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Introduction 
 

Programmable shaders are a powerful way to describe the interaction of surfaces with light, as 

evidenced by the success of programmable shading models like RenderMan and others.  As graphics 

hardware evolves beyond the traditional �fixed function� pipeline, hardware designers are looking to 

programmable models to empower the next generation of real-time content.  To allow content to 

interface with current programmable pixel shading hardware, we have designed the 1.4 pixel shader 

model (ps.1.4) exposed in DirectX 8.1 and supported by the ATI RADEON� 8500.  In these notes, we 

will outline the structure of the programming model and present some illustrative examples.  In the 

companion notes distributed at SIGGRAPH, we will show implementations of the common example 

shaders used throughout this course (bumped cubic environment mapping, McCool BRDF and 

parameterized volumetric wood) as well as a new programming model which goes beyond ps.1.4.  Soft 

copies of these notes and the supplemental material distributed at SIGGRAPH 2002 are available at 

http://www.ati.com/developer. 

 

 

The ps.1.4 Programming Model 
 

 The 1.4 pixel shader programming model (ps.1.4), introduced in DirectX 8.1 in late 2001, 

advances the previously available programming model by applying a RISC approach.  That is, the same 

micro operations which can be applied to colors can also be applied to texture addresses.  This allows a 

wider variety of pixel shading affects to be achieved, as well as backward compatibility with previously 

available CISC models. 
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Inputs and Outputs 
 

 The pixel shader may take as inputs the data from interpolated texture coordinates, samples from 

texture maps, constant colors, the diffuse interpolator or the specular interpolator.  There are six sets of 

texture coordinates (t0-t5), which may be used as extra interpolated data or as texture coordinates for 

sampling texture maps.  There are six texture maps available in the ps.1.4 model and eight read-only 

constant registers (c0-c7).  The low-precision diffuse (v0) and specular (v1) interpolators may also be 

used as arguments to ALU operations.  There are six read-write temp registers (r0-r5) available in the 

ps.1.4 model.  The contents of the r0 temp register are considered the RGBA output of the pixel shader. 

 

Shader Structure 
 

 A ps.1.4 shader may contain one or two phases, each of which begins with up to 6 texture 

instructions and ends with up to 8 ALU instructions.  Each of the ALU instructions may be co-issued. 

 

 ps.1.4
 texld  r0, t0
 texld  r1, t1
 texcrd r2.rgb, t2
 texcrd r3.rgb, t3
 texcrd r4.rgb, t4
 texcrd r5.rgb, t5

 add_d4 r0.xy, r0_bx2, r1_bx2
 mul r1.rgb, r0.x, r3
 mad r1.rgb, r0.y, r4, r1
 mad r1.rgb, r0.z, r5, r1
 dp3 r0.rgb, r1, r2
 mad r2.rgb, r1, r0_x2, -r2
 mov_sat r1, r0_x2

 phase

 texcrd r0.rgb, r0
 texld  r2, r2
 texld  r3, r1

 mul r2.rgb, r2, r2
+mul r2.a, r2.g, r2.g
 mul r2.rgb, r2, 1-r0.r
+mul r2.a, r2.a, r2.a
 add_d4_sat r2.rgb, r2, r3_x2
+mul r2.a, r2.a, r2.a
 mad_sat r0, r2.a, c1, r2

Texture Instructions

Texture Instructions

ALU Instructions

ALU Instructions

First Phase

Second Phase

 

 

 The shader shown above has two phases.  The first phase uses six texture instructions (the 

maximum) and 7 ALU instructions.  The second phase uses three texture instructions (two of which are 

dependent reads) and 4 ALU instructions (the first three of which are co-issued).  The phase instruction 

marks the boundary between the phases. 
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ALU Instructions 
 

 The instruction set available for ALU operations is a fairly traditional set of arithmetic 

operations and comparators as listed below. 

