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Abstract 
While working on a method for supporting real-time procedural 
solid texturing, we developed a general purpose multipass pixel 
shader to generate the Perlin noise function. We implemented 
this algorithm on SGI workstations using accelerated OpenGL 
PixelMap and PixelTransfer operations, achieving a rate of 
2.5 Hz for a 256x256 image. We also implemented the noise 
algorithm on the NVidia  GeForce2 using register combiners. 
Our register combiner implementation required 375 passes, but 
ran at 1.3 Hz. This exercise illustrated a variety of abilities and 
shortcomings of current graphics hardware. The paper concludes 
with an exploration of directions for expanding pixel shading 
hardware to further support iterative multipass pixel-shader 
applications. 
Keywords: Pixel shaders, Perlin noise function, hardware 
shading, register combiners. 

1. Introduction 
The concept of procedural shading is well known [17][19], and 
has found widespread use in graphics [3]. Procedural shading 
computes arbitrary lighting and texture models on demand. 
Procedural textures efficiently support high resolution, non-
repeating features indexed by three-dimensional solid texture 
coordinates. These features were quickly adopted for 
production-quality rendering by the entertainment industry, and 
became a core component of the Renderman Shading 
Language [5]. 
With the acceleration of graphics processors outpacing the 
exponential growth of general processors, there have been 
several recent calls for real-time implementations of procedural 
shaders, e.g. [6][20]. Real-time procedural shading makes 
videogames richer, virtual environments more realistic and 
modeling software more faithful to its final result. Real-time 
procedural texturing, in particular, allows modelers to use solid 
textures to seamlessly simulate sculptures of wood and stone. It 
yields complex animated environments with billowing clouds 
and flickering fires. Designers and users can interactively 
synthesize and investigate new procedural worlds that seem 

vaguely familiar to our own but with features unique to 
themselves. 
Several have researched techniques for supporting procedural 
shading with real-time graphics hardware [15][18][21][22]. 
These shading methods reorganize the architecture of the 
graphics API to suit the needs of procedural shading, applying 
API components to tasks for which they were not originally 
designed [8][11]. 
One such technique supports real-time procedural solid texturing 
[2] by using the texture map to store the shading of an object [1]. 
The technique maintains a texture atlas that maps triangles from 
a surface mesh into a non-overlapping array in texture memory. 
The triangles are plotted in texture memory using their solid 
texture coordinates as vertex colors. Rasterization then 
interpolates solid texture coordinates across their faces in the 
texture map. A procedural texturing pass replaces the solid 
texture coordinates in the texture map with the procedural 
texture color. Finally, this color is reapplied to the object surface 
via standard texture mapping. The result is a view-independent 
procedural solid texturing of the object. 
One of the most common components of a procedural shading 
system is the Perlin noise function [19], a correlated three-
dimensional field of uniform random values. This versatile 
function provides a deterministic random function whose 
bandwidth can be controlled to inhibit aliasing. Moreover, 1/fβ 
sums of noise functions can be used to form turbulence and 
other fractal structures whose statistics can be set to match those 
of various kinds of natural phenomena. 

   
 (a) (b) 

Figure 1. Perlin noise function (a) and a 1/f sum (b). 
We integrated the Perlin noise function into our real-time 
procedural solid texturing system in a variety of different ways, 
both as a CPU process and as a GPU process. This paper 
describes an algorithm for implementing the Perlin noise 
function as a multipass pixel shader. It also analyzes this noise 
implementation on a variety of systems. We used the available 
accelerated implementations of the OpenGL API and its device-
dependent extensions on two SGI systems and an NVidia 
GeForce2. The paper concludes with suggestions for further 

Contact info: Dept. of Computer Science, 1304 W. Springfield 
Ave., Urbana, IL 61801, (217) 333-8740, jch@cs.uiuc.edu. 



 10-20 

hardware accelerator development that would facilitate faster 
implementations of the Perlin noise function as well as a broader 
variety of texturing procedures. 

