Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Hardware Shading with
EXT vertex shader and
ATl fragnent shader

Evan Hart Jason L. Mitchell
EHart@ati.com JasonM @ati.com

3D Application Research Group
ATI Research

Introduction

Programmable shaders are a powerful way to describe the interaction of surfaces with light, as
evidenced by the success of programmable shading models like RenderMan and others. As graphics
hardware evolves beyond the traditional “fixed function” pipeline, hardware designers are looking to
programmable models to empower the next generation of real-time content. To allow content to
interface with programmabl e hardware, we have designed shader extensions to OpenGL which operate
at the vertex and fragment levels. In these notes, we will outline the behavior of the
EXT_vertex_shader and ATl _fragnment _shader extensions as examples of programmable
interfaces designed for real-time graphics. While we will use the syntax of these two extensions
throughout these notes, we will discuss several issues of general interest to anyone who is specifying,
implementing or using a programmable 3D graphics APl in a production environment.

While we expect many programmers to write to these extensions directly in C, we also expect to
see a set of metaprogramming tools made available to drive the models. The EXT_vert ex_shader AP,
for example, turns out to look very much like the intermediate representation in the Stanford Real-time
Shading Language [Proudfoot01]. By providing some support for subroutines, EXT_vert ex_shader
also alows an application to separate out light, surface and atmospheric shaders, which has proven to be
useful in other models like Cook’ s Shade Trees [Cook84] and Pixar’s RenderMan [Upstill88]
[Hanrahan90]. Although EXT_vertex_shader and ATI _f ragment _shader are currently separate
extensions, they are designed to have similar interfaces and to eventually be merged into one model.

Goalsof theEXT_vert ex_shader and ATl _fragnent _shader extensions:

» Enable programmability in the graphics pipeline
» Easily migrate to future hardware designs
* Work together in aclean and intuitive way
» Have enough generality to be implemented on awide range of hardware, thus
encouraging multi-vendor interest and support
» Address complexity issues by providing some subroutine and looping capabilities
* Free apps from the responsibility for managing constant and variable storage space
* Prevent app from having to re-implement a part of the pipe that it isn’t modifying
o0 Shader library provides pluggable functionality for lighting, texture coordinate
generation, etc.

mailto:EHart@ati.com
mailto:JasonM@ati.com

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Vertex operations with EXT _vert ex_shader

Like other programmable 3D graphics
APIs, EXT vertex_shader alows substitution of
aflexible per-vertex programming model into the

Vertex Array 0
Vertex Array 1
Vertex Array n

graphics pipeline in place of the traditional fixed- Primitive Assembly
function pipeline (Figure 1). Thiscan betoggled ‘
so that primitives which do not require the {Q

additional flexibility of the programmable
pipeline can use the existing fixed functionality.

PN Triangle Tessellation

4{%7

Asshown in Figure 1, vertex shading

happens after higher-order surface tessellation. EXT_vertex_shader

This allows the shading operations to operate on _— |
the “high frequency” vertex data coming out of a ——

tessellation stage such as a Curved PN Triangle Clipping
implementation [Vlachos01]. In the case of —) —
vertex Phong lighting computations, this resultsin

more well-defined specular highlights. Triangle Setup

4{%7

The vertex shading stage feeds into the
clipping stage, which applies frustum and user
clip planesin clip space. These clipped triangles ATI_fragment_shader
are then passed to the triangle setup stage,
followed by rasterization using
ATl _fragnent _shader.

Figure 1 EXT_vertex_shader and
ATl _fragment _shader in the graphics pipelin

Creating a shader with EXT_vert ex_shader

IN EXT_vert ex_shader, creation of avertex shader is done in the usual OpenGL manner, with
the implementation generating a number of shader names that an application can bind for use or delete
when no longer required:

ui nt gl GenVert exShader seEXT (G.ui nt range)
voi d gl Bi ndVert exShader EXT (GLuint id)
voi d gl Del et eVert exShader EXT(GLui nt id)

Specification of avertex shader is bracketed by callsto gl Begi nVer t exShader EXT() and
gl EndVer t exShader EXT() , much like adisplay list:

gl Bi ndVert exShader EXT(si npl eVert exShader) ;
gl Begi nVert exShader EXT() ;
/1l declare variables, instructions etc

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001
gl EndVer t exShader EXT() ;

When the application wishes to use a given vertex shader in place of the fixed function
transformation pipeline, the shader is bound, and programmable shading is enabled as follows:

gl Bi ndVert exShader ATI (si npl eVert exShader) ;
gl Enabl e(G._VERTEX_ SHADER EXT) ;

To switch back to the fixed function transformation pipeline, the application disables vertex
shading:
gl D sabl e(GL_VERTEX_SHADER EXT);
Simple Vertex Shader

Before describing the instruction set, storage types and other aspects of the programming model,
we show a simple shader to give a sense of its structure:

/llnitialize global paraneter bindings

Model view = gl Bi ndPar anet er EXT (GL_MODELVI EW MATRI X) ;
Proj ection = gl Bi ndParanet er EXT (G._PRQIECTI ON_NMATRI X) ;
Vert ex = gl Bi ndPar anet er EXT (GL_CURRENT_VERTEX_ EXT) ;
Nor mal = gl Bi ndPar anet er EXT (GL_CURRENT_NORVMAL_EXT) ;

gl Bi ndVer t exShader EXT (xform; //a sinple diffuse shader
gl Begi nVer t exShader EXT ();
{
float direction[4] = { 0.57735f, 0.57735f, 0.57735f, 0.0f}; //direction vector (1,1,1) nornalized
float material[4] = { 1.00000f, 1.00000f, 0.00000f, 1.0f}; //yellow diffuse naterial
float ambient[4] = { 0.20000f, 0.20000f, 0.20000f, 0.0f}; //scene anbient light intensity
GLuint lightDirection;
GLuint diffMaterial;
GLui nt sceneAnbi ent ;
GLui nt eyeVertex;
GLuint clipVertex;
GLui nt eyeNor mal ;
GLuint intensity;

/'l generate |ocal values

eyeVertex = gl GenSynbol sEXT (G._VECTOR_EXT, GL_LOCAL_EXT, G__FULL_RANGE EXT, 1);
clipVertex = gl GenSynbol sEXT (G._VECTOR _EXT, GL_LOCAL_EXT, GL_FULL_RANGE_EXT, 1);
eyeNormal = gl GenSynbol sEXT (GL_VECTOR_EXT, GL_LOCAL_EXT, GL_FULL_RANGE_EXT, 1);
intensity = gl GenSynbol sEXT (G._VECTOR _EXT, G._LOCAL_EXT, G._FULL_RANGE EXT, 1);

/'l generate constant val ues

lightDirection = gl GenSynbol SEXT (GL_VECTOR _EXT, GL_LOCAL_CONSTANT_EXT, GL_FULL_RANGE_EXT, 1);
di ffMaterial gl GenSynbol sEXT (GL_VECTOR_EXT, GL_LOCAL_CONSTANT_EXT, G._FULL_RANGE EXT, 1);
sceneAnbi ent gl GenSynbol sEXT (G._VECTOR_EXT, GL_LOCAL_CONSTANT_EXT, GL_FULL_RANGE EXT, 1);

gl Set Local Constant EXT (lightDirection, G._FLOAT, direction);
gl Set Local Const ant EXT (diffMaterial, GL_FLOAT, naterial);
gl Set Local Const ant EXT (sceneAnbi ent, GL_FLOAT, anbient);

gl Shader Op2EXT (G._OP_MJLTI PLY_MATRI X_EXT, eyeVertex, Mbdelview, Vertex);
gl Shader Op2EXT (G._OP_MJLTI PLY_MATRI X_EXT, G._QUTPUT_VERTEX EXT, Projection, eyeVertex);

/'l assunes no scaling/shearing in nodel view matrix

gl Shader Op2EXT (G._OP_MJLTI PLY_MATRI X_EXT, eyeNornal, Mbdel view, Normal);

gl Shader Op2EXT (G._OP_DOT3_EXT, intensity, lightDirection, eyeNormal);

gl Shader Op2EXT (GL_OP_ADD EXT, intensity, sceneAnbient, intensity);

gl Shader Op2EXT (GL_OP_MJL_EXT, G._OUTPUT_COLORO_EXT, diffMaterial, intensity);

}
gl EndVer t exShader EXT () ;

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Vertex Shader Structure

The only operations allowed between gl Begi nVer t exShader EXT() and
gl EndVer t exShader EXT() are gl GenSynbol sEXT(), gl Set Shader St at eEXT() , gl Shader QoxEXT() ,
gl Swi zzI eEXT() and gl Wit eMaskEXT() .

Asyou can probably infer from the sample code above, EXT_vert ex_shader isa4D vector
programming language. We will now describe the use of local constants and variables in the language.

Local Constants and Variables

Like any high level language, a shader written using EXT_vert ex_shader must declareits
constants and variables. Thisis done with the gl GenSynbol sEXT() entrypoint:

ui nt gl GenSynbol sATI (enum dat at ype, enum st oragetype, enumrange, uint conponents)

Each constant or variable can be of datatype G._SCALAR ATl , (4D) GL_VECTOR_ATI or (4x4)
GL_MATRI X_ATI and can have a storage type of GL_VARI ANT_ATI , GL_| NVARI ANT_ATI ,
GL_LOCAL_CONSTANT_ATI or GL_LOCAL_ATI . Wewill discuss variants later—for now, we will focus on
local variables and constants. The simple diffuse lighting shader above creates 4 local vector variables
and 3 local vector constants. The four variables are not initialized, while the three constants are
initialized using the gl Set Local Const ant EXT() entrypoint:

A Set Local Constant EXT (lightDirection, G._FLOAT, direction);
gl Set Local Const ant EXT (di ffMaterial, GL_FLOAT, material);
gl Set Local Const ant EXT (sceneAmbi ent, G._FLOAT, anbient);

After initialization, the shader is free to read from any of these constants, though it may not write
to them. Reading from either of the declared variables without first writing to it will result in failed
creation of the shader and gl EndVer t exShader EXT() will return an error.