 

add d, s0, s1 s0 + s1 
sub d, s0, s1 s0 � s1 
mul d, s0, s1 s0 * s1 
mad d, s0, s1, s2 s0 * s1 + s2  
lrp d, s0, s1, s2 s2 + s0*(s1-s2)  
mov d, s0 d = s0 
cnd d, s0, s1, s2 d = (s2 > 0.5) ? s0 : s1  
cmp d, s0, s1, s2 d = (s2 >= 0) ? s0 : s1  
dp3 d, s0, s1 s0·s1 replicated to d.rgba 
dp4 d, s0, s1 s0·s1 replicated to d.rgba 
bem d, s0, s1, s2 Macro for EMBM 

 

 

 The inputs to the ALU instructions may be any of the temporary registers (r0-r5) or constant 

registers (c0-c7).  The diffuse interpolator (v0) and specular interpolator (v1) may be inputs to ALU 

instructions in the second phase of the shader. 

 

 

Argument Modifiers 
 

 As shown in the sample shader on the previous page, arguments to ALU instructions may have 

modifications made to them prior to the operation of the ALU instruction.  There are five argument 

modifiers which can be used to perform operations such as negation, inversion, scaling and conversion 

from the [0..1] range to the [-1..1] range. 

 

 
rn_bias Bias 
1 � rn Invert 
-rn Negate 
rn_x2 Scale by 2 
rn_bx2 Signed Scaling 
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Source Register Selectors 
 

 It is often useful to think of the individual components of an RGBA vector as independent 

scalars.  With source register selectors, it is possible to extract these scalars from an argument register 

and replicate them across all channels of the argument.  The four source register selectors are shown 

below. 

.r Replicate Red 

.g Replicate Green 

.b Replicate Blue 

.a Replicate Alpha 

 

 

Arbitrary Write Masks 
 

 It is often desirable to write to only a subset of the channels of a destination register.  In ps.1.4, 

destination write masks can be used in any combination as long as the masks are ordered r, g, b, a.  This 

allows the shader to execute a sequence of ALU operations which write to different components of the 

same destination register.  This is especially useful when computing texture coordinates to be used in 

dependent texture reads, as we will illustrate later. 

 

 

Instruction Modifiers 
 

 In some cases, we wish to modify the result of an ALU instruction as it is written into the 

destination register.  In the ps.1.4 model, we can use instruction modifiers to perform shifts and saturates 

on the results of ALU operations.  There are six shift (multiplier or divider, depending on the direction 

of the shift) operations that we can perform.  Additionally, ALU results may be explicitly saturated to 

the [0..1] range.  Saturation and shifting may be performed on the same ALU instruction. 

 
instr_x2 Multiply by 2 
instr_x4 Multiply by 4 
instr_x8 Multiply by 8 
instr_d2 Divide by 2 
instr_d4 Divide by 4 
instr_d8 Divide by 8 
instr_sat Saturate (clamp from 0 and 1) 
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Co-Issue 
 

Pairing or co-issuing of ps.1.4 instructions is indicated by a plus sign (+) preceding the second 

instruction of the pair.  The first instruction of the pair is a vector instruction which may write to any or 

all of r, g and b of the destination register.  The second instruction of the pair is a scalar which writes 

into the alpha channel of the destination register.  As an example, consider the following instructions: 

 
  mul r0.rgb, t0, v0  // Component-wise multiply of the colors 
 +add r1.a,   r1, c2  // Add an alpha component at the same time 
 

The dot product instructions may not be executed in the alpha pipeline, as they are always vector 

instructions. 

Texture Instructions 
 

 The two most common texture instructions are the texcrd and texld instructions.  The texcrd 

instruction is used to specify that a given temporary register (r0-r5) is to contain interpolated data.  The 

texld instruction uses the specified texture coordinates to sample data from a texture map into the 

destination register.  For example, the following texcrd instruction causes r0 to contain interpolated 

data from the 0  set of texture coordinates: 
th

 

texcrd r0.rgb, t0 

 

The following texld instruction causes r1 to contain sampled data from the 1
st
 texture using the 

1
st
 set of texture coordinates: 

texld  r1, t1   

 

The following texld instruction causes r2 to be loaded with sampled data from the 2  texture 

using the contents of r3 as texture coordinates:  

nd

 

texld  r2, r3   

 

Using the contents of a temporary register as texture coordinates (the second argument of a 

texld instruction) is the definition of a dependent read because these texture coordinates depend upon 

the earlier ALU ops used to compute them (in this case r3).   Naturally, a dependent read can only be 

used at the top of the second phase. 

