
Chapter 4

In the beginning: The Pixel Stream Editor
Ken Perlin

4. In the beginning: the pixel stream editor

Procedural texture

Combining controlled noise into various mathematical expressions produces procedural
texture [EBERT98],[FOLEY96],[PERLIN85].

Unlike traditional texture mapping, procedural texture doesn't require a source texture
image. As a result, the bandwidth requirements for transmitting or storing procedural
textures are essentially zero.

Also, procedural texture can be applied directly onto a three dimensional object. This
avoids the "mapping problem" of traditional texture mapping. Instead of trying to figure
out how to wrap a two dimensional texture image around a complex object, you can just
dip the object into a soup of procedural texture material, defined as a function over a
volumetric domain. Essentially, the virtual object is carved out of a virtual solid material
defined by the procedural texture. For this reason, procedural texture is sometimes called
solid texture.

TRON

I first started to think seriously about procedural textures when I was working on TRON at
MAGI in Elmsford, NY, in 1981. TRON was the first movie with a large amount of solid
shaded computer graphics. This made it revolutionary. On the other hand, the look
designed for it by its creator Steven Lisberger was based around the known limitations of
the technology.

Lisberger had gotten the idea for TRON after seeing the MAGI demo reel in 1978. He then
approached the Walt Disney Company with his concept. Disney's Feature Film division
was then under the visionary guidance of Tom Wilhite, who arranged for contributions
from the various computer graphics companies of the day, including III, MAGI, and
Digital Effects.

Working on TRON was a blast, but on some level I was frustrated by the fact that
everything looked machine-like (a typical scene is shown below). In fact, that machine-
like aesthetic became the "look" associated with MAGI in the wake of TRON. So I got to
work trying to help us break out of the "machine-look ghetto."

4 - 1

One of the factors that influenced me was the fact that MAGI's SynthaVision system did
not use polygons. Rather, everything was built from boolean combinations of
mathematical primitives, such as ellipsoids, cylinders, truncated cones. As you can see in
the illustration, the lightcycles are created by adding and subtracting simple solid
mathematical shapes.

This encouraged me to think of texturing in terms not of surfaces, but of volumes. First I
developed what are now called "projection textures," which were also independently
developed by a quite a few folks. Unfortunately (or fortunately, depending on how you
look at it) our Perkin-Elmer and Gould SEL computers, while extremely fast for the time,
had very little RAM, so we couldn't fit detailed texture images into memory. I started to
look for other approaches.

Noise

4 - 2

The first thing I did in 1983 was to create a primitive space-filling signal that would give
an impression of randomness. It needed to have variation that looked random, and yet it
needed to be controllable, so it could be used to design various looks. I set about
designing a primitive that would be "random" but with all its visual features roughly the
same size (no high or low spatial frequencies).

I ended up developing a simple pseudo-random "noise" function that fills all of three
dimensional space. A slice out of this stuff is pictured. In order to make it controllable, the
important thing is that all the apparently random variations be the same size and roughly
isotropic. Ideally, you want to be able to do arbitrary translations and rotations without
changing its appearance too much. You can find a C version of my original 1983 code for
the first version in Appendix A (actually my first implementation was in FORTRAN).

My goal was to be able to use this function in functional expressions to make natural
looking textures. I gave it a range of -1 to +1 (like sine and cosine) so that it would have a
dc component of zero. This would make it easy to use noise to perturb things, and simply
"fuzz out" to zero when scaled to be small.

Noise itself doesn't do much except make a simple pseudo-random pattern. But it
provides seasoning to help you make things irregular enough so that you can make them
look more interesting.

The fact that noise doesn't repeat makes it useful the way a paint brush is useful when
painting. You use a particular paint brush because the bristles have a particular statistical
quality - because of the size and spacing and stiffness of the bristles. You don't know, or
want to know, about the arrangement of each particular bristle. In effect, oil painters use a
controlled random process (centuries before John Cage used the concept to make post-
modern art).

Noise allowed me to do that with mathematical expressions to make textures.

Pixel stream editing

In late 1983 I wrote a language to allow me to execute arbitrary shading and texturing
programs. For each pixel of an image, the language took in surface position and normal
as well as material ID, ran a shading, lighting and texturing program, and output color. As
far as I've been able to determine, this was the first shader language in existence (as my
grandmother would have said, who knew?).

Rob Cook at Pixar had, independently, developed an editable expression parser to parse
user-defined arithmetic expressions at each surface sample. He called this technique
"Shade Trees." But Shade Trees had no notion of flow-of-control (conditionals, variably
iterated loops, procedures).

Pat Hanrahan has told me that he got the inspiration to make a full procedural shading
language after he visited MAGI and I showed him what you could do by having access to
a user-defined language at every pixel. Pat then designed and implemented the

4 - 3

"RenderMan" shading language at Pixar (for which he received a well-deserved Technical
Academy Award).

