
SGI OpenGL ShaderSGI OpenGL Shader

Marc OlanoMarc Olano

SGISGI

Interactive RenderingInteractive Rendering

Illusion of PresenceIllusion of Presence

� 10 � 30 � 60 frames per second10 � 30 � 60 frames per second

� Immediate responseImmediate response

� Simple appearanceSimple appearance

Multi-pass RenderingMulti-pass Rendering

Improved appearanceImproved appearance

� Build effectsBuild effects

� Per-frame or per-objectPer-frame or per-object

� Still interactiveStill interactive

[Diefenbach97] [Peercy97] [Cabral99] [Kautz99]

What�s in a Pass?What�s in a Pass?

Graphics hardwareGraphics hardware

� (as seen through OpenGL)(as seen through OpenGL)

applicationapplication

vertex operationsvertex operations

rasterizerasterize

fragment operationsfragment operations

texturetexture

pixel operationspixel operations

frame bufferframe buffer

Rendering PassesRendering Passes
applicationapplication

vertex operationsvertex operations

rasterizerasterize

fragment operationsfragment operations

texturetexture

pixel operationspixel operations

frame bufferframe buffer

applicationapplication

vertex operationsvertex operations

rasterizerasterize

fragment operationsfragment operations

texturetexture

pixel operationspixel operations

frame bufferframe buffer

applicationapplication

vertex operationsvertex operations

rasterizerasterize

fragment operationsfragment operations

texturetexture

pixel operationspixel operations

frame bufferframe buffer

applicationapplication

vertex operationsvertex operations

rasterizerasterize

fragment operationsfragment operations

texturetexture

pixel operationspixel operations

frame bufferframe buffer

applicationapplication

vertex operationsvertex operations

rasterizerasterize

fragment operationsfragment operations

texturetexture

pixel operationspixel operations

frame bufferframe buffer

Multi-Pass = SIMDMulti-Pass = SIMD

Single Instruction, Multiple DataSingle Instruction, Multiple Data

Classic SIMDClassic SIMD

� Thousands/millions of processorsThousands/millions of processors

� Thinking Machines, PixelFlow, ...Thinking Machines, PixelFlow, ...

� Not small-scale SIMD (MMX, etc.)Not small-scale SIMD (MMX, etc.)

Shading languages use SIMD modelShading languages use SIMD model

� Describe shading for one pointDescribe shading for one point

� Apply for every point on surfaceApply for every point on surface

Multi-Pass = SIMDMulti-Pass = SIMD

General SIMDGeneral SIMD OpenGLOpenGL

Shared ControlShared Control ApplicationApplication

Processor ArrayProcessor Array Pixel ArrayPixel Array

Per-PE ALUPer-PE ALU Fragment opsFragment ops

Per-PE MemoryPer-PE Memory FB / TextureFB / Texture

Per-PE ConditionalsPer-PE Conditionals Alpha / StencilAlpha / Stencil

What�s it Mean?What�s it Mean?

We can create a compilerWe can create a compiler

� High-level language inHigh-level language in

� OpenGL outOpenGL out

Isn�t That Slow?Isn�t That Slow?

No!No!

� Like drawing a few extra objectsLike drawing a few extra objects

� Optimize to compress passesOptimize to compress passes

� Target hardware extensionsTarget hardware extensions

OpenGL ShaderOpenGL Shader

ISLISL

PlainPlain

OpenGLOpenGL
IRIR

extensionsextensions
NVNV

extensionsextensions
OthOtherer

extensionsextensions

OpenGL Shader

About ISLAbout ISL

Things exposed in ISLThings exposed in ISL

� Pass count: passes <= statementsPass count: passes <= statements

� Optimize to fewerOptimize to fewer

� Range: clamped 0 � 1Range: clamped 0 � 1

� Texturing limitsTexturing limits

� No per-pixel computed texture coordinatesNo per-pixel computed texture coordinates

� Can use per-vertex texture coordinatesCan use per-vertex texture coordinates

Example 1Example 1

Shiny Bump MapShiny Bump Map

� Dependent texturing?Dependent texturing?

� ISL ISL lookuplookup function function

Lookup-base EnvironmentLookup-base Environment

ISL�s run anywhere philosophyISL�s run anywhere philosophy

� 1D environment1D environment

� Internally, same as texture lookupInternally, same as texture lookup

Procedural EnvironmentProcedural Environment

Can build with ISL codeCan build with ISL code
repeat(h) {

// Fresnel component
uniform float f = fresnel(2*i/(n-1) � 1, refract);

// color spline for ground
groundsky[i] = spline(i/(h-1),{

color(.3,.6,.1,f),
color(.3,.6,.1,f),
color(.6,.6,.1,f),
color(.4,.7,.1,f),
color(.4,.4,.1,f),
color(.3,.3,.1,f)});

i = i+1;
}

Procedural EnvironmentProcedural Environment

And the sky...And the sky...
repeat(h) {

// Fresnel component
uniform float f = fresnel(2*i/(n-1) � 1, refract);