The texkill instruction can be used to kill pixels based upon results computed in a pixel shader.  

This is similar to alpha-testing, but more general in that multiple conditions may be tested with the 

texkill instruction.  Multiple texkill instructions may appear in a single shader. 
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The final texture instruction is the texdepth instruction, which causes the current pixel�s z to be 

replaced with the contents of a given register component.  This instruction can be used to implement z-

sprites, z-correct bump mapping and other effects.  Naturally, only one texdepth instruction may be 

present in a given pixel shader. 

 

Texture Projection 
 

 Any texld instruction may be modified to express a projected texture access.  This includes 

projective dependent reads, which are fundamental to doing reflection and refraction mapping of things 

like water surfaces.  Syntax looks like this: 

     texld r3, r3_dz   or 
     texld r3, r3_dw 

 

 Projective loads are useful for projective textures like refraction maps or for doing a divide, as 

we will show later in the skin shader [Vlachos02]. 

 

Example ps.1.4 Shaders 
 

 Now that we have introduced the structure and syntax of 1.4 pixel shaders, we will illustrate their 

usage in a variety of practical applications. 

 

Real-Time Hatching 
 

 The first application of the 1.4 pixel shading model that we will illustrate is the Real-Time 

Hatching technique shown at SIGGRAPH last year [Praun01].  The general goal of this pixel shader is 

to compute the linear combination of 6 channels of a Tonal Art Map (TAM).  The coefficients defining 

this linear combination have been computed in the vertex shader as a function of N·L with respect to a 

given light source and are stored in the r, g and b components of the 1  and 2  texture coordinates. 
st nd

 
   ps.1.4 
   texld  r0, t0         ; sample the first three channels of the TAM 
   texld  r1, t0         ; sample the second three channels of the TAM 
   texcrd r2.rgb, t1.xyz ; get the 123 TAM weights and place in register 2 
   texcrd r3.rgb, t2.xyz ; get the 456 TAM weights and place in register 3 
   dp3_sat r0, 1-r0, r2  ; dot the reg0 (TAM values) with reg2 (TAM weights) 
   dp3_sat r1, 1-r1, r3  ; dot the reg1 (TAM values) with reg3 (TAM weights) 
   add_sat r0, r0, r1    ; add reg 0 and reg1 
   mov_sat r0, 1-r0      ; complement and saturate 
 

Real-Time Hatching with Per-Vertex TAM weights 
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 One side effect of this approach is inaccurate lighting due to the fact that the TAM weights are 

computed at the vertices and interpolated.  This can cause artifacts when the light source is close to a 

large polygon.  The two-polygon wall in the image on the left side of the figure below seems to have its 

hatches grayed out as it transitions from the top right corner of near white, to the other corners which are 

near black.  The wall in the image on the right shows the effect of per-pixel TAM weights, correctly 

transitioning between the intermediate hatching levels across the polygon. 

  

  Per-Vertex TAM Weights     Per-Pixel TAM Weights 

 

Another dramatic improvement that can be made to the hatching shader is inclusion of a per-

pixel distance attenuation term as shown below. 

 

 Per-Pixel Distance Attenuation and TAM weight computation 
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The improved shader interpolates N·L, modulates it with per-pixel distance attenuation and uses 

this scalar as a texture coordinate to look up the per-pixel TAM weights.  The two 1D RGB function 

textures used to look up the TAM weights based on N·L are shown here: 

 

 

 Two 1D RGB textures used to determine Per-Pixel TAM Weights from N· L 

 

 

After computing the 6-term linear combination of hatching patterns in the TAM as before, the 

color is tinted to match a base texture map color. 