The key leap of faith I made (odd then, obvious now) is that you should just be able to go
ahead and run whatever program you feel like at each surface sample, and that it should
be easy to keep quickly modifying this program to refine your results. In order to make
things run fast, I modified MAGI's existing SynthaVision renderer to create an
intermediate file, after the visible surface and normal calculations have been done. The
file just contained a stream of pixel samples, each consisting of { Point , Normal ,
SurfaceId }. I would stream these samples into my procedural shader, which would then
spit out a final RGB for each sample. The big advantage of this is that I could keep
running the shader over and over, without having to redo the (in 1983) very expensive
point/normal calculations.

By far the oddest thing about the environment at MAGI, in retrospect, was the fact that
they ran everything in FORTRAN 66. This was a legacy issue - the SynthaVision ray
tracer was originally written by Bob Goldstein, one of the founders of MAGI, sometime
prior to 1968 (Bob's first paper on doing volumetric booleans by ray tracing, was
published in the journal Simulation in 1968). Since then it had simply grown in the same
language. FORTRAN 66 was very limiting - lacking recursion, insensitive to case, limited
in variable name length to six characters or less, and a host of other qualities that
reflected the era it came out of - the engineering culture up to the mid-sixties, which was
very unlike the more countercultural aesthetic that nurtured UNIX and C at Bell Labs.

I was one of a group of young upstarts at MAGI who were into UNIX and C, but were not
permitted to use it, for legacy reasons. So my solution was to build an entire language on
top of FORTRAN. I implemented in FORTRAN only those core "kernel" functions that
needed to be computed quickly, such as Noise, or that needed to use built-in math
libraries, such as Sin and Cos. For everything else, I used my homegrown shading
language. For this reason, I called it "kpl", for "Kernel Programming Language". It has
been claimed that the letters "kpl" could also be interpreted in other ways, but frankly I just
don't see it.

Kpl was a special purpose language - the only thing I really cared about was being able
to manipulate floating point vectors verey easily. This led to a number of language design
decisions which made everything easier. In the next section I'll briefly describe the
language.

The important thing about reducing everything to floating point vectors was that I could
treat normal perturbation, local variations in specularity, nonisotropic reflection models,
shading, lighting, etc. as just different forms of procedural texture - the environment does
not make any a priori assumption about these things, so it was easy to mix it up and try
different models.

The language for Pixel Stream Editing

The language was very simple, but it got the job done. The important thing was that it
compiled immediately into an intermediate P-code, which executed very fast. That
allowed me to do fast repeated design iterations, with visual feedback at each iteration.

4 - 4

Perhaps the oddest feature of the language was that every variable maintained a
separate stack - so scoping for any variable was based on run-time execution, not
lexical. This turned out to be extremely useful for procedural texturing, since it provided an
easy and flexible way to create nested data environments. The basic features of the
language are outlined below:

Stack language
Post-process to visible surface algorithm
Intermediate "point/normal/id list" data-structure
Evaluated at every surface sample
Variables set at each sample:

Point
Normal
Id

All values are vectors of floating point
Transform matrices are vectors of length 12 or 16
Values are TRUE iff at least one component is non-zero
Every variable is a stack of values
Flow of control:

IF THEN ELSE
LOOP with CONDITIONAL-BREAK
PROCEDURE with ARGS

Scoping
ASSIGN (var is global to this proc)
PUSH-ASSIGN (var is local to this proc)
POP ON PROCEDURE EXIT

Library of kernel functions, including:
+ - * /
Index
Noise
Bias
Gain
Sin
Cos
Pow
Mul (matrix)

Library implemented in the language, including:
Abs
Dot

4 - 5

Cross
...

Experience and interaction

My interactive process when working with this first shader was really simple. I had two
interaction windows: a text editor and an rendered-image display. I'd make text
modifications, hit a key that would save and run, and then look at the result. Then I'd
make more text modifications, etc.

When playing with this interaction environment, I found that I could get big speedups by
recomputing just a sub-window in the image where I really wanted to see an effect. I was
able to get a good rhythm going of iterative shading/texturing as long as I could see the
result within about 15 seconds of hitting the ENTER key (compilation took much less than
a second; pretty much all of the time was taken up calculating the image). Of course,
back in 1984 this didn't allow me to compute very high resolution images (around then we
had only a few Mhz to play with), but any longer than 15 seconds of computation was too
long to maintain a good interactive process. In any case, by looking at carefully selected
subwindows, I could interactively steer the quality of the complete texture. Ultimately, it
turned out to be fairly straightforward to interactively design subtle textures such as the
marble vase below, which took about 20 minutes back then to render at high resolution
(but would require only a matter of seconds on today's computers):

4 - 6

Industry adoption

I presented this work first at a course in SIGGRAPH 84, and then as a paper in
SIGGRAPH 85. Because the techniques were so simple, they quickly got adopted
throughout the industry. The release of Pixar's commercial-strength RenderMan
language helped a lot. By around 1988 noise-based shaders where de rigeur in
commercial software.

I didn't patent. As my grandmother would have said...

Hypertexture

4 - 7

Meanwhile, I joined the faculty at NYU and did all sorts of research. One of the questions I
was asking in 1988 and 1989 was whether you could use procedural textures to unify
rendering and shape modeling. I started to define volume-filling procedural textures and
render them by marching rays through the volumes, accumulating density along the way
and using the density gradient to do lighting.