In addition to the ability to declare generic constants and variables, a vertex shader can access
useful OpenGL state by binding that state. Thisis convenient for applications that mix use of the fixed-
function vertex pipeline with use of EXT_vert ex_shader or just asasimple means for managing
common quantities such as a modelview matrix.

Accessing OpenGL State

OpenGL state must be bound for use by a shader. The callsto bind state all return ahandle
similar to the ones gained viagl GenSymbol sEXT() . There are special entrypoints for binding state
related to lighting, materials, texgen and texture contexts since these are contextual states. OpenGL state
that is contextual is accessed through these four special context-sensitive parameter binding entrypoints
in order to utilize the existing enums and prevent an enum explosion.

ui nt gl Bi ndPar anet er EXT (enum val ue)

ui nt gl Bi ndLi ght Par anet er EXT (enum | i ght, enum val ue)
ui nt gl Bi ndMat eri al Par anet er EXT (enum face, enum val ue)
ui nt gl Bi ndTexGenPar anmet er EXT (enum coord, enum val ue)
ui nt gl Bi ndText ur ePar amet er EXT (enum coord, enum val ue)

Instruction set

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader

Updat ed Septenmber 11, 2001

There are 25 opcodes available in EXT_vert ex_shader, asshown in Table 1 below:

OP_| NDEX_EXT OP_NEGATE_EXT | OP_MOV_EXT

OP_MULTI PLY_MATRI X_EXT | OP_DOT3_EXT OP_DOT4_EXT
OP_MUL_EXT OP_ADD_EXT OP_MADD_EXT
OP_FRAC_EXT oP_MAX_EXT OP_M N_EXT
OP_SET_GE_EXT OP_SET_LT_EXT | OP_CLAWP_EXT
OP_FLOOR_EXT OP_ROUND_EXT OP_EXP_BASE_2_EXT
OP_LOG BASE_2_EXT OP_POWER_EXT OP_REC| P_EXT

OP_REC| P_SQRT_EXT OP_SUB_EXT OP_CROSS_PRODUCT_EXT

Tablel- EXT_vertex_shader opcodes

As shown in the sample shader above, different operations have different numbers of arguments.
Thisis handled in the usual OpenGL manner with the gl Shader QpxEXT() entrypoi nt s:

ui nt
ui nt
ui nt

gl Shader Op1EXT (enum op,
gl Shader Op2EXT (enum op,
gl Shader OQp3EXT (enum op,

res,
res,
res,

ui nt argl)
uint argl,
uint argl,

uint arg2)

uint arg2, uint arg3)

Micro Operations versus Instructions

Asin any programmable processor, a single instruction may translate into some number of micro
operations, clock cycles etc. Micro op counts are implementation details that we expect to vary between
vendors and generations of hardware, much like they do for CPUs.

Argument Swizzling and Modification

Components of arguments may be individually swizzled and/or negated. Literal 1'sand 0's may
also be substituted for any component. Thisis expressed with the glSwizzleEXT() entrypoint. For
example, to replicate the X component of an argument across all 4 components, one would use the
following syntax:
in,

gl Swi zzIl eEXT (res, X_EXT, X EXT, X EXT, X EXT);

To negate only the X component, one would use:
in,

gl Swi zzIl eEXT (res, NEGATI VE_X_EXT, Y_EXT, Z_EXT, WEXT);

All 11 argument modifiers are shown in Table 2 below. Any combination of these arguments
may be passed to gl Swi zzI eEXT() .

X_EXT Y EXT Z_EXT W EXT
NEGATI VE_X_EXT | NEGATI VE_Y_EXT | NEGATI VE_Z EXT | NEGATI VE_W EXT
ZERO_EXT ONE_EXT NEGATI VE_ONE_EXT

Table 2 — Argument modifiers for EXT_vert ex_shader

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Write masks

It is possible to mask writes to destination registers using the gl Wi t eMaskEXT() entrypoint.
Only GL_TRUE or GL_FALSE can be passed as the last four parametersto gl Wi t eMaskEXT() . For
example, to write only to the X component of the destination, use the following syntax:

gl WiteMaskATlI (res, in, GL_TRUE, G._FALSE, GL_FALSE, G._FALSE);
Swizzles and Write Masks as Free Instructions