// color spline for ground
groundsky[i] = spline((i-h)/(h-1),{

color(1.,1.,1.,f),
color(1.,1.,1.,f),
color(.3,.7,.9,f),
color(.3,.7,.9,f),
color(.3,.7,.9,f),
color(.3,.7,.9,f)});

i = i+1;
}

Bump MapBump Map

Makes smooth surface appear bumpyMakes smooth surface appear bumpy

Several choicesSeveral choices

� Evaluate bump math per-fragmentEvaluate bump math per-fragment

� �Embossed� bumps�Embossed� bumps

� Normal mapNormal map

Normal MapNormal Map

Normal range �1 to 1Normal range �1 to 1

Color range 0 to 1Color range 0 to 1

Normal map is just a textureNormal map is just a texture

� R = .5 NR = .5 N
XX
 + .5 + .5

� G = .5 NG = .5 N
YY
 + .5 + .5

� B = .5 NB = .5 N
ZZ
 + .5 + .5

Bumped Normal MapBumped Normal Map

Perturb in tangent directions + renormalizePerturb in tangent directions + renormalize

Scale & Transform NormalScale & Transform Normal

// rescale normal vectors from 0..1 to -1..1 and back
uniform matrix nScale = translate(-.5,-.5,-.5)

*scale(2,2,2);
uniform matrix nUnscale = scale(.5,.5,.5)

*translate(.5,.5,.5);

// transform -1..1 normal from object to world space
parameter matrix nm = inverse(affine(shadermatrix));

// set rgb to y (vertical) component and alpha to z
// so one lookup can do both environment map and Fresnel
uniform matrix gggb = matrix(0, 0, 0, 0,
 1, 1, 1, 0,
 0, 0, 0, 1,
 0, 0, 0, 0);

Actual shading codeActual shading code

FB = texture(nmap);

FB = transform(nScale * nm * nUnscale * gggb);

FB = lookup(groundsky);

DemoDemo

Example 2Example 2

Homomorphic BRDF FactorizationHomomorphic BRDF Factorization

FactorizationFactorization

NN HH
LL

VV

Factored TexturesFactored Textures

LL
ShadowingShadowing

NN
MicrofacetMicrofacet

VV
MaskingMasking

The ShaderThe Shader

surface BRDF(surface BRDF(

uniform string brdfP = "brdf p.rgb";uniform string brdfP = "brdf p.rgb";

uniform string brdfQ = "brdf q.rgb";uniform string brdfQ = "brdf q.rgb";

uniform color brdfC = color(1,1,1,1))uniform color brdfC = color(1,1,1,1))

{{

FB = diffuse();FB = diffuse();

FB *= texture(brdfP, 1, FB *= texture(brdfP, 1, 11););

FB *= texture(brdfQ, 1, FB *= texture(brdfQ, 1, 22););

FB *= texture(brdfP, 1, FB *= texture(brdfP, 1, 33););

FB *= brdfC;FB *= brdfC;

}}

Texture CoordinatesTexture Coordinates

texture(�texture�, matrix, texture(�texture�, matrix, texcoord_settexcoord_set))

Passed to application draw callbackPassed to application draw callback

� Per-vertex application codePer-vertex application code

� Vertex programsVertex programs

OpenGL Shader 3.0OpenGL Shader 3.0

� includes vertex program emulationincludes vertex program emulation

DemoDemo

Homomorphic BRDF FactorizationHomomorphic BRDF Factorization

Example 3Example 3

Parameterized WoodParameterized Wood

Need Some BandsNeed Some Bands

Start with a simple rampStart with a simple ramp

project("wave.bw",

inverse(shadermatrix)*

ringCenterXlate*

ringAxisRotate*

 ringScale*

textureCenterXlate);

Turn into RingsTurn into Rings

if (FB[0] < lightToDark)

FB = darkWood;

else

FB = lightWood;

Differing SpecularDiffering Specular

FB = diffuse();

varying color dif=FB;

FB = environment("highlight.bw");

varying color spec=FB;

if (FB[0] < lightToDark) {

FB = darkWood;

FB *= dif;

varying color a = FB;

FB = darkGloss;

FB *= spec;

FB += a;

}

Turbulent RingsTurbulent Rings

FB = project(�turbulence.bw�,...);

FB *= ringNoiseScale;

FB += project(�wave.bw�,...);

Fine GrainFine Grain

FB = darkGloss;

FB.a = project(�noise.bw�,...);

FB = over(darkGrainGloss);

FB *= spec;

FB += a;

DemoDemo

Bonus ExampleBonus Example

Level-of-detail ShadersLevel-of-detail Shaders

Level-of-detail ShadersLevel-of-detail Shaders

Add conditionals to adjust complexityAdd conditionals to adjust complexity

� DistanceDistance

� ImportanceImportance

� TimeTime

� Available textureAvailable texture

Level-of-detailLevel-of-detail

AutomaticAutomatic

� Add conditionalsAdd conditionals

� Change �hardware mapping� rules in each branchChange �hardware mapping� rules in each branch

Semi-automaticSemi-automatic

� Use Use LOD LOD building blocksbuilding blocks

ManualManual

� Add conditionalsAdd conditionals

� Hand-code levelsHand-code levels

DemoDemo