I worked with a student of mine, Eric Hoffert, to produce a SIGGRAPH paper in 1989
[PERLIN89]. The technique is called hypertexture, officially because it is texture in a
higher dimension, but actually because the word sounds like "hypertext" and for some
reason I thought this was funny at the time. I offer no redeeming excuse.

The image above is of a procedurally generated rock archway. Like all hypertextures, it's
really a density cloud that's been "sharpened" to look like a solid object. I defined this
hypertexture first by defining a space-filling function that has a smooth isosurface
contour in the shape of an archway. Then I added to this function a fractal sum of noise
functions: at each iteration of the sum I doubled the frequency and halved the amplitude.
Finally, I applied a high gain to the density function, so that the transition from zero to one
would be rapid (about two ray samples thick). When you march rays through this function,
you get the image shown.

4 - 8

I tried to make as many different materials as possible. Above is one of a series of
experiments in simulating woven fabric. To make this, I first defined a flat slab, in which
density is one when y=0, and then drops off to zero when y wanders off its zero plane.
More formally: f(x,y,z) = {if |y| > 1 then 0 else 1 - |y|}.

I made the plane ripple up and down by replacing y with y + sin(x)*sin(z) before
evaluating the slab function. Then I cut the slab into fibers by multiplying the slab function
by cos(x). This gave me the warp threads of a woven material. Finally, I rotated the whole
thing by 90o to get the weft threads. When you add the warp and the weft together, you
get something like the material on the left.

To make the fiber more coarse (ie: wooley) or conversely more fine, I modulated the bias
and gain of the resulting function. To make the surface undulate, I added low frequency
noise to y before evaluating anything. To give a nice irregular quality to the cloth, I added
high frequency noise into the function.

4 - 9

I also made a Tribble, as shown here, as well as other experiments in "furrier synthesis".
Here I shaped the density cloud into long fibers, by defining a high frequency spot
function (via noise) onto an inner surface, and then, from any point P in the volume,
projecting down onto this surface, and using the density on the surface to define the
density at P. This tends to make long fibrous shapes, since it results in equal densities all
along the line above any given point on the inner surface.

I made the hairs curl by adding low frequency noise into the domain of the density
function. This was the first example in computer graphics of long and curly fur. Around
the same time Jim Kajiya made some really cool fur models, although his techniques
produced only short and straight fur. Jim had the good sense to use earthly plushy toys
for his shape models, instead of alien ones. The earthly ones are more easily recognized
by the academy...

4 - 10

It has always seemed to me that there would be advantages in having optical materials
with continually varying density, within which light travels in curved paths. The image on
the left is a hypertexture experiment in continuous refraction. The object is transparent,
and every point on its interior has a different index of refraction. I implemented a
volumetric version of Snell's law, to trace the curved paths made by light as it traveled
through the object's interior.

The background is not really an out-of-focus scene; it's just low frequency noise added
to a color grad. This is a situation in which noise is really convenient - to give that look of
"there's something in background, and I don't know what it is, but it looks reasonable and
it sure is out of focus."

Meanwhile, back at the Ranch...

Meanwhile, back at the Ranch (if you're reading this you presumably know which ranch
I'm talking about) the use of noise spread like wildfire. All the James Cameron,
Schwartzenegger, Star Trek, Batman, etc. movies started relying on it.

Procedural texture benefits from Moore's law: as computer CPU time becomes cheaper,
production companies increasingly have turned away from physical models, and toward

4 - 11

computer graphics. Noise-based procedural shading is one of the main techniques
production companies use to fool audiences into thinking that computer graphic models
have the subtle irregularities of real objects. For example, Disney put it into their CAPS
system - you can see it in the mists and layered atmosphere in high end animated
features like The Lion King. In fact, after around 1990 or so, every Hollywood effects film
has used it, since they all make use of software shaders, and software shaders depend
heavily on noise. Eventually, they even gave me a Technical Academy Award for it
[SCITECH97].

One problem with all this is that as audience expectations improve, the size and
computational complexity of shaders has been increasing steadily. For example, "The
Perfect Storm" averaged about 200 evaluations of Noise per shading sample. Even with
the current impressive performance of computers, each frame took a long time to
compute.

Recently I've been working on addressing this problem. In my next chapter, I'll show work
I've been doing more recently on making Noise better, faster, and more "hardware
friendly".

References:

[EBERT98] Texturing and Modeling; A Procedural Approach, Second Edition; Ebert D. et
al, AP Professional; Cambridge 1998c;

[PERLIN89] Perlin, K., and Hoffert, E., Hypertexture, 1989 Computer Graphics
(proceedings of ACM SIGGRAPH Conference); Vol. 23 No. 3.

[PERLIN85] Perlin, K., An Image Synthesizer, Computer Graphics; Vol. 19 No. 3.

[SCITECH97] Technical Aphievemegt Award from the Academy of Motion Picture Arts
and Sciences, `̀ for the development of Perlin Noise, a technique used to produce natural
appearing textures on computer generated surfaces for motion picture visual effects.''

4 - 12