2. Previous work 
Because the Perlin noise function has become a ubiquitous but 
expensive tool in texture synthesis, it has been implemented in 
highly optimized forms on a variety of general and special 
purpose platforms. 
Several fast host-processor methods exist for synthesizing Perlin 
noise. Goehring et al. [4] implemented a smooth noise function 
in Intel MMX assembly language, evaluating the function on a 
sparse grid and using quadratic interpolation for the rest of the 
values. Kameya et al. [10] used streaming SIMD instructions 
that forward differenced a linearly interpolated noise function 
for fast rasterization of procedurally textured triangles. 
One can also generate solid noise with a 3-D texture array of 
random values [13], using hardware trilinear interpolation to 
correlate the random lattice values stored in the volumetric 
texture. Fractal turbulence functions can be created using 
multitexture/multipass modulate and sum operations. A texture 
atlas of solid texture coordinates would then be replaced with 
noise samples using the OpenGL pixel texture extension, ala [9]. 
The vertex-shader programming model found in Direct3D 8.0 
[12] and the recent NVIDIA OpenGL vertex shader extension 
[16] can support procedural solid texturing. A Perlin noise 
function has been implemented as a vertex program [14]. But a 
per-vertex procedural texture produces vertex colors that are 
Gouraud interpolated across faces, such that the frequency of the 
noise function must be at, or less than half, the frequency of the 
mesh vertices. This would severely restrict the use of turbulence 
resulting from 1/f sums of noise. Hence the Perlin noise vertex 
shader is limited to low-frequency displacement mapping or 
other noise effects that can be mesh frequency bound. 
Our favorite implementation of the Perlin noise function is from 
the Rayshade ray tracer [24]. This implementation created its 
own pseudorandom numbers by hashing integer solid texture 
coordinates with a scalar function 
Hash3d(i,j,k), then interpolated these 
random values with a simple smooth cubic 
interpolant SCURVE(u) = 3u2 – 2u3 to 
yield the final result. 
Given solid texture coordinates s,t,r, the Rayshade noise 
function effectively returned noise as the value 
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where 

w(s,i) = SCURVE(s -  s )i (1-SCURVE(s -  s )1-i 
is a weighting function. Hence, the noise function returns a 
weighted sum of the random values at the eight corners of the 
integer lattice cube containing s,t,r. 

   
 (a) (b) 

Figure 2. Result of the Rayshade implementation of the 
Perlin noise function, using cubic interpolation (a) and 
linear interpolation (b) of corner lattice random values. 

Figure 2 demonstrates the result of the Rayshade 
implementation of the Perlin noise function. The random values 
result from the drand48() function of the standard C math 
library. Noise is defined on an integer coordinate lattice, which 
results in the strong horizontal and vertical correlation. 
We will use this sample as a reference to compare our pixel-
shader implementations of the Perlin noise function. The 
average brightness of the (s,t) slice of the noise is due to the 
fixed r coordinate. This average intensity will differ from across 
implementations, resulting in variations in brightness for a given 
(s,t) slice of the three-dimensional noise field. 

3. A Multipass Noise Algorithm 
We based our real-time implementation of the Perlin noise 
function on the concise Rayshade implementation. We 
implemented a per-pixel noise function using multipass 
rendering onto a texture atlas initialized with solid texture 
coordinates stored as pixel colors. 
The Perlin noise function is defined on a field of real values, 
where the integer subset of its domain defines the base 
frequency of the noise. Implementation of the noise function 
requires coordinates s,t,r to range over multiple integers, though 
color components only range over [0,1]. Hence, given three 
channels (R,G,B) each with a depth of b bits1, we use a fixed-
point representation with bi integer bits and bf fractional bits, b = 
bi + bf. 
Following the form of the Rayshade noise implementation, the 
algorithm in Figure 3 computes a random value in [0,1] at the 
integer lattice points, and linearly interpolates these random 
values across the cells of the lattice. 

