
 10-19

Perlin Noise Pixel Shaders

John C. Hart
University of Illinois, Urbana-Champaign

Abstract
While working on a method for supporting real-time procedural
solid texturing, we developed a general purpose multipass pixel
shader to generate the Perlin noise function. We implemented
this algorithm on SGI workstations using accelerated OpenGL
PixelMap and PixelTransfer operations, achieving a rate of
2.5 Hz for a 256x256 image. We also implemented the noise
algorithm on the NVidia GeForce2 using register combiners.
Our register combiner implementation required 375 passes, but
ran at 1.3 Hz. This exercise illustrated a variety of abilities and
shortcomings of current graphics hardware. The paper concludes
with an exploration of directions for expanding pixel shading
hardware to further support iterative multipass pixel-shader
applications.
Keywords: Pixel shaders, Perlin noise function, hardware
shading, register combiners.

1. Introduction
The concept of procedural shading is well known [17][19], and
has found widespread use in graphics [3]. Procedural shading
computes arbitrary lighting and texture models on demand.
Procedural textures efficiently support high resolution, non-
repeating features indexed by three-dimensional solid texture
coordinates. These features were quickly adopted for
production-quality rendering by the entertainment industry, and
became a core component of the Renderman Shading
Language [5].
With the acceleration of graphics processors outpacing the
exponential growth of general processors, there have been
several recent calls for real-time implementations of procedural
shaders, e.g. [6][20]. Real-time procedural shading makes
videogames richer, virtual environments more realistic and
modeling software more faithful to its final result. Real-time
procedural texturing, in particular, allows modelers to use solid
textures to seamlessly simulate sculptures of wood and stone. It
yields complex animated environments with billowing clouds
and flickering fires. Designers and users can interactively
synthesize and investigate new procedural worlds that seem

vaguely familiar to our own but with features unique to
themselves.
Several have researched techniques for supporting procedural
shading with real-time graphics hardware [15][18][21][22].
These shading methods reorganize the architecture of the
graphics API to suit the needs of procedural shading, applying
API components to tasks for which they were not originally
designed [8][11].
One such technique supports real-time procedural solid texturing
[2] by using the texture map to store the shading of an object [1].
The technique maintains a texture atlas that maps triangles from
a surface mesh into a non-overlapping array in texture memory.
The triangles are plotted in texture memory using their solid
texture coordinates as vertex colors. Rasterization then
interpolates solid texture coordinates across their faces in the
texture map. A procedural texturing pass replaces the solid
texture coordinates in the texture map with the procedural
texture color. Finally, this color is reapplied to the object surface
via standard texture mapping. The result is a view-independent
procedural solid texturing of the object.
One of the most common components of a procedural shading
system is the Perlin noise function [19], a correlated three-
dimensional field of uniform random values. This versatile
function provides a deterministic random function whose
bandwidth can be controlled to inhibit aliasing. Moreover, 1/fβ
sums of noise functions can be used to form turbulence and
other fractal structures whose statistics can be set to match those
of various kinds of natural phenomena.

 (a) (b)

Figure 1. Perlin noise function (a) and a 1/f sum (b).
We integrated the Perlin noise function into our real-time
procedural solid texturing system in a variety of different ways,
both as a CPU process and as a GPU process. This paper
describes an algorithm for implementing the Perlin noise
function as a multipass pixel shader. It also analyzes this noise
implementation on a variety of systems. We used the available
accelerated implementations of the OpenGL API and its device-
dependent extensions on two SGI systems and an NVidia
GeForce2. The paper concludes with suggestions for further

Contact info: Dept. of Computer Science, 1304 W. Springfield
Ave., Urbana, IL 61801, (217) 333-8740, jch@cs.uiuc.edu.

 10-20

hardware accelerator development that would facilitate faster
implementations of the Perlin noise function as well as a broader
variety of texturing procedures.