Although the swizzle and write mask operations are expressed as discrete operations, we expect
implementations of EXT_vert ex_shader to collapse them into what amount to modifiers to the
operations performed by acall to gl Shader CQpxEXT() . For example, we expect the following kind of
call sequence to collapse into one hardware instruction, making the swizzles and write masks “free”:

gl Swi zzl eEXT (swargl , argl, ...);
gl Swi zzl eEXT (swargl , argl, ...);
gl Swi zzl eEXT (swargl , argl, ...);

gl Shader Op3EXT (MAD, wi nput, sargl, sarg2, sarg3);
gl WiteMaskEXT (output, w nput);

After exploring ways to express these swizzles and write masks in the gl Shader QoxEXT()
entrypoints, we determined that doing so would result in absurdly verbose entrypoints as well as
enumerant explosion. Asaresult, we settled on the approach described above. Thisis manageable for
the C programmer and will surely be expressed very concisely in the metaprogramming tools that will
layer on top of EXT_vert ex_shader.

Variants: Custom Vertex Attributes

The simple shader above uses traditional OpenGL inputs with a defined semantic meaning;
specifically vertex position and normal. Here, we will explain how we alow the application to specify
custom vertex attributes viaimmediate mode and vertex array interfaces. Earlier, we showed how
gl GenSynbol sEXT() can be used to declare local constants and variables. The same entrypoint is aso
used to declare custom vertex attributes, which we call variants. To declare asingle full-range vector
variant:

var1l = gl GenSynbol SEXT (GL_VECTOR EXT, GL_VARI ANT_EXT, GL_FULL_RANGE_EXT, 1);

If rendering using immediate mode, the application can specify the values of this variant for each
vertex using gl Vari ant { bsi fd ubusui } vEXT() . If rendering with vertex arrays, the application can
specify the values of the variant in the following manner:

gl Vari ant Poi nter EXT (varl, stride, type, addr)
gl Enabl eVari ant Cl i ent St at eEXT (var1l);

/'l render

gl Di sabl evari ant d i ent St at eEXT (var1l)

The variant var 1 can be read in the vertex shader, but may not be written. It can be thought of as
another interpolated quantity like position or normal, but with no inherent semantic meaning.

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001
Data Types, Normalized Range and Full Range

When specifying data to OpenGL, the data may be defined to be atuple of any of the following
types: GL_DOUBLE, GL_FLOAT, GL_BYTE, GL_UNSI GNED_BYTE, GL_SHORT, GL_UNSI GNED_SHORT, GL_I NT
or G._UNSI GNED_I NT. Clearly, avariant may also take any of these types. For variant types other than
GL_DOUBLE or GL_FLQAT, it is convenient to have the flexibility to specify whether the datais intended
to represent arange from -1.0 to 1.0 or the native range of the data type (i.e. -128 to 127 for GL_BYTE).
For example, an application using the constant store as a palette of matrices for character animation
might use a number of full-range ubyte variants to index into the palette. In another situation, an
application may realize storage and bandwidth savings by quantizing a normalized vector component of
avertex. Inthis case, the application would use a normalized-range byte variant. When reading from
the normalized variant in the vertex shader, the data can be assumed to be in the range of -1.0 to 1.0.
Thisis analogous to the way that OpenGL currently handles the differences between colors, texture
coordinates, vertices and normals.

Vertex Shader Outputs

The contents of special output registers constitute the output of the vertex shader. The
EXT_vert ex_shader extension defines a set of output registers that may be written into by the vertex
shader, but may not be read. These include the clip-space position of the vertex (4D), two 4D colors, a
scalar fog factor and some number of 4D texture coordinates. (Point size for point sprites, and any other
specia vertex shader outputs are specified in their own separate extensions.) Any output registers that
are not written to by the vertex shader code are undefined and should not be consumed in the fragment
shader. Asan example, an implementation that supports six textures could consume the contents of the
following 10 output registers in the fragment shader:

OUTPUT_VERTEX_EXT OUTPUT_FOG_EXT
OUTPUT_COLORO_EXT OUTPUT_COLORL_EXT
OUTPUT_TEXTURE_COORDO_EXT | OUTPUT_TEXTURE_COORDL_EXT
OUTPUT_TEXTURE_COORD2_EXT | OUTPUT_TEXTURE_COORD3_EXT
OUTPUT_TEXTURE_COORD4_EXT | OUTPUT_TEXTURE_COORD5_EXT

Table 3 - Vertex Shader Output Registers

For example, the simple shader illustrated earlier transforms the input position directly into the
output data register:

gl Shader Op2EXT (G._OP_MULTI PLY_MATRI X_EXT, GL_OUTPUT_VERTEX_ EXT,
Projection, eyeVertex);

In performing the lighting calcul ations, the shader also outputs a simple diffuse color:

gl Shader Op2EXT (GL_OP_MJL_EXT, G._OUTPUT_COLORO_EXT, diffMaterial,
intensity);

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Clip Planes

Asshown in Figure 1, the output of the vertex shader isin clip-space. This means that frustum
and user clip planes can be applied to primitives whose vertices are in this space since eye-space is now
undefined. The algorithm is the same, except the half-space is now defined as:

[Xaiip]
[P1pP2P3Pa P [Yaip] 20

[Zaip]

[Woaiip)

Where P is the projection matrix and Xciip, Yelip, Zdip, @Nd Wgip are the clip-space vertex
coordinates. When P is singular, the result of clipping is undefined.