_______________________________ 
1 Framebuffers currently hold only 8 or 12 bits per channel though there is an 

extension that supports 32-bit floating point, and indications that floating point 
buffers may soon be supported by a larger variety of graphics hardware and 
drivers. 
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Input: 2-D texture solid_map with R,G,B containing s,t,r 
coordinates. 
Initialize texture noise = black 
texture solid_int = solid_map >> bf 
texture solid_intpp = solid_int + 1/(2b-1) 
texture weight = (solid_map – (solid_int << bf)) << bi 
for (k = 0; k < 8; k++) { 
  texture corner = solid_int 
  overwrite corner = solid_intpp with glColorMask(k&1,k&2,k&4) 
  randomize corner 
  corner *= if (k&1) then R(weight) else 1 – R(weight)2 
  corner *= if (k&2) then G(weight) else 1 – G(weight) 
  corner *= if (k&4) then B(weight) else 1 – B(weight) 
  noise += corner 
} 
Output: solid noise texture map 

Figure 3. Multipass noise algorithm.  
The input to the algorithm is an image solid_map whose R,G,B 
colors consist of solid texture coordinates. The first half of the 
algorithm decomposes solid_map into its integer part solid_int  
shifted right bf times and a fractional part weight shifted left bi 
times. 

       
 (a) (b) (c) 

Figure 4. Solid texture coordinates solid_map (a), 
tex_int shifted left by bf (b) and weight (fractional part 

shifted left by bf) (c). 
Figure 4 shows a sample texture map as a plane of two-
dimensional solid texture coordinates spanned by s and t. We set 
bf = 4 bits. The solid texture coordinates s,t,r range from 
(0.0,0.0,0.0) to (15.9375,15.9375,0.0) and are represented in the 
solid texture coordinate texture map Figure 4(a) with RGB 
colors from (0,0,0) to (1,1,0). Internally in the 24bpp 
framebuffer, these RGB colors range from (0,0,0) to 
(255,255,0). These coordinates are shifted right by bf to form 
tex_int, which is shown Figure 4(b) shifted left by bf to increase 
contrast and brightness. Subtracting (b) from (a) leaves tex_frac, 
which is shifted left by bf to create a normalized weight function 
Figure 4(c). 
The color (R,G,B) of each pixel (x,y) in solid_map corresponds 
to a solid texture point (s=R,t=G,r=B) that falls within some 
lattice cell. The corner of this cell is given by the coordinates in 
the corresponding pixel (x,y) stored in solid_int. The opposite 
corner of this cell is found in the corresponding pixel in 
solid_intpp (whose colors are increments of those in solid_int). 
Each of the eight corners of the cell can be found by 
combinations of the coordinates in solid_int and solid_intpp. 
The second half of the algorithm iterates over all eight corners, 
creating a random value indexed by the integer value at that 
corner. These random values are weighted by the fractional 
portion of the solid texture coordinates found in weight or its 
additive inverse. Summing the products of these weights for 
each of the eight corners performs a trilinear interpolation of the 
_______________________________ 
2 The functions R(), G() and B() return a luminance image of the corresponding 

channel. 

random values at the corners, resulting in result of the noise 
function. 
We will spend the next two sections implementing this 
algorithm using the available accelerated features of two 
different graphics architectures. These implementations are each 
divided into two sections, on implementing the logical shift 
operations needed for the first half of the algorithm, and the 
random value synthesis needed for the second half. 

4. SGI Implementation 
The SGI graphics accelerators have focused on high-end real-
time rendering for the scientific visualization and entertainment 
production communities. Hence accelerated features have 
included scientific imaging functions that support algebraic and 
lookup-table operations on pixels. 
We focused our implementation on low end and midline SGI 
workstations, which are commonly deployed for digital content 
creation and design in both the videogame and animation 
communities. 

4.1 PixelTransfer and PixelMap 
We implemented the noise function in multipass OpenGL on 
SGI workstations using accelerated PixelTransfer3 and PixelMap 
functions. The PixelTransfer function performs a per-component 
scale and bias, whereas PixelMap performs a per-component 
lookup into a predefined table of values. 
We defined an assembly language of useful PixelTransfer 
functions. Specifically, the function setPixelTransfer(a,b) sets 
OpenGL to perform an ax + b operation during the next image 
transfer operation, where x represents each component of the 
RGBA color. The function setPixelMap(table) uses PixelMap to 
replace colors channels with their corresponding entries in a 
lookup table. We also defined a blendtex(i) operation that draws 
the texture image corresponding to texture index i. The 
instruction savetex(i) saves the current framebuffer as texture 
image i. 
Unlike the previous section, the SGI implementation begins with 
three luminance images tex_s, tex_t and tex_r instead of a 
single RGB image solid_map. We could perform all of the 
decompositions on a single texture, but we would later need to 
break its red, green and blue channels into individual luminance 
textures, and we found it impossible to perform this efficiently 
with the OpenGL extension set available to low-end and midline 
SGI workstations that lacked the color_matrix extension. 