2. Previous work
Because the Perlin noise function has become a ubiquitous but
expensive tool in texture synthesis, it has been implemented in
highly optimized forms on a variety of general and special
purpose platforms.
Several fast host-processor methods exist for synthesizing Perlin
noise. Goehring et al. [4] implemented a smooth noise function
in Intel MMX assembly language, evaluating the function on a
sparse grid and using quadratic interpolation for the rest of the
values. Kameya et al. [10] used streaming SIMD instructions
that forward differenced a linearly interpolated noise function
for fast rasterization of procedurally textured triangles.
One can also generate solid noise with a 3-D texture array of
random values [13], using hardware trilinear interpolation to
correlate the random lattice values stored in the volumetric
texture. Fractal turbulence functions can be created using
multitexture/multipass modulate and sum operations. A texture
atlas of solid texture coordinates would then be replaced with
noise samples using the OpenGL pixel texture extension, ala [9].
The vertex-shader programming model found in Direct3D 8.0
[12] and the recent NVIDIA OpenGL vertex shader extension
[16] can support procedural solid texturing. A Perlin noise
function has been implemented as a vertex program [14]. But a
per-vertex procedural texture produces vertex colors that are
Gouraud interpolated across faces, such that the frequency of the
noise function must be at, or less than half, the frequency of the
mesh vertices. This would severely restrict the use of turbulence
resulting from 1/f sums of noise. Hence the Perlin noise vertex
shader is limited to low-frequency displacement mapping or
other noise effects that can be mesh frequency bound.
Our favorite implementation of the Perlin noise function is from
the Rayshade ray tracer [24]. This implementation created its
own pseudorandom numbers by hashing integer solid texture
coordinates with a scalar function
Hash3d(i,j,k), then interpolated these
random values with a simple smooth cubic
interpolant SCURVE(u) = 3u2 – 2u3 to
yield the final result.
Given solid texture coordinates s,t,r, the Rayshade noise
function effectively returned noise as the value

     ∑∑∑
= = =

+++
1

0

1

0

1

0

),(),(),(),,(Hash3d
k j i

krwjtwiswkrjtis

where

w(s,i) = SCURVE(s -  s)i (1-SCURVE(s -  s)1-i
is a weighting function. Hence, the noise function returns a
weighted sum of the random values at the eight corners of the
integer lattice cube containing s,t,r.

 (a) (b)

Figure 2. Result of the Rayshade implementation of the
Perlin noise function, using cubic interpolation (a) and
linear interpolation (b) of corner lattice random values.

Figure 2 demonstrates the result of the Rayshade
implementation of the Perlin noise function. The random values
result from the drand48() function of the standard C math
library. Noise is defined on an integer coordinate lattice, which
results in the strong horizontal and vertical correlation.
We will use this sample as a reference to compare our pixel-
shader implementations of the Perlin noise function. The
average brightness of the (s,t) slice of the noise is due to the
fixed r coordinate. This average intensity will differ from across
implementations, resulting in variations in brightness for a given
(s,t) slice of the three-dimensional noise field.

3. A Multipass Noise Algorithm
We based our real-time implementation of the Perlin noise
function on the concise Rayshade implementation. We
implemented a per-pixel noise function using multipass
rendering onto a texture atlas initialized with solid texture
coordinates stored as pixel colors.
The Perlin noise function is defined on a field of real values,
where the integer subset of its domain defines the base
frequency of the noise. Implementation of the noise function
requires coordinates s,t,r to range over multiple integers, though
color components only range over [0,1]. Hence, given three
channels (R,G,B) each with a depth of b bits1, we use a fixed-
point representation with bi integer bits and bf fractional bits, b =
bi + bf.
Following the form of the Rayshade noise implementation, the
algorithm in Figure 3 computes a random value in [0,1] at the
integer lattice points, and linearly interpolates these random
values across the cells of the lattice.

1 Framebuffers currently hold only 8 or 12 bits per channel though there is an

extension that supports 32-bit floating point, and indications that floating point
buffers may soon be supported by a larger variety of graphics hardware and
drivers.

u SC
U

RV
E(

u)

 10-21

Input: 2-D texture solid_map with R,G,B containing s,t,r
coordinates.
Initialize texture noise = black
texture solid_int = solid_map >> bf
texture solid_intpp = solid_int + 1/(2b-1)
texture weight = (solid_map – (solid_int << bf)) << bi
for (k = 0; k < 8; k++) {
 texture corner = solid_int
 overwrite corner = solid_intpp with glColorMask(k&1,k&2,k&4)
 randomize corner
 corner *= if (k&1) then R(weight) else 1 – R(weight)2
 corner *= if (k&2) then G(weight) else 1 – G(weight)
 corner *= if (k&4) then B(weight) else 1 – B(weight)
 noise += corner
}
Output: solid noise texture map

Figure 3. Multipass noise algorithm.
The input to the algorithm is an image solid_map whose R,G,B
colors consist of solid texture coordinates. The first half of the
algorithm decomposes solid_map into its integer part solid_int
shifted right bf times and a fractional part weight shifted left bi
times.