Case Study: Using a subroutine for lighting
The functionality illustrated in the sample shader above can be smplified further by the use of a

subroutine to compartmentalize the lighting calculations. The code below illustrates
EXT_ver t ex_shader ’s ability to support inline subroutines and unrolled loops.

/1 Function to conpute diffuse illumnation for a point |ight
/1
/1 This takes the eye-space nornal, vertex, and |ight position.

/1 1t conputes the intensity of the light, nodulates by the Iight color,

/1 and adds to the accunul ated intensity

/1

NN NN NNy

void PointDi ffuse(GLuint light, G.uint normal, G.uint vertex, GLuint color,
GLuint intensity)

{
GLuint lightDirection;
GLuint lightlntensity
//generate | ocal val ues
lightDirection = gl GenSynbol sEXT(GL_VECTOR EXT, G._LOCAL_EXT, G._FULL_RANGE_EXT, 1);
Lightlntensity = gl GenSynbol SEXT(GL_SCALAR EXT, GL_LOCAL_EXT, GL_FULL_RANGE_EXT, 1);
gl Shader Op2EXT(GL_OP_SUBTRACT_EXT, lightDirection, light, vertex);
gl Shader Op2EXT(GL_OP_DOT3_EXT, lightintensity, light, normal);
gl Shader Op3EXT(G._OP_MADD EXT, intensity, lightlntensity, color, intensity);
}
voi d DefineSinpl ebDi ffuseShader(int nunLights, G.uint *lightPos, GCLuint *lightColor, . . .)
{

gl Begi nVert exShader EXT() ;
/] Setup | ocal variables

/] Transf orm conponents to eye-space
)/.Sei ambi ent |ight val ue
for (int i =0; i < nunLights; i++)

PointDi ffuse(lightPos[i], eyeNormal, eyeVertex, lightColor[i], SigmaLight);
}

/I NModul ate light with material
/] Qut put components

QI iEndVertexShader EXT();

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Fragment operations with ATl _fragnent shader

Likeits counterpart EXT_vert ex_shader , the ATI _fragment _shader extension providesa
means for inserting a flexible per-pixel programming model into the graphics pipeline in place of the
traditional multitexture pipeline (Figure 1). This can be toggled so that primitives which do not require
the additional flexibility of the programmable pipeline can use the existing fixed functionality provided
by extensions such asARB_nul tit ext ure, ARB_t ext ure_env_conbi ne, EXT_t ext ure_env_dot 3 and
others.

The ATI _fragnent _shader extension provides avery general means of expressing fragment
color blending and dependent texture address modification. The programming model is a register-based
model and the C syntax is similar to the EXT_vert ex_shader extension described above. The number
of instructions, texture lookups, read/write registers and constants is queryable, to provide easy
migration between hardware generations.

One advantageous property of the model is a unified instruction set used throughout the shader.
That is, the same instructions are provided when operating on address or color data. In fact, the
distinction between address and color data becomes somewhat meaninglessin this setting. Additionaly,
this unified approach gives application programmers a single instruction set to learn and eliminates the
awkward CISC address shading “modes’ found in other models. It really is possible to “just do some
math ops and look the result up in atexture.”

Creating a shader with ATl _fragnment _shader

AsinEXT_vertex_shader above, creation of afragment shader is done in the usual OpenGL
manner, with the implementation generating a number of shader names that an application can bind for
use or delete when no longer required:

ui nt gl GenFragnment Shader sATI (GLui nt range)
voi d gl Bi ndFragnment Shader ATI (GLui nt id)
voi d gl Del et eFr agnent Shader ATI (GLui nt id)

As above, specification of afragment shader is bracketed by callsto
gl Begi nFr agnment Shader ATI () and gl EndFr agnment Shader ATI () :

gl Bi ndFr agnment Shader ATI (si npl eFr agnent Shader) ;
gl Begi nFr agnent Shader ATI () ;

/1l declare variables, instructions etc

gl EndFr agnent Shader ATI () ;

When the application wishes to use a given fragment shader in place of the multitexture pipeline,
the shader is bound and programmable shading is enabled as follows:

gl Bi ndFr agnment Shader ATI (si npl eFr agnent Shader) ;
gl Enabl e(GL_FRAGVENT_SHADER_ATI) ;