    
 (a) (b) (c) 

Figure 5. RGB image weight (a) is equal to (1,0,0) * 
luminance image tex_s (b) + (0,1,0) * luminance image 

tex_t (c) + (0,0,1) * luminance image tex_r (not 
shown). 

_______________________________ 
3 Following the convention of the OpenGL ARB, we avoid the use of the “gl” 

prefix for functions and the “GL_” prefix for tokens when describing elements 
of the OpenGL API. 
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4.2 Logical Shift Operations 
The task of decomposing a texture map of fixed point solid 
texture coordinates into integer and fractional textures used 
PixelTransfer multiplication to achieve shifting operations. We 
defined an integer shift = 1 << bf. We modulated the texture by 
shift to perform a logical shift left by bf, and by 1/shift to 
perform a logical shift right. (Some hardware required us to 
round instead of truncate, which was performed by a 
PixelTransfer bias of -0.5/255.0.) We also defined fracshift as 
255.0/((1 << bf) - 1). This allowed us to scale our fractional 
portions into normalized weights. 
The following code fragment demonstrates the decomposition of 
the s coordinate. Similar decompositions need to be performed 
on tex_t and tex_r as well. 
// shift s right to remove fractional part, save as si 
blendtex(tex_s); 
setPixelTransfer(1.0/shift, 0.0 /* or –0.5/255.0 */); 
savetex(tex_si); 
resetPixelTransfer(); 
// shift si back left 
blendtex(tex_si); 
setPixelTransfer(shift, 0.0); 
CopyPixels(0,0,HRES,VRES,COLOR); 
resetPixelTransfer(); 
// subtract si (floor of s) from s to get fractional part of s 
Enable(BLEND); 
BlendEquation(SUBTRACT); 
BlendFunc(1, 1); 
blendtex(tex_s); 
Disable(BLEND); 
// scale fractional part into normalized weight in [0,1] 
setPixelTransfer(fracshift, 0.0); 
savetex(tex_sf); 
resetPixelTransfer(); 

 

4.3 Random Value Synthesis 
We implemented randomization using a lookup table. This 
lookup table was accessed using the accelerated PixelMap 
OpenGL function. Recall the value k ranges from 0 to 7 
denoting the current corner. The following code fragment 
synthesizes a random field based on the s coordinate. 
// tex_sin = random(si) or random(si++) 
blendtex(tex_si); 
setPixelTransferf(1.0, (k&1) ? 1.0/255.0 : 0.0);  
setPixelMap(sran);  
savetex(tex_sin); 

Similar code fragments apply to the t and r coordinates, using 
(k&2) and (k&4) in the PixelTransfer, respectively. At this point 
tex_sin, tex_tin and tex_rin contain random values indexed by 
the s,t,r values at the kth corner of the cell. The following code 
fragment combines these three random values into a single 
random value. 

// now tex_sin, tex_tin and tex_rin are random 
// add them up into a single random number4 
blendtex(tex_sin); 
Enable(BLEND); BlendFunc(ONE,ONE); 
blendtex(tex_tin); 
blendtex(tex_rin); 
Disable(BLEND); 

This combination of random values is highly correlated due to 
the componentwise combination of random values. We reduce 
this correlation with an additional randomization pass. 
// one more randomization (in place) 
setPixelMap(nran);  
CopyPixels(0,0,HRES,VRES,COLOR); 
resetPixelTransfer(); 

      
 (a) (b) (c) (d) 

Figure 6. The sum of random numbers indexed by s (a). 
and t (b) is highly correlated (c). This correlation is 
reduced by indexing into a final randomization (d). 