 

   ps.1.4 
   def c0, 1.00f, 1.00f, 1.00f, 1.00f 
   def c1, 0.30f, 0.59f, 0.11f, 0.00f  ; RGB to luminance conversion weights 
 
   texcrd r1.rgb, t2     ; N·L 
   texld  r4, t3         ; Intensity map looked up from light space position 
   texld  r5, t0         ; Base Texture 
 
   mul_x2 r4, r4.r, r1.r ; N·L * attenuation 
   add    r4, r4, c2     ; += ambient 
   dp3    r3, r5, c1     ; Intensity of base map 
   mul    r5, r4, r5     ; Modulate base map by light 
   mul    r4, r4, r3     ; Modulate light by base map intensity 
 
   phase 
 
   texld r0, t1          ; sample the first three channels of the TAM 
   texld r1, t1          ; sample the second three channels of the TAM 
   texld r2, r4          ; Get weights for 123 
   texld r3, r4          ; Get weights for 456 
 
   dp3_sat r0, 1-r0, r2  ; dot the reg0 (TAM values) with reg2 (TAM weights) 
   dp3_sat r1, 1-r1, r3  ; dot the reg1 (TAM values) with reg3 (TAM weights) 
   add_sat r0, r0, r1    ; add reg0 and reg1 
   mul r0.rgb, 1-r5, r0  ; Color hatches with base texture 
   mov_sat r0, 1-r0      ; complement and saturate 

 
Real-Time Hatching with Per-Pixel TAM weights, distance attenuation and color tinting 
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Per-pixel Variable Specular power 
 

 In the preceding example, we have illustrated the ability to migrate one type of per-vertex 

computation (TAM weight calculation) to the pixel level in order to improve rendering quality.  We will 

now show how to implement per-pixel material properties (in this case, specular exponent) by using 

arbitrary register write masks and dependent texture reads in ps.1.4.  We will use three different texture 

maps in this shader: 

 

1. Albedo / Gloss map 

2. Normal / k map 

3. N·H × k map (function look up) 

 

The first two of these maps are shown below.  The images on the left are the RGB channels of 

the maps and the images on the right are the alpha channels.  In the first map, we store albedo and gloss 

for the tile material.  The second map stores the x, y and z components of the tangent-space normal in 

RGB and the specular exponent (k) in alpha.  Note that the artist has given each tile in this texture map a 

different specular exponent to simulate neighboring tiles of disparate material properties.  Being able to 

simply paint the quantity k into a texture map channel is both convenient and empowering to an artist. 

 

   Normals in RGB                  k in alpha 

  Albedo in RGB                Gloss in alpha 

 
 

Material maps for per-pixel specular exponent shader 
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 The third texture we will use in this shader is a function lookup which will be used to raise N·H 

to the k  power via a dependent texture read.  Each row of this 2D texture can be thought of as an 

exponential function which is selected by the alpha channel of the Normal / k map shown above.  In this 

way, we are able to select different specular exponents for different regions within the same texture 

map.  For our purposes, we have found a dynamic range of 10 to 120 is reasonable for k: 

th

 

1.0 

10.0 

120.0 

k

N·H 

0.0  
        Function look-up map for per-pixel specular exponent shader 

 

 In the shader code below, we sample the tangent space normal from the first map and dot this 

quantity with interpolated L and H vectors.  N·H is stored in the red channel of r2 and the specular 

exponent is moved into the green channel using write masks.  This 2D texture coordinate is then used to 

access the function look-up map shown above via a dependent read.  The instructions in the second 

phase composite the results into a final color. 

 
   ps.1.4 
   texld   r1, t0                  ; Normal 
   texld   r2, t1                  ; Cubic Normalized Tangent Space Light Direction 
   texcrd  r3.rgb, t2              ; Tangent Space Halfangle vector 
 
   dp3_sat r5.xyz, r1_bx2, r2_bx2  ; N.L 
   dp3_sat r2.xyz, r1_bx2, r3      ; N.H 
   mov     r2.y, r1.a              ; K = Specular Exponent 
 
   phase 
   texld   r0, t0                  ; Base 
   texld   r3, r2                  ; Specular NHxK map 
 
   add     r4.rgb, r5, c7          ; += ambient 
   mul     r0.rgb, r0, r4          ; base * (ambient + N.L)) 
  +mul_x2  r0.a, r0.a, r3.b        ; Gloss map * specular highlight 
   add     r0.rgb, r0, r0.a        ; (base*(ambient+N.L)) + (Gloss*Highlight) 
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 Output from this shader is shown on the right side of the figure below.  The left side shows the 

result of using the same normal map and a constant specular exponent for the whole object.  The image 

on the right shows how different materials can be represented with the same map by migrating material 

calculations to the pixel level. 