To switch back to the multitexture pipeline, the application disables fragment shaders:

gl Di sabl e(GL_FRAGVENT_SHADER ATI) ;

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Sample Fragment Shader

/| Base/Bunmp 2D coords in tex coord O

/'l Tangent space half angle in 3D tex coord 2

/'l Tangent space light vector in 3D tex coord 5

/1 Light's Diffuse color set in constant O and specular color in constant 1

si npl eFr agnent Shader = gl GenFr agnment Shader sATI (1) ;

gl Bi ndFr agnent Shader ATl (si npl eFr agnment Shader) ;

gl Begi nFr agment Shader ATI () ;
gl Sanpl eMapATlI (GL_REG 0_ATI, G._TEXTUREO_ARB, GL_SW ZZLE STQ ATI);// Sanple the N map (k in al pha)
gl Sanpl eMapATl (GL_REG 2_ATI, G._TEXTURE2_ARB, GL_SW ZZLE STR ATl);// Nornmalize Hw th a cube map

/1 N.H

gl Col or Fragment Op2ATI (G._DOT3_ATlI, G._REG 2_ATlI, G._RED BIT_ATI, G._NONE,

GL_REG 0_ATI, G._NONE, GL_BI AS BIT_ATI| GL_2X BI T_ATI,
GL_REG 2_ATI, G._NONE, GL_BI AS_BIT_ATI | GL_2X_BI T_ATIl);
/1 grab the k channel

gl Col or Fragment Op1ATI (G._MOV_ATI, GL_GREEN BI T_ATI, GL_NONE,

> 2_ATI,
“ATI, GL_ALPHA, GL_NONE);

/'l End of first pass

/| Dependent texture reads to raise (N.H to k power

gl Sanpl eMapATI (GL_REG 1_ATl, G._TEXTUREO_ARB, GL_SW ZZLE_STQ ATI); // base

gl Sanpl eMapATlI (GL_REG 3_ATl, G._REG 2_ATl, G._SWZZLE STR ATI); /1 (N H "k

gl Sanpl eMapATlI (GL_REG 2_ATl, GL_TEXTURE1_ARB, G._SWZZLE_STR ATI); // Normalize L

/1 N L
gl Col or Fragnent Op2ATI (G._DOT3_ATI, G._REG O_ATI, G._NONE, GL_SATURATE_ BI T_ATI,
GL_REG O_ATI, GL_NONE, GL_BIAS_BI T_ATI| GL_2X_BI T_ATI,
GL_REG 2 _ATlI, GL_NONE, GL_BIAS BIT_ATI|G_2X BIT_ATI);
/'l ((N.H"k) * gloss)
gl Col or Fragnent Op2ATI (GL_MJL_ATI, GL_REG 2_ATl, GL_NONE, G._NONE,
GL_REG 3 _ATlI, GL_NONE, GL_NONE,
GL_REG 1_ATl, GL_ALPHA, GL_NONE);

/1 (N.L) * diffuse_col or

gl Col or Fr agment Op2ATl (GL_MJL_ATI, GL_REG 0_ATI, GL_NONE, GL_NONE,
GL_REG 0_ATI, GL_NONE, GL_NONE,
GL_CON O_ATI, GL_NONE, GL_NONE);

/'l ((N.H"k) * gloss) * specul ar_col or

gl Col or Fr agment Op2ATlI (GL_MJL_ATI, GL_REG 2 _ATl, GL_NONE, GL_NONE,
GL_REG 2_ATl, GL_NONE, GL_NONE,
GL_CON_1_ATl, GL_NONE, G._NONE);

/'l Result = (N. L) * diffuse_color * base + ((N H)~k) * gloss * specul ar_col or)
gl Col or Fragment Op3ATI (G._MAD ATI, GL_REG 0_ATI, GL_NONE, G._SATURATE BI T_ATI,
GL_REG O0_ATI, GL_NONE, GL_NONE,
GL_REG 1_ATI, GL_NONE, GL_NONE,
GL_REG 2_ATI, G._NONE, GL_NONE);
gl EndFr agnent Shader ATI () ;

Fragment Shader Structure

The only operations allowed between gl Begi nFr agment Shader ATI () and
gl EndFr agnment Shader ATI () are gl PassTexCoor dATI (), gl Sanpl eMapATI (),
gl Col or Fragment OpxATI (), gl Al phaFr agnent OpxATI () and gl Set Fr agment Shader Const ant ATI () .
The gl Set Fr agment Shader Const ant ATI () entrypoint may also be used outside of the fragment shader,
to effectively specify constant parametersto the shader. Thisiswhat is expected to be done in the
sample shader above, as the shader assumes that the diffuse and specular colors of the given light source
are stored in constants zero and one when the shader executes.