 (a) (b) (c)

Figure 4. Solid texture coordinates solid_map (a),
tex_int shifted left by bf (b) and weight (fractional part

shifted left by bf) (c).
Figure 4 shows a sample texture map as a plane of two-
dimensional solid texture coordinates spanned by s and t. We set
bf = 4 bits. The solid texture coordinates s,t,r range from
(0.0,0.0,0.0) to (15.9375,15.9375,0.0) and are represented in the
solid texture coordinate texture map Figure 4(a) with RGB
colors from (0,0,0) to (1,1,0). Internally in the 24bpp
framebuffer, these RGB colors range from (0,0,0) to
(255,255,0). These coordinates are shifted right by bf to form
tex_int, which is shown Figure 4(b) shifted left by bf to increase
contrast and brightness. Subtracting (b) from (a) leaves tex_frac,
which is shifted left by bf to create a normalized weight function
Figure 4(c).
The color (R,G,B) of each pixel (x,y) in solid_map corresponds
to a solid texture point (s=R,t=G,r=B) that falls within some
lattice cell. The corner of this cell is given by the coordinates in
the corresponding pixel (x,y) stored in solid_int. The opposite
corner of this cell is found in the corresponding pixel in
solid_intpp (whose colors are increments of those in solid_int).
Each of the eight corners of the cell can be found by
combinations of the coordinates in solid_int and solid_intpp.
The second half of the algorithm iterates over all eight corners,
creating a random value indexed by the integer value at that
corner. These random values are weighted by the fractional
portion of the solid texture coordinates found in weight or its
additive inverse. Summing the products of these weights for
each of the eight corners performs a trilinear interpolation of the

2 The functions R(), G() and B() return a luminance image of the corresponding

channel.

random values at the corners, resulting in result of the noise
function.
We will spend the next two sections implementing this
algorithm using the available accelerated features of two
different graphics architectures. These implementations are each
divided into two sections, on implementing the logical shift
operations needed for the first half of the algorithm, and the
random value synthesis needed for the second half.

4. SGI Implementation
The SGI graphics accelerators have focused on high-end real-
time rendering for the scientific visualization and entertainment
production communities. Hence accelerated features have
included scientific imaging functions that support algebraic and
lookup-table operations on pixels.
We focused our implementation on low end and midline SGI
workstations, which are commonly deployed for digital content
creation and design in both the videogame and animation
communities.

4.1 PixelTransfer and PixelMap
We implemented the noise function in multipass OpenGL on
SGI workstations using accelerated PixelTransfer3 and PixelMap
functions. The PixelTransfer function performs a per-component
scale and bias, whereas PixelMap performs a per-component
lookup into a predefined table of values.
We defined an assembly language of useful PixelTransfer
functions. Specifically, the function setPixelTransfer(a,b) sets
OpenGL to perform an ax + b operation during the next image
transfer operation, where x represents each component of the
RGBA color. The function setPixelMap(table) uses PixelMap to
replace colors channels with their corresponding entries in a
lookup table. We also defined a blendtex(i) operation that draws
the texture image corresponding to texture index i. The
instruction savetex(i) saves the current framebuffer as texture
image i.
Unlike the previous section, the SGI implementation begins with
three luminance images tex_s, tex_t and tex_r instead of a
single RGB image solid_map. We could perform all of the
decompositions on a single texture, but we would later need to
break its red, green and blue channels into individual luminance
textures, and we found it impossible to perform this efficiently
with the OpenGL extension set available to low-end and midline
SGI workstations that lacked the color_matrix extension.

 (a) (b) (c)

Figure 5. RGB image weight (a) is equal to (1,0,0) *
luminance image tex_s (b) + (0,1,0) * luminance image

tex_t (c) + (0,0,1) * luminance image tex_r (not
shown).

3 Following the convention of the OpenGL ARB, we avoid the use of the “gl”

prefix for functions and the “GL_” prefix for tokens when describing elements
of the OpenGL API.

 10-22

4.2 Logical Shift Operations
The task of decomposing a texture map of fixed point solid
texture coordinates into integer and fractional textures used
PixelTransfer multiplication to achieve shifting operations. We
defined an integer shift = 1 << bf. We modulated the texture by
shift to perform a logical shift left by bf, and by 1/shift to
perform a logical shift right. (Some hardware required us to
round instead of truncate, which was performed by a
PixelTransfer bias of -0.5/255.0.) We also defined fracshift as
255.0/((1 << bf) - 1). This allowed us to scale our fractional
portions into normalized weights.
The following code fragment demonstrates the decomposition of
the s coordinate. Similar decompositions need to be performed
on tex_t and tex_r as well.
// shift s right to remove fractional part, save as si
blendtex(tex_s);
setPixelTransfer(1.0/shift, 0.0 /* or –0.5/255.0 */);
savetex(tex_si);
resetPixelTransfer();
// shift si back left
blendtex(tex_si);
setPixelTransfer(shift, 0.0);
CopyPixels(0,0,HRES,VRES,COLOR);
resetPixelTransfer();
// subtract si (floor of s) from s to get fractional part of s
Enable(BLEND);
BlendEquation(SUBTRACT);
BlendFunc(1, 1);
blendtex(tex_s);
Disable(BLEND);
// scale fractional part into normalized weight in [0,1]
setPixelTransfer(fracshift, 0.0);
savetex(tex_sf);
resetPixelTransfer();

