide a high-level, special-purpose language so the users who write new
procedures will not need to have that level of understanding of PixelFlow. It also makes
rapid prototyping and porting procedures to other systems possible.

The compiler for our special-purpose language produces C++ code that exactly
conforms to the testbed interface. This code consists of two functions, a load function
(mentioned in section 1.2), and the actual code for the procedure. The code for the
procedure is run on the RISC processor and includes embedded EMC functions. Each
EMC function puts one SIMD instruction into an instruction stream buffer. The EMC prefix
that appears on all of these functions stands for enhanced memory controller, from the
Pixel-Planes SIMD array's origin as a processor-enhanced memory; we use it here just to
identify the functions that generate the SIMD instruction stream.

When the C++ code for a procedure is run, the result is a buffer full of instructions for the
SIMD array. This instruction stream buffer can be sent to the SIMD array several times
without requiring the original C++ code to be re-executed.

There are two forms of EMC function used in PixelFlow. The form used on the shading
nodes checks the available space in the instruction stream buffer with each instruction
and can re-allocate the buffer on the fly. The form used in the rendering nodes requires a
buffer of sufficient size to be allocated at the beginning of the procedure. The reason for
this difference, and the issues that result, are discussed in Section [Olano99].