The random number tables sran, tran and rran are uniform 
random number distributions over the range [0,1/3]. These three 
random values are added to form the final distribution, which is 
slightly non-uniform and heavily coordinate correlated, as 
shown in Figure 6(c). An additional randomization reduces this 
correlation as shown in Figure 6(d). 

     
 (a) (b) (c) (d) 

Figure 7. The random values at integer lattice locations 
for corners ( s , t ) (a), ( s +1, t ) (b), ( s , t +1) (c) 

and ( s +1, t +1) (d). 
Figure 7 shows the random values generated at the four corners 
of the lattice. Note that in this example these are all translates of 
each other. 
The random value is then weighted by the fractional part of the 
original texture coordinates s,t,r. Note that we have broken out 
the original RGB image weight from the previous section into 
three luminance images tex_sf, tex_tf and tex_rf. We also use 
the built-in additive complement blending operation to invert the 
weight appropriately depending on the cell corner. 
// displayed texture now random value at corner k 
// weight this contribution by fractional parts of s,t,r 
Enable(BLEND); 
BlendFunc(0, (k&1) ? SRC : 1 - SRC); 
blendtex(tex_sf); 
blendFunc(0, (k&2) ? SRC : 1 - SRC); 
blendtex(tex_tf); 
BlendFunc(0, (k&4) ? SRC : 1 - SRC); 
blendtex(tex_rf); 
_______________________________ 
4 Note the addition of the component random values introduces a slight Gaussian 

bias to the resulting noise. This could be eliminated if an accelerated exclusive-
or blending mode was available. 
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 (a) (b) (c) (d) 

Figure 8. Random values scaled by the weight functions 
(1 - tex_sf)(1-tex_tf) (a), tex_sf(1-tex_tf) (b), (1-

tex_sf)tex_tf (c) and tex_sf tex_tf (d). 
Figure 8 shows the random values at the corners (Figure 7) 
scaled by the product of weighting functions tex_sf and tex_tf. 
These weighting functions are luminance textures corresponding 
to the individual channels of Figure 4(c), such that 
weight = (tex_sf, tex_tf, tex_rf). 
The resulting weighted random value corresponding to the 
current corner is then added into a running total, as show in the 
following fragment. 
// add noise component into noise sum 
BlendFunc(1,1); 
blendtex(tex_noise); 
Disable(BLEND); 
// keep track of sum 
savetex(tex_noise); 

The texture tex_noise is initialized to black. After all eight 
corners have been visited, tex_noise contains the final noise 
values corresponding to the solid texture coordinates in the input 
luminance images tex_s, tex_t and tex_r. 

 
Figure 9. Noise function resulting from the sum of 

Figure 8 (a-d). 

4.4 Results 
Figure 9 shows the final noise function resulting from summing 
the images in Figure 8. The correlation from Figure 6(c) was 
reduced by the randomization in Figure 6(d) but is still evident, 
particularly in the final interpolated version, as strong horizontal 
and vertical tendencies in the noise. However, this correlation is 
also found in the reference noise implementation in Figure 2, 
and is primarily due to the integer lattice of noise values. 
We implemented this algorithm at a resolution of 2562 on a SGI 
Solid Impact, a SGI Octane, and an NVidia GeForce2. The SGI 
workstations are designed for advanced imaging applications 
and have hardware accelerated PixelTransfer and PixelMap 
operations whereas the NVidia card designed for mainstream 
consumer applications does not. The execution times are given 
in Table 1. 
 Implementation Execution Time (Rate) 

SGI Octane 0.4 sec. (2.5 Hz) 
SGI Solid Impact 0.75 sec. (1.3 Hz) 
NVidia GeForce 256 5 sec. (0.2 Hz) 

Table 1. Execution results for the multipass noise 
algorithm. 

5. NVidia Implementation 
We also implemented a noise function for consumer-level 
accelerators using the NVidia chipset. The NVidia products 
have been designed to accelerate commodity personal computer 
graphics, especially videogames. Hence the drivers did not 
accelerate PixelTransfer and PixelMap. We instead used register 
combiners to shift, randomize and isolate/combine components. 

