
Chapter 3

ATI
Jason L. Mitchell

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 1

Pixel Shading with DirectX 8.1

and the ATI RADEON� 8500

Jason L. Mitchell

JasonM@ati.com

3D Application Research Group

ATI Research

Introduction

Programmable shaders are a powerful way to describe the interaction of surfaces with light, as

evidenced by the success of programmable shading models like RenderMan and others. As graphics

hardware evolves beyond the traditional �fixed function� pipeline, hardware designers are looking to

programmable models to empower the next generation of real-time content. To allow content to

interface with current programmable pixel shading hardware, we have designed the 1.4 pixel shader

model (ps.1.4) exposed in DirectX 8.1 and supported by the ATI RADEON� 8500. In these notes, we

will outline the structure of the programming model and present some illustrative examples. In the

companion notes distributed at SIGGRAPH, we will show implementations of the common example

shaders used throughout this course (bumped cubic environment mapping, McCool BRDF and

parameterized volumetric wood) as well as a new programming model which goes beyond ps.1.4. Soft

copies of these notes and the supplemental material distributed at SIGGRAPH 2002 are available at

http://www.ati.com/developer.

The ps.1.4 Programming Model

 The 1.4 pixel shader programming model (ps.1.4), introduced in DirectX 8.1 in late 2001,

advances the previously available programming model by applying a RISC approach. That is, the same

micro operations which can be applied to colors can also be applied to texture addresses. This allows a

wider variety of pixel shading affects to be achieved, as well as backward compatibility with previously

available CISC models.

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 2

Inputs and Outputs

 The pixel shader may take as inputs the data from interpolated texture coordinates, samples from

texture maps, constant colors, the diffuse interpolator or the specular interpolator. There are six sets of

texture coordinates (t0-t5), which may be used as extra interpolated data or as texture coordinates for

sampling texture maps. There are six texture maps available in the ps.1.4 model and eight read-only

constant registers (c0-c7). The low-precision diffuse (v0) and specular (v1) interpolators may also be

used as arguments to ALU operations. There are six read-write temp registers (r0-r5) available in the

ps.1.4 model. The contents of the r0 temp register are considered the RGBA output of the pixel shader.

Shader Structure

 A ps.1.4 shader may contain one or two phases, each of which begins with up to 6 texture

instructions and ends with up to 8 ALU instructions. Each of the ALU instructions may be co-issued.

 ps.1.4
 texld r0, t0
 texld r1, t1
 texcrd r2.rgb, t2
 texcrd r3.rgb, t3
 texcrd r4.rgb, t4
 texcrd r5.rgb, t5

 add_d4 r0.xy, r0_bx2, r1_bx2
 mul r1.rgb, r0.x, r3
 mad r1.rgb, r0.y, r4, r1
 mad r1.rgb, r0.z, r5, r1
 dp3 r0.rgb, r1, r2
 mad r2.rgb, r1, r0_x2, -r2
 mov_sat r1, r0_x2

 phase

 texcrd r0.rgb, r0
 texld r2, r2
 texld r3, r1

 mul r2.rgb, r2, r2
+mul r2.a, r2.g, r2.g
 mul r2.rgb, r2, 1-r0.r
+mul r2.a, r2.a, r2.a
 add_d4_sat r2.rgb, r2, r3_x2
+mul r2.a, r2.a, r2.a
 mad_sat r0, r2.a, c1, r2

Texture Instructions

Texture Instructions

ALU Instructions

ALU Instructions

First Phase

Second Phase

 The shader shown above has two phases. The first phase uses six texture instructions (the

maximum) and 7 ALU instructions. The second phase uses three texture instructions (two of which are

dependent reads) and 4 ALU instructions (the first three of which are co-issued). The phase instruction

marks the boundary between the phases.

