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Interactive RenderingInteractive Rendering

Illusion of PresenceIllusion of Presence

� 10 � 30 � 60 frames per second10 � 30 � 60 frames per second

� Immediate responseImmediate response

� Simple appearanceSimple appearance



Multi-pass RenderingMulti-pass Rendering

Improved appearanceImproved appearance

� Build effectsBuild effects

� Per-frame or per-objectPer-frame or per-object

� Still interactiveStill interactive

[Diefenbach97] [Peercy97] [Cabral99] [Kautz99]



What�s in a Pass?What�s in a Pass?

Graphics hardwareGraphics hardware

� (as seen through OpenGL)(as seen through OpenGL)

applicationapplication

vertex operationsvertex operations

rasterizerasterize

fragment operationsfragment operations

texturetexture

pixel operationspixel operations

frame bufferframe buffer
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Multi-Pass = SIMDMulti-Pass = SIMD

Single Instruction, Multiple DataSingle Instruction, Multiple Data

Classic SIMDClassic SIMD

� Thousands/millions of processorsThousands/millions of processors

� Thinking Machines, PixelFlow, ...Thinking Machines, PixelFlow, ...

� Not small-scale SIMD (MMX, etc.)Not small-scale SIMD (MMX, etc.)

Shading languages use SIMD modelShading languages use SIMD model

� Describe shading for one pointDescribe shading for one point

� Apply for every point on surfaceApply for every point on surface



Multi-Pass = SIMDMulti-Pass = SIMD

General SIMDGeneral SIMD OpenGLOpenGL

Shared ControlShared Control ApplicationApplication

Processor ArrayProcessor Array Pixel ArrayPixel Array

Per-PE ALUPer-PE ALU Fragment opsFragment ops

Per-PE MemoryPer-PE Memory FB / TextureFB / Texture

Per-PE ConditionalsPer-PE Conditionals Alpha / StencilAlpha / Stencil



What�s it Mean?What�s it Mean?

We can create a compilerWe can create a compiler

� High-level language inHigh-level language in

� OpenGL outOpenGL out



Isn�t That Slow?Isn�t That Slow?

No!No!

� Like drawing a few extra objectsLike drawing a few extra objects

� Optimize to compress passesOptimize to compress passes

� Target hardware extensionsTarget hardware extensions



OpenGL ShaderOpenGL Shader

ISLISL

PlainPlain

OpenGLOpenGL
IRIR

extensionsextensions
NVNV

extensionsextensions
OthOtherer

extensionsextensions

OpenGL Shader



About ISLAbout ISL

Things exposed in ISLThings exposed in ISL

� Pass count: passes <= statementsPass count: passes <= statements

� Optimize to fewerOptimize to fewer

� Range: clamped 0 � 1Range: clamped 0 � 1

� Texturing limitsTexturing limits

� No per-pixel computed texture coordinatesNo per-pixel computed texture coordinates

� Can use per-vertex texture coordinatesCan use per-vertex texture coordinates



Example 1Example 1

Shiny Bump MapShiny Bump Map

� Dependent texturing?Dependent texturing?

� ISL ISL lookuplookup function function



Lookup-base EnvironmentLookup-base Environment

ISL�s run anywhere philosophyISL�s run anywhere philosophy

� 1D environment1D environment

� Internally, same as texture lookupInternally, same as texture lookup



Procedural EnvironmentProcedural Environment

Can build with ISL codeCan build with ISL code
repeat(h) {

// Fresnel component
uniform float f = fresnel(2*i/(n-1) � 1, refract);

// color spline for ground
groundsky[i] = spline(i/(h-1),{

color(.3,.6,.1,f),
color(.3,.6,.1,f),
color(.6,.6,.1,f),
color(.4,.7,.1,f),
color(.4,.4,.1,f),
color(.3,.3,.1,f)});

i = i+1;
}



Procedural EnvironmentProcedural Environment

And the sky...And the sky...
repeat(h) {

// Fresnel component
uniform float f = fresnel(2*i/(n-1) � 1, refract);

// color spline for ground
groundsky[i] = spline((i-h)/(h-1),{

color(1.,1.,1.,f),
color(1.,1.,1.,f),
color(.3,.7,.9,f),
color(.3,.7,.9,f),
color(.3,.7,.9,f),
color(.3,.7,.9,f)});

i = i+1;
}



Bump MapBump Map

Makes smooth surface appear bumpyMakes smooth surface appear bumpy

Several choicesSeveral choices

� Evaluate bump math per-fragmentEvaluate bump math per-fragment

� �Embossed� bumps�Embossed� bumps

� Normal mapNormal map



Normal MapNormal Map

Normal range �1 to 1Normal range �1 to 1

Color range 0 to 1Color range 0 to 1

Normal map is just a textureNormal map is just a texture

� R = .5 NR = .5 N
XX
 + .5 + .5

� G = .5 NG = .5 N
YY
 + .5 + .5

� B = .5 NB = .5 N
ZZ
 + .5 + .5



Bumped Normal MapBumped Normal Map

Perturb in tangent directions + renormalizePerturb in tangent directions + renormalize