5.1 Register Combiners 
Register combiners support very powerful per-pixel operations 
by combining multitextured lookups in a variety of manners. 
They support the addition, subtraction and component-wise 
multiplication (and even a dot product) of RGB vectors. They 
also support conditional operations based on the high-bit of the 
alpha channel of one of the inputs. They support signed byte 
arithmetic with a full 9 bits per channel, though can only store 8 
bit results. They also provide several mapping functions for 
signed/unsigned conversion, and the ability to modulate output 
values by one-half, two and four. 
The Direct3D 8.0 specification includes a register-combiner 
based assembly language [12]. However, our implementation 
sought to squeeze the best possible performance out of the 
NVidia chipset. We chose instead to use the OpenGL register 
combiner extensions, which provide complete, though device 
dependent, access to the graphics accelerator. 
Figure 10 illustrates the register combiner functionality used in 
this paper. The register combiner has four inputs A,B,C,D that 
can be any combination of the incoming fragment, a pixel from 
multitexture unit 0 or 1, and the contents of a scratch register 
called Spare0. The constants zero and one (via a special 
unsigned invert operation) can also be used as inputs, and other 
constant values can also be loaded via special registers. 
The outputs of the register combiners include A*B, C*D, A*B + 
C*D and the special A*B | C*D. This latter output yields A*B if 
the alpha component of the register Spare0 is less than 0.5, 
otherwise the output yields C*D. These outputs can also be 
optionally scaled by ½, 2 or 4. For this paper, it is safe to assume 
the output is always contained in the register Spare0. The 
register combiner has separate but comparable functions for the 
RGB values and the alpha values of the inputs and registers. 
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Figure 10. Partial block diagram of the register combiner 

functionality used in this paper. 
There can be any number of register combiners that form a 
pipeline, using the temporary registers such as Spare0 to hold 
data between stages. The GeForce2 used to implement the pixel 
shaders in this paper contains two register combiners which 
allow two register combiner operations per pass. The GeForce3 
is expected to have eight register combiners. 

5.2 Logical Shift Operations 
In order to perform the decomposition of the input solid texture 
coordinate image into integer and fractional components, we 
developed a logical shift left register routine. This routine used 
the modulate-by-two output mapping, but this causes values 
greater than one half to clamp to one. We avoided this overflow 
by using the conditional mode of the register combiners. The 
following example sets up the register combiners to perform 
such a logical shift left on a luminance value (R=G=B) in 
multitexture unit 0. 
// first stage 
// spare[α] = texture0[b] 
A[α] = texture0[b] 
B[α] = 1 (zero with unsigned_invert) 
spare0[α] = A[α]*B[α] 
// spare0 rgb = texture0 less its high bit (or zero if less than ½) 
A[rgb] = texture0[rgb] 
B[rgb] = white (zero with unsigned_invert) 
spare0[rgb] = A[rgb]*B[rgb] - 0.5 // via bias_by_negative_one_half 
// second stage 
// spare0 rgb = (spare0[α] < 0.5 ? texture0[rgb] : spare0[rgb]) << 1 
A[rgb] = texture0[rgb] 
B[rgb] = white 
C[rgb] = spare0[rgb] 
D = white 
spare0[rgb] = 2*(spare0[α]<0.5 ? A[rgb]*B[rgb] : C[rgb]*D[rgb]) 

We could also generate a register combiner to perform a logical 
shift right using the scale_by_one_half mode, but found it was 
much simpler to perform a multitextured modulate-mode blend 
with a texture consisting of the single pixel containing the RGB 
color (0.5,0.5,0.5).  

5.3 Random Value Synthesis 
Randomization on the NVidia controller was particularly 
difficult. The driver (and presumably the hardware) accelerated 

neither pixel transfer/mapping operations, nor logical operations 
like exclusive-or. 
We instead implemented a register combiner random number 
generator by shifting each of the components of the integer 
values of the coordinates left one bit at a time. All four bits of 
each of the three components are at one point the high bit in 
multitexture unit 0. We then used the register combiner’s 
conditional mode to display one of two colors depending on the 
high bit of the current texel of multitexture unit 0. The following 
code fragment implements this technique. 
for (kk = 0; kk < 4; kk++) { 
 for (comp = 0; comp < 3; comp++) { 
  // display either tex_ranzero or tex_ranone 
  // depending on hi bit of tex_comp 
  setupblendhibit(ranzero[comp][kk],ranone[comp][kk]); 
  blend2tex(tex_comp[comp],tex_corran); 
  savetex(tex_corran); 
  if (kk < 3) { 
   // shift tex_comp left one 
   setupshift1(); 
   blendtex(tex_comp[comp]); 
   savetex(tex_comp[comp]); 
  } 
 } 
} 