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 3

ALU Instructions

 The instruction set available for ALU operations is a fairly traditional set of arithmetic

operations and comparators as listed below.

add d, s0, s1 s0 + s1
sub d, s0, s1 s0 � s1
mul d, s0, s1 s0 * s1
mad d, s0, s1, s2 s0 * s1 + s2
lrp d, s0, s1, s2 s2 + s0*(s1-s2)
mov d, s0 d = s0
cnd d, s0, s1, s2 d = (s2 > 0.5) ? s0 : s1
cmp d, s0, s1, s2 d = (s2 >= 0) ? s0 : s1
dp3 d, s0, s1 s0·s1 replicated to d.rgba
dp4 d, s0, s1 s0·s1 replicated to d.rgba
bem d, s0, s1, s2 Macro for EMBM

 The inputs to the ALU instructions may be any of the temporary registers (r0-r5) or constant

registers (c0-c7). The diffuse interpolator (v0) and specular interpolator (v1) may be inputs to ALU

instructions in the second phase of the shader.

Argument Modifiers

 As shown in the sample shader on the previous page, arguments to ALU instructions may have

modifications made to them prior to the operation of the ALU instruction. There are five argument

modifiers which can be used to perform operations such as negation, inversion, scaling and conversion

from the [0..1] range to the [-1..1] range.

rn_bias Bias
1 � rn Invert
-rn Negate
rn_x2 Scale by 2
rn_bx2 Signed Scaling

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 4

Source Register Selectors

 It is often useful to think of the individual components of an RGBA vector as independent

scalars. With source register selectors, it is possible to extract these scalars from an argument register

and replicate them across all channels of the argument. The four source register selectors are shown

below.

.r Replicate Red

.g Replicate Green

.b Replicate Blue

.a Replicate Alpha

Arbitrary Write Masks

 It is often desirable to write to only a subset of the channels of a destination register. In ps.1.4,

destination write masks can be used in any combination as long as the masks are ordered r, g, b, a. This

allows the shader to execute a sequence of ALU operations which write to different components of the

same destination register. This is especially useful when computing texture coordinates to be used in

dependent texture reads, as we will illustrate later.

Instruction Modifiers

 In some cases, we wish to modify the result of an ALU instruction as it is written into the

destination register. In the ps.1.4 model, we can use instruction modifiers to perform shifts and saturates

on the results of ALU operations. There are six shift (multiplier or divider, depending on the direction

of the shift) operations that we can perform. Additionally, ALU results may be explicitly saturated to

the [0..1] range. Saturation and shifting may be performed on the same ALU instruction.

instr_x2 Multiply by 2
instr_x4 Multiply by 4
instr_x8 Multiply by 8
instr_d2 Divide by 2
instr_d4 Divide by 4
instr_d8 Divide by 8
instr_sat Saturate (clamp from 0 and 1)

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 5

Co-Issue

Pairing or co-issuing of ps.1.4 instructions is indicated by a plus sign (+) preceding the second

instruction of the pair. The first instruction of the pair is a vector instruction which may write to any or

all of r, g and b of the destination register. The second instruction of the pair is a scalar which writes

into the alpha channel of the destination register. As an example, consider the following instructions:

 mul r0.rgb, t0, v0 // Component-wise multiply of the colors
 +add r1.a, r1, c2 // Add an alpha component at the same time

The dot product instructions may not be executed in the alpha pipeline, as they are always vector

instructions.

Texture Instructions

 The two most common texture instructions are the texcrd and texld instructions. The texcrd

instruction is used to specify that a given temporary register (r0-r5) is to contain interpolated data. The

texld instruction uses the specified texture coordinates to sample data from a texture map into the

destination register. For example, the following texcrd instruction causes r0 to contain interpolated

data from the 0 set of texture coordinates:
th

texcrd r0.rgb, t0

The following texld instruction causes r1 to contain sampled data from the 1
st
 texture using the

1
st
 set of texture coordinates:

texld r1, t1

The following texld instruction causes r2 to be loaded with sampled data from the 2 texture

using the contents of r3 as texture coordinates:

nd

texld r2, r3

Using the contents of a temporary register as texture coordinates (the second argument of a

texld instruction) is the definition of a dependent read because these texture coordinates depend upon

the earlier ALU ops used to compute them (in this case r3). Naturally, a dependent read can only be

used at the top of the second phase.