4.3 Random Value Synthesis
We implemented randomization using a lookup table. This
lookup table was accessed using the accelerated PixelMap
OpenGL function. Recall the value k ranges from 0 to 7
denoting the current corner. The following code fragment
synthesizes a random field based on the s coordinate.
// tex_sin = random(si) or random(si++)
blendtex(tex_si);
setPixelTransferf(1.0, (k&1) ? 1.0/255.0 : 0.0);
setPixelMap(sran);
savetex(tex_sin);

Similar code fragments apply to the t and r coordinates, using
(k&2) and (k&4) in the PixelTransfer, respectively. At this point
tex_sin, tex_tin and tex_rin contain random values indexed by
the s,t,r values at the kth corner of the cell. The following code
fragment combines these three random values into a single
random value.

// now tex_sin, tex_tin and tex_rin are random
// add them up into a single random number4
blendtex(tex_sin);
Enable(BLEND); BlendFunc(ONE,ONE);
blendtex(tex_tin);
blendtex(tex_rin);
Disable(BLEND);

This combination of random values is highly correlated due to
the componentwise combination of random values. We reduce
this correlation with an additional randomization pass.
// one more randomization (in place)
setPixelMap(nran);
CopyPixels(0,0,HRES,VRES,COLOR);
resetPixelTransfer();

 (a) (b) (c) (d)

Figure 6. The sum of random numbers indexed by s (a).
and t (b) is highly correlated (c). This correlation is
reduced by indexing into a final randomization (d).

The random number tables sran, tran and rran are uniform
random number distributions over the range [0,1/3]. These three
random values are added to form the final distribution, which is
slightly non-uniform and heavily coordinate correlated, as
shown in Figure 6(c). An additional randomization reduces this
correlation as shown in Figure 6(d).

 (a) (b) (c) (d)

Figure 7. The random values at integer lattice locations
for corners (s , t) (a), (s +1, t) (b), (s , t +1) (c)

and (s +1, t +1) (d).
Figure 7 shows the random values generated at the four corners
of the lattice. Note that in this example these are all translates of
each other.
The random value is then weighted by the fractional part of the
original texture coordinates s,t,r. Note that we have broken out
the original RGB image weight from the previous section into
three luminance images tex_sf, tex_tf and tex_rf. We also use
the built-in additive complement blending operation to invert the
weight appropriately depending on the cell corner.
// displayed texture now random value at corner k
// weight this contribution by fractional parts of s,t,r
Enable(BLEND);
BlendFunc(0, (k&1) ? SRC : 1 - SRC);
blendtex(tex_sf);
blendFunc(0, (k&2) ? SRC : 1 - SRC);
blendtex(tex_tf);
BlendFunc(0, (k&4) ? SRC : 1 - SRC);
blendtex(tex_rf);

4 Note the addition of the component random values introduces a slight Gaussian

bias to the resulting noise. This could be eliminated if an accelerated exclusive-
or blending mode was available.

 10-23

 (a) (b) (c) (d)

Figure 8. Random values scaled by the weight functions
(1 - tex_sf)(1-tex_tf) (a), tex_sf(1-tex_tf) (b), (1-

tex_sf)tex_tf (c) and tex_sf tex_tf (d).
Figure 8 shows the random values at the corners (Figure 7)
scaled by the product of weighting functions tex_sf and tex_tf.
These weighting functions are luminance textures corresponding
to the individual channels of Figure 4(c), such that
weight = (tex_sf, tex_tf, tex_rf).
The resulting weighted random value corresponding to the
current corner is then added into a running total, as show in the
following fragment.
// add noise component into noise sum
BlendFunc(1,1);
blendtex(tex_noise);
Disable(BLEND);
// keep track of sum
savetex(tex_noise);

The texture tex_noise is initialized to black. After all eight
corners have been visited, tex_noise contains the final noise
values corresponding to the solid texture coordinates in the input
luminance images tex_s, tex_t and tex_r.