The operation blend2tex(tex_a,tex_b) displays a multitextured 
image with tex_a as multitexture unit 0 and tex_b as 
multitexture unit 1. 
The arrays ranzero and ranone were initialized with random 
luminances. These random luminances were used as input to the 
function setupblendhibit(rgba0,rgba1). This function set up a 
register combiner that would display either constant color rgba0 
or rgba1 depending on the high bit of texture0, and would blend 
the color (rgba0 or rgba1) with texture1. 
We found that setting the alpha channel of rgba0 and rgba1 to 
1/8 provided a reasonable balance of colors after twelve 
successive blending operations. These blends were accumulated 
in tex_corran (corner random). Note that this loop involves 
12 randoms + 9 shifts = 21 passes, which expands to 168 passes 
for all eight corners.  

   
 (a) (b) 

Figure 11. Heavily correlated random values generated 
by blending random colors depending on the bits of the 

integer lattice value (a). Using (a) to index into a random 
value reduces the correlation (b). 

The resulting tex_corran still exhibited some coordinate 
correlation, which we reduced with an additional eight single-bit 
randomizations on tex_corran, yielding tex_corranran. This step 
resulted in an additional 8 randoms + 7 shifts = 15 passes per 
corner for a total of 120 passes. 
Due to the successive blending, the register combiner noise 
function is Gaussian distributed. A normal distribution could be 
recovered through a histogram equalization step, though such 
operations are not yet accelerated on consumer-level hardware. 
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Figure 12. Noise function resulting from register 

combiners. 

5.4 Results 
The register combiner implementation resulted in 375 passes, 
but runs in .77 seconds at a resolution of 2562 on a GeForce2 
using version 12.0 of the “developer” driver. This results in a 
1.3 Hz performance, which is suitable for interactive 
applications but is not yet real-time. A discussion of the reasons 
why the performance is slower than necessary is given later in 
Section 6.2. 
The resulting noise is shown in Figure 12. The NVidia 
implementation blended random colors, yielding Gaussian noise, 
whereas the reference and SGI implementations produced white 
noise. If desired, one could redistribute the Gaussian noise into 
white noise with a fixed histogram equalization step, though no 
such operation is currently accelerated on NVidia GPUs. 

6. Discussion 
The implementation of the Perlin noise function on SGI and 
NVidia GPUs has been successful in that we found it was 
feasible, but disappointing in that subtle hardware limitations 
prevent truly efficient implementations. These limitations 
included the limited precision available in the 8 bit per 
component framebuffer, the delay in performing a 
CopyTexSubImage transfer from the framebuffer to the texture 
memory, and the lack of acceleration of loginal operation blend 
modes such as exclusive-or. The process has also been 
illuminating, and has inspired us with several ideas for further 
advancement in hardware design to overcome these limitations 
and better support efficient multipass pixel shading. 

6.1 Limited Precision 
Most of the per-pixel operations need only a single channel, and 
set R=G=B since this is the most efficient mode of operation. 
The register combiners can be implemented to a higher 
precision, but their input and output precision is limited to the 
framebuffer precision. 
The register combiners currently support a conversion between 
8-bit unsigned external values and 9-bit signed internal values. 
These conversions perform the function f(x) = 2x – 1 on an 
input, and f-1(x) = 0.5x + 0.5 on the output, where x is each of the 
components of an RGBA pixel. 
We could likewise create a packed luminance conversion to the 
input and output of the register combiners. The input mapping 
would perform the function L = R << 16 | G << 8 | B yielding a 
24-bit luminance value on which one could perform scalar 
register combiner operations. Internally, the register combiner 
could maintain a 16.8 fixed-point format, and support operations 
such as addition, subtraction, multiplication and division using 
the extended range and precision of the new format. Once the 
operation is completed, the result may then be unpacked into the 

8-bit framebuffer with the output mapping R = L >> 16, G = 
(L>>8)&0xff and B & 0xff. 