The texkill instruction can be used to kill pixels based upon results computed in a pixel shader.

This is similar to alpha-testing, but more general in that multiple conditions may be tested with the

texkill instruction. Multiple texkill instructions may appear in a single shader.

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 6

The final texture instruction is the texdepth instruction, which causes the current pixel�s z to be

replaced with the contents of a given register component. This instruction can be used to implement z-

sprites, z-correct bump mapping and other effects. Naturally, only one texdepth instruction may be

present in a given pixel shader.

Texture Projection

 Any texld instruction may be modified to express a projected texture access. This includes

projective dependent reads, which are fundamental to doing reflection and refraction mapping of things

like water surfaces. Syntax looks like this:

 texld r3, r3_dz or
 texld r3, r3_dw

 Projective loads are useful for projective textures like refraction maps or for doing a divide, as

we will show later in the skin shader [Vlachos02].

Example ps.1.4 Shaders

 Now that we have introduced the structure and syntax of 1.4 pixel shaders, we will illustrate their

usage in a variety of practical applications.

Real-Time Hatching

 The first application of the 1.4 pixel shading model that we will illustrate is the Real-Time

Hatching technique shown at SIGGRAPH last year [Praun01]. The general goal of this pixel shader is

to compute the linear combination of 6 channels of a Tonal Art Map (TAM). The coefficients defining

this linear combination have been computed in the vertex shader as a function of N·L with respect to a

given light source and are stored in the r, g and b components of the 1 and 2 texture coordinates.
st nd

 ps.1.4
 texld r0, t0 ; sample the first three channels of the TAM
 texld r1, t0 ; sample the second three channels of the TAM
 texcrd r2.rgb, t1.xyz ; get the 123 TAM weights and place in register 2
 texcrd r3.rgb, t2.xyz ; get the 456 TAM weights and place in register 3
 dp3_sat r0, 1-r0, r2 ; dot the reg0 (TAM values) with reg2 (TAM weights)
 dp3_sat r1, 1-r1, r3 ; dot the reg1 (TAM values) with reg3 (TAM weights)
 add_sat r0, r0, r1 ; add reg 0 and reg1
 mov_sat r0, 1-r0 ; complement and saturate

Real-Time Hatching with Per-Vertex TAM weights

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 7

 One side effect of this approach is inaccurate lighting due to the fact that the TAM weights are

computed at the vertices and interpolated. This can cause artifacts when the light source is close to a

large polygon. The two-polygon wall in the image on the left side of the figure below seems to have its

hatches grayed out as it transitions from the top right corner of near white, to the other corners which are

near black. The wall in the image on the right shows the effect of per-pixel TAM weights, correctly

transitioning between the intermediate hatching levels across the polygon.

 Per-Vertex TAM Weights Per-Pixel TAM Weights

Another dramatic improvement that can be made to the hatching shader is inclusion of a per-

pixel distance attenuation term as shown below.

 Per-Pixel Distance Attenuation and TAM weight computation

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 8

The improved shader interpolates N·L, modulates it with per-pixel distance attenuation and uses

this scalar as a texture coordinate to look up the per-pixel TAM weights. The two 1D RGB function

textures used to look up the TAM weights based on N·L are shown here:

 Two 1D RGB textures used to determine Per-Pixel TAM Weights from N· L

After computing the 6-term linear combination of hatching patterns in the TAM as before, the

color is tinted to match a base texture map color.