10

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Registers, Constants and Interpolators

Although the creation and management of fragment shaders is the same as vertex shaders, we
have chosen not to abstract the constant and register management like we did in EXT_vert ex_shader .
This is because we expect hardware implementations to have far fewer registers and constants available
at the fragment level than at the vertex level, necessitating more of a*hand-tuned” approach by content
developers. An implementation will support some number of read-only constants and read-write
registers. The number of constants and registers supported is queryable by passing
NUM_FRAGVENT_REG STERS_ATI Or NUM_FRAGVENT_CONSTANTS_ATI to gl Get (). The primary and
secondary colors are also available as read-only interpolated data.

Constants may be declared within a shader by making up to NUM_FRAGVENT _CONSTANTS_ATI
callsto gl Set Fragment Shader Const ant ATI () immediately after gl Begi nFr agnent Shader () . Inthis
case, the constants override the constants that are part of the global OpenGL state during the time that
the shader is bound. Constants may be read at any point in the fragment shader, even if they are not
declared within the shader. When not declared within the shader, the constants can be thought of as
parameters to the shader. In the sample shader above, the application is expected to set constant zero
and one according to the properties of the light causing the surface bumps.

Texture Sampling and Coordinate Routing

Prior to performing arithmetic instructions in the fragment shader, maps may be sampled and
texture coordinates may be routed into registers. These operations are accomplished with the
gl PassTexCoor dATI () and gl Sanpl eMapATI () operations.

Instruction Set

ATl _fragment _shader provides for multiple shading passes separated by texture sampling.
(Thisis not to be confused with multi-pass rendering, as the frame buffer is not updated between
passes.) The total number of shader passes provided by an implementation is a queryable value
accessible through glGet. Additionally, the maximum number of operations allowed during a passis also
queryable. The following entrypoints are used to specify arithmetic instructions within the pixel shader.

voi d gl Col or Fragnment QpxATI (enum op, uint dst, wuint dst_nask, uint dst_scale
uint argl, uint argl_repl, uint argl_nod

)

voi d gl Al phaFragnment QpxATI (enum op, uint dst, wuint dst_nask, uint dst_scale
uint argl, uint argl_repl, uint argl_nod

op canbeoneof GL_ADD ATI, GL_SUB ATI, GL_MJL_ATI, GL_MAD ATI, GL_LERP_ATI,

GL_MOV_ATI, GL_CND ATI, GL_CNDO_ATI, GL_DOT3_ATI, GL_DOT4_ATlI, GL_FRAC ATl or
GL_DOT2_ADD ATI .

dst canbeoneof GL_REG 0 ATI, GL_REG 1 ATI, GL_REG 2 ATl . . . GL_REG N-1_ATI where Nis
GL_NUM FRAGVENT REG STERS

11

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001
dst_mask can be any bitwise or'ing of G._RED BI T_ATI, GL_GREEN BI T_ATl, GL_BLUE BI T_ATI or
GL_ALPHA_BI T_ATI . For no masking, Use GL_NONE_ATI .

dst_scale can be aL_sATURATE_ATI optionally bitwise or’d with one of G._2x BI T_ATI, G._4X BI T_ATI,
GL_8X BIT_ATI, G._HALF BIT_ATI, G._QUARTER BI T_ATI or GL_EI GHTH BI T_ATI. For no saturation or
scaling, Use GL_NONE_ATI .

argn canbeoneof GL_REG 0_ATI, GL_REG 1_ATI, GL_REG 2_ATI . . . GL_REG N-1_ATI,
GL_CON O _ATI, GL_CON 1 _ATI, GL_CON 2 ATl . . . GL_CON M1 _ATI, G._PRI MARYCOLOR or
GL_SECONARYCOLOR ATI .

where N is GL_NUM FRAGVENT_REG STERS_ATI
where Mis GL_NUM FRAGVENT CONSTANTS_ATI

argn_repl canbeoneof G._RED ATI, GL_GREEN ATl, GL_BLUE_ATI, GL_ALPHA ATI or GL_NONE_ATI

argn_mod can be c._cowp or any bitwise or’ing of GL_NEGATE_BI T_ATI, GL_BI AS_BI T_ATI or
GL_2X_BI T_ATI . For no source modifications, use GL_NONE.

coord can be any integer from 0 to G._MAX_TEXTURES-1

map can be any integer from 0 to GL_MAX_TEXTURES-1

Argument Replication and Modification

As noted above, there are four mutually exclusive options for channel replication of arguments.
Replication isindependent of other argument modification.

AlphaReplicate G._ALPHA Replicates the alpha channel to al colors
Red Replicate GL_RED Replicates the red channel to all colors
Green Replicate G-_GREEN Replicates the green channel to all colors
Blue Replicate G-_BLUE Replicates the blue channel to all colors

As noted above, there are four additional options for argument modification. Thisthese may
happen independent of any replication of the data.