Figure 9. Noise function resulting from the sum of

Figure 8 (a-d).

4.4 Results
Figure 9 shows the final noise function resulting from summing
the images in Figure 8. The correlation from Figure 6(c) was
reduced by the randomization in Figure 6(d) but is still evident,
particularly in the final interpolated version, as strong horizontal
and vertical tendencies in the noise. However, this correlation is
also found in the reference noise implementation in Figure 2,
and is primarily due to the integer lattice of noise values.
We implemented this algorithm at a resolution of 2562 on a SGI
Solid Impact, a SGI Octane, and an NVidia GeForce2. The SGI
workstations are designed for advanced imaging applications
and have hardware accelerated PixelTransfer and PixelMap
operations whereas the NVidia card designed for mainstream
consumer applications does not. The execution times are given
in Table 1.
 Implementation Execution Time (Rate)

SGI Octane 0.4 sec. (2.5 Hz)
SGI Solid Impact 0.75 sec. (1.3 Hz)
NVidia GeForce 256 5 sec. (0.2 Hz)

Table 1. Execution results for the multipass noise
algorithm.

5. NVidia Implementation
We also implemented a noise function for consumer-level
accelerators using the NVidia chipset. The NVidia products
have been designed to accelerate commodity personal computer
graphics, especially videogames. Hence the drivers did not
accelerate PixelTransfer and PixelMap. We instead used register
combiners to shift, randomize and isolate/combine components.

5.1 Register Combiners
Register combiners support very powerful per-pixel operations
by combining multitextured lookups in a variety of manners.
They support the addition, subtraction and component-wise
multiplication (and even a dot product) of RGB vectors. They
also support conditional operations based on the high-bit of the
alpha channel of one of the inputs. They support signed byte
arithmetic with a full 9 bits per channel, though can only store 8
bit results. They also provide several mapping functions for
signed/unsigned conversion, and the ability to modulate output
values by one-half, two and four.
The Direct3D 8.0 specification includes a register-combiner
based assembly language [12]. However, our implementation
sought to squeeze the best possible performance out of the
NVidia chipset. We chose instead to use the OpenGL register
combiner extensions, which provide complete, though device
dependent, access to the graphics accelerator.
Figure 10 illustrates the register combiner functionality used in
this paper. The register combiner has four inputs A,B,C,D that
can be any combination of the incoming fragment, a pixel from
multitexture unit 0 or 1, and the contents of a scratch register
called Spare0. The constants zero and one (via a special
unsigned invert operation) can also be used as inputs, and other
constant values can also be loaded via special registers.
The outputs of the register combiners include A*B, C*D, A*B +
C*D and the special A*B | C*D. This latter output yields A*B if
the alpha component of the register Spare0 is less than 0.5,
otherwise the output yields C*D. These outputs can also be
optionally scaled by ½, 2 or 4. For this paper, it is safe to assume
the output is always contained in the register Spare0. The
register combiner has separate but comparable functions for the
RGB values and the alpha values of the inputs and registers.

 10-24

Tex0 Tex1 incoming
fragment

Mult iplexor

A B C D

A*B C*D A*B+C*D (A*B | C*D)

Mult iplexor, x1/2, x2, x4

Spare0

outgoing
fragment

Figure 10. Partial block diagram of the register combiner

functionality used in this paper.
There can be any number of register combiners that form a
pipeline, using the temporary registers such as Spare0 to hold
data between stages. The GeForce2 used to implement the pixel
shaders in this paper contains two register combiners which
allow two register combiner operations per pass. The GeForce3
is expected to have eight register combiners.

5.2 Logical Shift Operations
In order to perform the decomposition of the input solid texture
coordinate image into integer and fractional components, we
developed a logical shift left register routine. This routine used
the modulate-by-two output mapping, but this causes values
greater than one half to clamp to one. We avoided this overflow
by using the conditional mode of the register combiners. The
following example sets up the register combiners to perform
such a logical shift left on a luminance value (R=G=B) in
multitexture unit 0.
// first stage
// spare[α] = texture0[b]
A[α] = texture0[b]
B[α] = 1 (zero with unsigned_invert)
spare0[α] = A[α]*B[α]
// spare0 rgb = texture0 less its high bit (or zero if less than ½)
A[rgb] = texture0[rgb]
B[rgb] = white (zero with unsigned_invert)
spare0[rgb] = A[rgb]*B[rgb] - 0.5 // via bias_by_negative_one_half
// second stage
// spare0 rgb = (spare0[α] < 0.5 ? texture0[rgb] : spare0[rgb]) << 1
A[rgb] = texture0[rgb]
B[rgb] = white
C[rgb] = spare0[rgb]
D = white
spare0[rgb] = 2*(spare0[α]<0.5 ? A[rgb]*B[rgb] : C[rgb]*D[rgb])

We could also generate a register combiner to perform a logical
shift right using the scale_by_one_half mode, but found it was
much simpler to perform a multitextured modulate-mode blend
with a texture consisting of the single pixel containing the RGB
color (0.5,0.5,0.5).