6.2 Swizzle-Blits 
Given the number of passes required, the register combiner 
performance was astounding, currently 1.3 Hz on a GeForce2 
graphics accelerator at a resolution of 256x256. Profiling the 
code revealed that the main bottleneck was the time it took to 
save the framebuffer to a texture, adding an average of 2 ms per 
pass for 354 of the passes. OpenGL currently does not support 
rendering directly to texture, and the register combiner does not 
allow the framebuffer to be used as an input. 
Whereas framebuffer memory is organized in scanline order, 
modern texture memory is organized into blocks and other 
patterns to better capitalize on spatial coherence. This coherence 
allows texture pixels to be more effectively cached during 
texture mapping operation. However, in this case the layout of 
texture memory is counterproductive. The cost to “swizzle” the 
memory into the clustered arrangement when saving a 
framebuffer image to texture memory dominates the execution 
time of iterative multipass shaders. 
We have verifies this delay with a profile of the code, revealing 
that our CopyTexSubImage operations were taking longer than 
any other component of our shader. We also experimented with 
various resolutions and found a direct 1:1 correspondence 
between the number of pixels and the execution time. 
Perhaps a mode can be incorporated into the graphics 
accelerator state that optionally defeats the spatial-coherent 
clustering of texture memory. This mode could be enabled 
during multipass shader evaluation, to eliminate the shuffled 
memory delay incurred during the CopyTexSubImage 
operations. 
Alternatively, upcoming modes that support rendering directly 
to texture may also ameliorate this problem. 

6.3 Logical Blend Modes 
Blending modes such as exclusive-or and logical shifts left and 
right are extremely valuable when generating random values. 
Unfortunately these operations are not accelerated under current 
graphics drivers. Such operations are of the simplest to 
implement in hardware, and we suspect they will become 
accelerated as demand for them increases. 

7. Conclusion 
We have investigated the implementation of the Perlin noise 
function as a multipass pixel shader. We have developed a 
general algorithm and implemented it using the accelerated 
features from two different manufacturers. 
The SGI implementation based on PixelTransfer and PixelMap 
operations remains faster than the NVidia implementation based 
on register combiners. However, we expect the additional 
register combiner stages available in the upcoming GeForce3 
will close this gap. 
The process of implementing a general-purpose procedure using 
GPU accelerated operations has been illuminating. We are 
excited by the prospect of using the GPU as a SIMD-based 
supercomputer. However, this vision has been stifled by the low 
precision available in the buffers and processors, and the latency 
due to slow framebuffer-to-texture memory transfers. We 
believe both problems can be solved with moderate changes to 
existing graphics accelerator architectures, and have suggested 
possible solution implementations. 
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Our noise implementation uses linear interpolation of random 
values on an integer lattice. One can also implement cubic 
interpolation at the expense of four extra passes. The function 
SCURVE(u) = 3u2 – 2u3 can also be expressed as uu(3-2u). The 
function 1/4 SCURVE(u) can be implement by modulating the 
images u, u and 3/4 – 1/2 u. Note the latter is necessarily scaled 
by ¼ to fall within the legal [0,1] OpenGL range. This result can 
then be scaled by 4 (either through PixelTransfer or a register 
combiner) to yield SCURVE(u).  
We have investigated numerous methods for enhancing the 
performance of these multipass pixel shaders. The 2-D s-t plane 
examples suggested that image processing applications such as 
translation and convolution could be applied, but such 
techniques would not work for arbitrarily shaped objects in the 
solid texture coordinate image, such as in Figure 13. 

  
 (a) (b) 

Figure 13. Application of the noise function (b) on a 
sphere of solid texture coordinates (a). 

The source code and an executable for both implementations of 
the Perlin noise pixel shader can be found at: 

http://graphics.cs.uiuc.edu/~jch/mpnoise.zip 
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