Complement G._COW_BI T_ATI Complementsy = 1.0 - X

Negate GL_NEGATE_BI T_ATlI Negatesthe valuey = -x
Bias GL_BIAS_BI T_ATI Shifts value down by %2, y = (x-0.5)
Scalex 2 G_2X_BI T_ATI Scales input by 2

Note the following rules for combining modifiers:

+ GL_RED, GL_GREEN, G._BLUE and GL_ALPHA are mutually exclusive
« G._cowisexclusive of GL_BI AS, G._NEGATE and GL_2X

When using multiple argument modifiers, GL_BI AS_ATI happensfirst, followed by GL_2X_ATI
and GL_NEGATE_ATI .

12

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001

Write Modifiers

The following destination modifiers are available to modify the results of the calculation before
writing them into the destination register:

G_2X BIT_ATI \Multiply result by 2
G_4X_BIT_ATI |Multiply result by 4
GL_8X_BIT_ATI Multiply result by 8
GL_HALF_ATI Divide result by 2
GL_QUARTER_ATI Divideresult by 4
G._EI GHTH_ATI Divideresult by 8

[GL_SAT_ATI |Saturate (clamp 0..1) |

Naturaly, GL_2X_ATI, GL_4X_ATlI, GL_8X_ ATl, GL_HALF_ATI, GL_QUARTER ATl and
GL_EI GHTH_ATI are mutually exclusive. GL_SAT_ATI may be bitwise or’ d with any of these or used
alone. For no scaling or saturation, use G._NONE_ATI .

Write Masks

A fully general mask may also be applied to writes to the destination register. Any bit
combination of G._RED BI T_ATl, GL_GREEN BI T_ATl, GL_BLUE_BI T_ATI, and GL_ALPHA BI T_ATI
may be used to mask writes to the destination. Note that, as a destination write mask,

GL_RED BI T_ATI | GL_GREEN BI T_ATI | GL_BLUE_BI T_ATI | G._ALPHA_BI T_ATI isfunctionally
equivalent to GL_NONE.

The sample fragment shader above uses write masks to compute a 2D texture coordinate from
the results of two separate calculations. In that case, the red channel of the register iswritten with the
scalar result of N-H and the green channel is set equal to the alpha channel in the bump map. This result
is then used as the texture coordinates in a fetch from an (N-H)* map, allowing k to vary across the
primitive.

Fragment Shader Output

Unlike the EXT_vert ex_shader extension, there is no explicit mechanism for specifying the
output of the fragment shader. The contents of G._REG 0_ATI arethe output of the fragment shader.

Future Directions

Clearly, programmabl e real-time 3D graphicsisthe future. We're just beginning to scratch the
surface of the visual effects that can be achieved with today’ s real-time programmable 3D graphics
models, but we're already looking at extensions to the functionality outlined here.

For example, in many cases, it would be desirable for a vertex shader to perform some operations
on low-polygon pre-tessellated data and perform other operations post-tessellation on the increased
number of vertices. Skinning or tweening the control mesh (or input triangulation in the case of Curved
PN Triangles) of a game character prior to tessellation might be desirable. Lighting and other “high
frequency” calculations would then come after surface tessellation.

13

Hardware Shading with EXT_vert ex_shader and ATl _f ragnent _shader Updat ed Septenmber 11, 2001
Conclusion

WEe' ve outlined the behavior of two programmable shading extensions that have been designed
to be implementable in hardware in the near term. The APIs are designed to attract multivendor support
and to remain in place between multiple generations of hardware implementation. Aside from outlining
the behavior of these extensions, we have provided some insight into what motivated many API design
decisions.

Acknowledgments

A big thanksto our colleagues at ATI for their valuable input, particularly Dan Ginsburg, Dave
Gossdlin, Rick Hammerstone, John Isidoro, Steve Morein and Alex Vlachos.

Online References

EXT_vertex_shader and ATl _f ragment _shader specs are online: http://www.ati.com/online/sdk

14

http://www.ati.com/online/sdk

	Introduction
	Vertex operations with EXT_vertex_shader
	Creating a shader with EXT_vertex_shader
	Simple Vertex Shader
	Vertex Shader Structure
	Local Constants and Variables
	Accessing OpenGL State
	Instruction set
	Argument Swizzling and Modification
	Write masks
	Swizzles and Write Masks as Free Instructions

	Variants: Custom Vertex Attributes
	Vertex Shader Outputs
	Clip Planes
	Case Study: Using a subroutine for lighting

	Fragment operations with ATI_fragment_shader
	Creating a shader with ATI_fragment_shader

	Sample Fragment Shader
	Fragment Shader Structure
	Registers, Constants and Interpolators
	Texture Sampling and Coordinate Routing

	Future Directions
	Conclusion
	Acknowledgments
	Online References