5.3 Random Value Synthesis
Randomization on the NVidia controller was particularly
difficult. The driver (and presumably the hardware) accelerated

neither pixel transfer/mapping operations, nor logical operations
like exclusive-or.
We instead implemented a register combiner random number
generator by shifting each of the components of the integer
values of the coordinates left one bit at a time. All four bits of
each of the three components are at one point the high bit in
multitexture unit 0. We then used the register combiner’s
conditional mode to display one of two colors depending on the
high bit of the current texel of multitexture unit 0. The following
code fragment implements this technique.
for (kk = 0; kk < 4; kk++) {
 for (comp = 0; comp < 3; comp++) {
 // display either tex_ranzero or tex_ranone
 // depending on hi bit of tex_comp
 setupblendhibit(ranzero[comp][kk],ranone[comp][kk]);
 blend2tex(tex_comp[comp],tex_corran);
 savetex(tex_corran);
 if (kk < 3) {
 // shift tex_comp left one
 setupshift1();
 blendtex(tex_comp[comp]);
 savetex(tex_comp[comp]);
 }
 }
}

The operation blend2tex(tex_a,tex_b) displays a multitextured
image with tex_a as multitexture unit 0 and tex_b as
multitexture unit 1.
The arrays ranzero and ranone were initialized with random
luminances. These random luminances were used as input to the
function setupblendhibit(rgba0,rgba1). This function set up a
register combiner that would display either constant color rgba0
or rgba1 depending on the high bit of texture0, and would blend
the color (rgba0 or rgba1) with texture1.
We found that setting the alpha channel of rgba0 and rgba1 to
1/8 provided a reasonable balance of colors after twelve
successive blending operations. These blends were accumulated
in tex_corran (corner random). Note that this loop involves
12 randoms + 9 shifts = 21 passes, which expands to 168 passes
for all eight corners.

 (a) (b)

Figure 11. Heavily correlated random values generated
by blending random colors depending on the bits of the

integer lattice value (a). Using (a) to index into a random
value reduces the correlation (b).

The resulting tex_corran still exhibited some coordinate
correlation, which we reduced with an additional eight single-bit
randomizations on tex_corran, yielding tex_corranran. This step
resulted in an additional 8 randoms + 7 shifts = 15 passes per
corner for a total of 120 passes.
Due to the successive blending, the register combiner noise
function is Gaussian distributed. A normal distribution could be
recovered through a histogram equalization step, though such
operations are not yet accelerated on consumer-level hardware.

 10-25

Figure 12. Noise function resulting from register

combiners.

5.4 Results
The register combiner implementation resulted in 375 passes,
but runs in .77 seconds at a resolution of 2562 on a GeForce2
using version 12.0 of the “developer” driver. This results in a
1.3 Hz performance, which is suitable for interactive
applications but is not yet real-time. A discussion of the reasons
why the performance is slower than necessary is given later in
Section 6.2.
The resulting noise is shown in Figure 12. The NVidia
implementation blended random colors, yielding Gaussian noise,
whereas the reference and SGI implementations produced white
noise. If desired, one could redistribute the Gaussian noise into
white noise with a fixed histogram equalization step, though no
such operation is currently accelerated on NVidia GPUs.

6. Discussion
The implementation of the Perlin noise function on SGI and
NVidia GPUs has been successful in that we found it was
feasible, but disappointing in that subtle hardware limitations
prevent truly efficient implementations. These limitations
included the limited precision available in the 8 bit per
component framebuffer, the delay in performing a
CopyTexSubImage transfer from the framebuffer to the texture
memory, and the lack of acceleration of loginal operation blend
modes such as exclusive-or. The process has also been
illuminating, and has inspired us with several ideas for further
advancement in hardware design to overcome these limitations
and better support efficient multipass pixel shading.