 ps.1.4
 def c0, 1.00f, 1.00f, 1.00f, 1.00f
 def c1, 0.30f, 0.59f, 0.11f, 0.00f ; RGB to luminance conversion weights

 texcrd r1.rgb, t2 ; N·L
 texld r4, t3 ; Intensity map looked up from light space position
 texld r5, t0 ; Base Texture

 mul_x2 r4, r4.r, r1.r ; N·L * attenuation
 add r4, r4, c2 ; += ambient
 dp3 r3, r5, c1 ; Intensity of base map
 mul r5, r4, r5 ; Modulate base map by light
 mul r4, r4, r3 ; Modulate light by base map intensity

 phase

 texld r0, t1 ; sample the first three channels of the TAM
 texld r1, t1 ; sample the second three channels of the TAM
 texld r2, r4 ; Get weights for 123
 texld r3, r4 ; Get weights for 456

 dp3_sat r0, 1-r0, r2 ; dot the reg0 (TAM values) with reg2 (TAM weights)
 dp3_sat r1, 1-r1, r3 ; dot the reg1 (TAM values) with reg3 (TAM weights)
 add_sat r0, r0, r1 ; add reg0 and reg1
 mul r0.rgb, 1-r5, r0 ; Color hatches with base texture
 mov_sat r0, 1-r0 ; complement and saturate

Real-Time Hatching with Per-Pixel TAM weights, distance attenuation and color tinting

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 9

Per-pixel Variable Specular power

 In the preceding example, we have illustrated the ability to migrate one type of per-vertex

computation (TAM weight calculation) to the pixel level in order to improve rendering quality. We will

now show how to implement per-pixel material properties (in this case, specular exponent) by using

arbitrary register write masks and dependent texture reads in ps.1.4. We will use three different texture

maps in this shader:

1. Albedo / Gloss map

2. Normal / k map

3. N·H × k map (function look up)

The first two of these maps are shown below. The images on the left are the RGB channels of

the maps and the images on the right are the alpha channels. In the first map, we store albedo and gloss

for the tile material. The second map stores the x, y and z components of the tangent-space normal in

RGB and the specular exponent (k) in alpha. Note that the artist has given each tile in this texture map a

different specular exponent to simulate neighboring tiles of disparate material properties. Being able to

simply paint the quantity k into a texture map channel is both convenient and empowering to an artist.

 Normals in RGB k in alpha

 Albedo in RGB Gloss in alpha

Material maps for per-pixel specular exponent shader

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 10

 The third texture we will use in this shader is a function lookup which will be used to raise N·H

to the k power via a dependent texture read. Each row of this 2D texture can be thought of as an

exponential function which is selected by the alpha channel of the Normal / k map shown above. In this

way, we are able to select different specular exponents for different regions within the same texture

map. For our purposes, we have found a dynamic range of 10 to 120 is reasonable for k:

th

1.0

10.0

120.0

k

N·H

0.0
 Function look-up map for per-pixel specular exponent shader

 In the shader code below, we sample the tangent space normal from the first map and dot this

quantity with interpolated L and H vectors. N·H is stored in the red channel of r2 and the specular

exponent is moved into the green channel using write masks. This 2D texture coordinate is then used to

access the function look-up map shown above via a dependent read. The instructions in the second

phase composite the results into a final color.

 ps.1.4
 texld r1, t0 ; Normal
 texld r2, t1 ; Cubic Normalized Tangent Space Light Direction
 texcrd r3.rgb, t2 ; Tangent Space Halfangle vector

 dp3_sat r5.xyz, r1_bx2, r2_bx2 ; N.L
 dp3_sat r2.xyz, r1_bx2, r3 ; N.H
 mov r2.y, r1.a ; K = Specular Exponent

 phase
 texld r0, t0 ; Base
 texld r3, r2 ; Specular NHxK map

 add r4.rgb, r5, c7 ; += ambient
 mul r0.rgb, r0, r4 ; base * (ambient + N.L))
 +mul_x2 r0.a, r0.a, r3.b ; Gloss map * specular highlight
 add r0.rgb, r0, r0.a ; (base*(ambient+N.L)) + (Gloss*Highlight)

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 11

 Output from this shader is shown on the right side of the figure below. The left side shows the

result of using the same normal map and a constant specular exponent for the whole object. The image

on the right shows how different materials can be represented with the same map by migrating material

calculations to the pixel level.