Scale & Transform NormalScale & Transform Normal

// rescale normal vectors from 0..1 to -1..1 and back
uniform matrix nScale = translate(-.5,-.5,-.5)

*scale(2,2,2);
uniform matrix nUnscale = scale(.5,.5,.5)

*translate(.5,.5,.5);

// transform -1..1 normal from object to world space
parameter matrix nm = inverse(affine(shadermatrix));

// set rgb to y (vertical) component and alpha to z
// so one lookup can do both environment map and Fresnel
uniform matrix gggb = matrix(0,  0,  0,  0,
                             1,  1,  1,  0,
                             0,  0,  0,  1,
                             0,  0,  0,  0);



Actual shading codeActual shading code

FB = texture(nmap);

FB = transform(nScale * nm * nUnscale * gggb);

FB = lookup(groundsky);



DemoDemo



Example 2Example 2

Homomorphic BRDF FactorizationHomomorphic BRDF Factorization



FactorizationFactorization

NN HH
LL

VV



Factored TexturesFactored Textures

LL
ShadowingShadowing

NN
MicrofacetMicrofacet

VV
MaskingMasking



The ShaderThe Shader

surface BRDF(surface BRDF(

uniform string brdfP = "brdf p.rgb";uniform string brdfP = "brdf p.rgb";

uniform string brdfQ = "brdf q.rgb";uniform string brdfQ = "brdf q.rgb";

uniform color brdfC = color(1,1,1,1))uniform color brdfC = color(1,1,1,1))

{{

FB = diffuse();FB = diffuse();

FB *= texture(brdfP, 1, FB *= texture(brdfP, 1, 11););

FB *= texture(brdfQ, 1, FB *= texture(brdfQ, 1, 22););

FB *= texture(brdfP, 1, FB *= texture(brdfP, 1, 33); ); 

FB *= brdfC;FB *= brdfC;

}}



Texture CoordinatesTexture Coordinates

texture(�texture�, matrix, texture(�texture�, matrix, texcoord_settexcoord_set))

Passed to application draw callbackPassed to application draw callback

� Per-vertex application codePer-vertex application code

� Vertex programsVertex programs

OpenGL Shader 3.0OpenGL Shader 3.0

� includes vertex program emulationincludes vertex program emulation



DemoDemo

Homomorphic BRDF FactorizationHomomorphic BRDF Factorization



Example 3Example 3

Parameterized WoodParameterized Wood



Need Some BandsNeed Some Bands

Start with a simple rampStart with a simple ramp

project("wave.bw",

inverse(shadermatrix)*           

ringCenterXlate*                 

ringAxisRotate*

   ringScale*

textureCenterXlate);



Turn into RingsTurn into Rings

if (FB[0] < lightToDark)

FB = darkWood;

else

FB = lightWood;



Differing SpecularDiffering Specular

FB = diffuse();

varying color dif=FB;

FB = environment("highlight.bw");

varying color spec=FB;

if (FB[0] < lightToDark) {

FB = darkWood;

FB *= dif;

varying color a = FB;

FB = darkGloss;

FB *= spec;

FB += a;

}



Turbulent RingsTurbulent Rings

FB = project(�turbulence.bw�,...);

FB *= ringNoiseScale;

FB += project(�wave.bw�,...);



Fine GrainFine Grain

FB = darkGloss;

FB.a = project(�noise.bw�,...);

FB = over(darkGrainGloss);

FB *= spec;

FB += a;



DemoDemo



Bonus ExampleBonus Example

Level-of-detail ShadersLevel-of-detail Shaders



Level-of-detail ShadersLevel-of-detail Shaders

Add conditionals to adjust complexityAdd conditionals to adjust complexity

� DistanceDistance

� ImportanceImportance

� TimeTime

� Available textureAvailable texture



Level-of-detailLevel-of-detail

AutomaticAutomatic

� Add conditionalsAdd conditionals

� Change �hardware mapping� rules in each branchChange �hardware mapping� rules in each branch

Semi-automaticSemi-automatic

� Use Use LOD LOD building blocksbuilding blocks

ManualManual

� Add conditionalsAdd conditionals

� Hand-code levelsHand-code levels



DemoDemo