6.1 Limited Precision
Most of the per-pixel operations need only a single channel, and
set R=G=B since this is the most efficient mode of operation.
The register combiners can be implemented to a higher
precision, but their input and output precision is limited to the
framebuffer precision.
The register combiners currently support a conversion between
8-bit unsigned external values and 9-bit signed internal values.
These conversions perform the function f(x) = 2x – 1 on an
input, and f-1(x) = 0.5x + 0.5 on the output, where x is each of the
components of an RGBA pixel.
We could likewise create a packed luminance conversion to the
input and output of the register combiners. The input mapping
would perform the function L = R << 16 | G << 8 | B yielding a
24-bit luminance value on which one could perform scalar
register combiner operations. Internally, the register combiner
could maintain a 16.8 fixed-point format, and support operations
such as addition, subtraction, multiplication and division using
the extended range and precision of the new format. Once the
operation is completed, the result may then be unpacked into the

8-bit framebuffer with the output mapping R = L >> 16, G =
(L>>8)&0xff and B & 0xff.

6.2 Swizzle-Blits
Given the number of passes required, the register combiner
performance was astounding, currently 1.3 Hz on a GeForce2
graphics accelerator at a resolution of 256x256. Profiling the
code revealed that the main bottleneck was the time it took to
save the framebuffer to a texture, adding an average of 2 ms per
pass for 354 of the passes. OpenGL currently does not support
rendering directly to texture, and the register combiner does not
allow the framebuffer to be used as an input.
Whereas framebuffer memory is organized in scanline order,
modern texture memory is organized into blocks and other
patterns to better capitalize on spatial coherence. This coherence
allows texture pixels to be more effectively cached during
texture mapping operation. However, in this case the layout of
texture memory is counterproductive. The cost to “swizzle” the
memory into the clustered arrangement when saving a
framebuffer image to texture memory dominates the execution
time of iterative multipass shaders.
We have verifies this delay with a profile of the code, revealing
that our CopyTexSubImage operations were taking longer than
any other component of our shader. We also experimented with
various resolutions and found a direct 1:1 correspondence
between the number of pixels and the execution time.
Perhaps a mode can be incorporated into the graphics
accelerator state that optionally defeats the spatial-coherent
clustering of texture memory. This mode could be enabled
during multipass shader evaluation, to eliminate the shuffled
memory delay incurred during the CopyTexSubImage
operations.
Alternatively, upcoming modes that support rendering directly
to texture may also ameliorate this problem.

6.3 Logical Blend Modes
Blending modes such as exclusive-or and logical shifts left and
right are extremely valuable when generating random values.
Unfortunately these operations are not accelerated under current
graphics drivers. Such operations are of the simplest to
implement in hardware, and we suspect they will become
accelerated as demand for them increases.

7. Conclusion
We have investigated the implementation of the Perlin noise
function as a multipass pixel shader. We have developed a
general algorithm and implemented it using the accelerated
features from two different manufacturers.
The SGI implementation based on PixelTransfer and PixelMap
operations remains faster than the NVidia implementation based
on register combiners. However, we expect the additional
register combiner stages available in the upcoming GeForce3
will close this gap.
The process of implementing a general-purpose procedure using
GPU accelerated operations has been illuminating. We are
excited by the prospect of using the GPU as a SIMD-based
supercomputer. However, this vision has been stifled by the low
precision available in the buffers and processors, and the latency
due to slow framebuffer-to-texture memory transfers. We
believe both problems can be solved with moderate changes to
existing graphics accelerator architectures, and have suggested
possible solution implementations.

 10-26

Our noise implementation uses linear interpolation of random
values on an integer lattice. One can also implement cubic
interpolation at the expense of four extra passes. The function
SCURVE(u) = 3u2 – 2u3 can also be expressed as uu(3-2u). The
function 1/4 SCURVE(u) can be implement by modulating the
images u, u and 3/4 – 1/2 u. Note the latter is necessarily scaled
by ¼ to fall within the legal [0,1] OpenGL range. This result can
then be scaled by 4 (either through PixelTransfer or a register
combiner) to yield SCURVE(u).
We have investigated numerous methods for enhancing the
performance of these multipass pixel shaders. The 2-D s-t plane
examples suggested that image processing applications such as
translation and convolution could be applied, but such
techniques would not work for arbitrarily shaped objects in the
solid texture coordinate image, such as in Figure 13.

 (a) (b)

Figure 13. Application of the noise function (b) on a
sphere of solid texture coordinates (a).

The source code and an executable for both implementations of
the Perlin noise pixel shader can be found at:

http://graphics.cs.uiuc.edu/~jch/mpnoise.zip

Acknowledgments
Conversations with Pat Hanrahan and Henry Moreton were
helpful in determining the cause of the 3ms CopyTexSubImage
delay. This research was supported in part by a grant from the
Evans & Sutherland Computer Corp. Thanks also to Nate Carr
for proofreading the paper.