 

        

Constant specular power and per-pixel specular power using ps.1.4 

 

 

Human Skin 
 

The skin shader used in the Rachel demo uses nearly the maximum number of instructions to 

implement per-pixel diffuse and specular illumination for two lights.  The shader computes the 

following equation to calculate the lighting per-pixel. 

 

I  = C (I  + I (N · L ) + I (N · L )) + gI (I  |N · H |  + I  |N · H | ) 
k k

0 1 d0 0RGB base a d0 d1 s d1 1

 

where  Cbase  is the base color sampled from a texture map 

Ia  is the light source ambient coefficient 

Idn  are light source diffuse coefficients 

Is  is the light source specular coefficient 

N  is the normal to the surface 

L  is the light vector 

H  is the halfway vector 

g  is the gloss factor 

k  is the specular exponent. 
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A per-pixel variable specular exponent similar to the preceding example is used in this shader 

but is further improved by using a dependent projective texture fetch as a way to perform a division 

[Vlachos02]. 

 

     

 

 

  ps.1.4 
  texld r0, t0 
  texcrd r1.xyz, t3             // tangent space H0 
  texcrd r2.xyz, t5             // tangent space H1 
  dp3_sat r4.r, r0_bx2, r1      // N·H0 
  dp3_sat r4.b, r1, r1          // H0·H0 
  mul_sat r4.g, r4.b, c0.a      // c0.a*(H0·H0) 
  mul r4.r, r4.r, r4.r          // (N·H0)

2 
  dp3_sat r5.r, r0_bx2, r2      // N·H1 
  dp3_sat r5.b, r2, r2          // H1·H1 
  mul_sat r5.g, r5.b, c0.a      // c0.a*(H1·H1) 
  mul r5.r, r5.r, r5.r          // (N·H1)

2 
  phase 
  texld r0, t0                  // fetch again to get spec map to use as gloss 
  texld r1, t0                  // Cbase  
  texld r2, t2                  // tangent space L0 
  texld r3, t4                  // tangent space L1 
  texld r4, r4_dz               // ((N·H)2 /(H·H))k @= |N·H|k 
  texld r5, r5_dz               // ((N·H)2 /(H·H))k @= |N·H|k 
  dp3_sat r2.r, r2_bx2, r0_bx2  // N·L0 
 +mul r2.a, r0.a, r4.r          // g * |N·H0|

k <- Gloss specular highlight 0 
  dp3_sat r3.r, r3_bx2, r0_bx2  // N·L1 
 +mul r3.a, r0.a, r5.r          // g * |N·H1|

k <- Gloss specular highlight 1 
  mul r0.rgb, r2.a, c2          // Id0*g*|N·H0|

k 
  mad_x2 r0.rgb, r3.a, c3, r0   // Id0*g*|N·H0|

k + Id1*g*|N·H1|
k 

  mad r2.rgb, r2.r, c2, c1      // Ia + Id0*(N·L) 
  mad r2.rgb, r3.r, c3, r2      // Ia + Id0*(N·L) + Id1*(N·L) 
  mul r0.rgb, r0, c4            // Is * (Id0*g*|N·H0|

k + Id1*g*|N·H1|
k) 

  mad_x2_sat r0.rgb, r2, r1, r0 // Cbase * (Ia + Id0*(N·L) + Id1*(N·L)) 
                                // + Id0*g*|N·H0|

k + Id1*g*|N·H1|
k 

 +mov r0.a, c0.z 
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Conclusion 
 

We�ve outlined the behavior of the 1.4 pixel shading model which is available in DirectX 8.1 

and is implemented by the ATI RADEON� 8500.  Three key examples have been presented to 

illustrate the properties of this programming model and the effects that can be achieved today on 

commodity graphics hardware. 
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