Constant specular power and per-pixel specular power using ps.1.4

Human Skin

The skin shader used in the Rachel demo uses nearly the maximum number of instructions to

implement per-pixel diffuse and specular illumination for two lights. The shader computes the

following equation to calculate the lighting per-pixel.

I = C (I + I (N · L) + I (N · L)) + gI (I |N · H | + I |N · H |)
k k

0 1 d0 0RGB base a d0 d1 s d1 1

where Cbase is the base color sampled from a texture map

Ia is the light source ambient coefficient

Idn are light source diffuse coefficients

Is is the light source specular coefficient

N is the normal to the surface

L is the light vector

H is the halfway vector

g is the gloss factor

k is the specular exponent.

Chapter 3 - Pixel Shading with DirectX 8.1 and the ATI RADEON� 8500

3 - 12

A per-pixel variable specular exponent similar to the preceding example is used in this shader

but is further improved by using a dependent projective texture fetch as a way to perform a division

[Vlachos02].

 ps.1.4
 texld r0, t0
 texcrd r1.xyz, t3 // tangent space H0
 texcrd r2.xyz, t5 // tangent space H1
 dp3_sat r4.r, r0_bx2, r1 // N·H0
 dp3_sat r4.b, r1, r1 // H0·H0
 mul_sat r4.g, r4.b, c0.a // c0.a*(H0·H0)
 mul r4.r, r4.r, r4.r // (N·H0)

2
 dp3_sat r5.r, r0_bx2, r2 // N·H1
 dp3_sat r5.b, r2, r2 // H1·H1
 mul_sat r5.g, r5.b, c0.a // c0.a*(H1·H1)
 mul r5.r, r5.r, r5.r // (N·H1)

2
 phase
 texld r0, t0 // fetch again to get spec map to use as gloss
 texld r1, t0 // Cbase
 texld r2, t2 // tangent space L0
 texld r3, t4 // tangent space L1
 texld r4, r4_dz // ((N·H)2 /(H·H))k @= |N·H|k
 texld r5, r5_dz // ((N·H)2 /(H·H))k @= |N·H|k
 dp3_sat r2.r, r2_bx2, r0_bx2 // N·L0
 +mul r2.a, r0.a, r4.r // g * |N·H0|

k <- Gloss specular highlight 0
 dp3_sat r3.r, r3_bx2, r0_bx2 // N·L1
 +mul r3.a, r0.a, r5.r // g * |N·H1|

k <- Gloss specular highlight 1
 mul r0.rgb, r2.a, c2 // Id0*g*|N·H0|

k
 mad_x2 r0.rgb, r3.a, c3, r0 // Id0*g*|N·H0|

k + Id1*g*|N·H1|
k

 mad r2.rgb, r2.r, c2, c1 // Ia + Id0*(N·L)
 mad r2.rgb, r3.r, c3, r2 // Ia + Id0*(N·L) + Id1*(N·L)
 mul r0.rgb, r0, c4 // Is * (Id0*g*|N·H0|

k + Id1*g*|N·H1|
k)

 mad_x2_sat r0.rgb, r2, r1, r0 // Cbase * (Ia + Id0*(N·L) + Id1*(N·L))
 // + Id0*g*|N·H0|

k + Id1*g*|N·H1|
k

 +mov r0.a, c0.z

SIGGRAPH 2002 - State of the Art in Hardware Shading Course

3 - 13

Conclusion

We�ve outlined the behavior of the 1.4 pixel shading model which is available in DirectX 8.1

and is implemented by the ATI RADEON� 8500. Three key examples have been presented to

illustrate the properties of this programming model and the effects that can be achieved today on

commodity graphics hardware.

References

[Praun01] Emil Praun, Hugues Hoppe, Matthew Webb and Adam Finkelstein, �Real-Time Hatching.�

Proceedings of SIGGRAPH 2001, pages 579-584.

[Vlachos02] Alex Vlachos, John Isidoro and Christopher Oat, �Textures as Lookup Tables for Per-Pixel

Lighting Computations,� in Game Programming Gems 3, Dante Treglia editor, 2002