References
[1] Apodaca, A.A. Advanced Renderman: Creating CGI for Motion

Pictures. Morgan Jaufmannm 1999. See also: Renderman Tricks
Everyone Should Know, in SIGGRAPH 98 or SIGGRAPH 99
Advanced Renderman Course Notes.

[2] Carr, N.A. and J.C. Hart. Real-Time Procedural Solid Texturing.
Manuscript, in review. Apr. 2001.

[3] Ebert, D., F.K. Musgrave, D. Peachey, K. Perlin and S. Worley.
Texturing and Modeling: A Procedural Approach, Academic
Press.1994.

[4] Goehring, D. and O. Gerlitz. Advanced procedural texturing using
MMX technology. Intel MMX Technology Application Note, Oct.
1997. http://developer.intel.com/software/idap/
resources/technical_collateral/mmx/proctex2.htm

[5] Hanrahan, P. and J. Lawson. A language for shading and lighting
calculations. Computer Graphics 24(4), (Proc. SIGGRAPH 90),
Aug. 1990, pp. 289-298.

[6] Hanrahan, P. Procedural shading (keynote). Eurographics /
SIGGRAPH Workshop on Graphics Hardware, Aug. 1999.
http://graphics.standford.edu/hanrahan/talks/rts1/slides.

[7] Hart, J. C., N. Carr, M. Kameya, S. A. Tibbits, and T.J Colemen.
Antialiased parameterized solid texturing simplified for consumer-

level hardware implementation. 1999 SIGGRAPH/Eurographics
Workshop on Graphics Hardware, Aug. 1999, pp. 45-53.

[8] Heidrich, W. and H.-P. Seidel. Realistic hardware-accelerated
shading and lighting. Proc. SIGGRAPH 99, Aug. 1999, pp. 171-
178.

[9] Heidrich, W., R. Westermann, H-P Seidel and T. Ertl. Applications
of Pixel Textures in Visualization and Realistic Image Synthesis.
Proc. ACM Sym. on Interactive 3D Graphics, Apr. 1999, pp. 127-
134.

[10] Kameya, M. and J.C. Hart. Bresenham noise. SIGGRAPH 2000
Conference Abstracts and Applications, July 2000.

[11] McCool, M.C. and W. Heidrich. Texture Shaders. 1999
SIGGRAPH/Eurographics Workshop on Graphics Hardware, Aug.
1999, pp. 117-126.

[12] Microsoft Corp. Direct3D 8.0 specification. Available at:
http://www.msdn.microsoft.com/directx.

[13] Mine, A. and F. Neyret. Perlin Textures in Real Time using
OpenGL. Research Report #3713, INRIA, 1999. http://www-
imagis.imag.fr/Membres/Fabrice.Neyret/publis/RR-3713-
eng.html

[14] NVidia Corp. Noise, component of the NVEffectsBrowser.
Available at: http://www.nvidia.com/developer.

[15] Olano, M. and A. Lastra. A shading language on graphics
hardware: The PixelFlow shading system. Proc. SIGGRAPH 98,
July 1998, pp. 159-168.

[16] OpenGL Architecture Review Board. OpenGL Extension Registry.
Available at: http://oss.sgi.com/projects/ogl-sample/registry/

[17] Peachey, D.R. Solid texturing of complex surfaces. Computer
Graphics 19(3), July 1985, pp. 279-286.

[18] Peercy, M.S., M. Olano, J. Airey and P.J. Ungar. Interactive multi-
pass programmable shading, Proc. SIGGRAPH 2000, July 2000,
pp. 425-432.

[19] Perlin, K. An image synthesizer. Computer Graphics 19(3). July
1985, pp. 287-296.

[20] Pixar Animation Studios. Future requirements for graphics
hardware. Memo, 12 April 1999.

[21] Proudfoot, K., W.R. Mark, S. Tzvetkov and P. Hanrahan. A real-
time programmable shading system for programmable graphics
hardware. Proc. SIGGRAPH 2001, Aug. 2001, to appear.

[22] Rhoades, J., G. Turk, A. Bell, U. Neumann, and A. Varshney.
Real-time procedural textures. 1992 Symposium on Interactive 3D
Graphics 25(2), March 1992, pp 95-100.

[23] Segal, M. and K. Akeley. The OpenGL Graphics System: A
Specification, Version 1.2.1. Available at: http://www.opengl.org/.

[24] Skinner, R. and C.E. Kolb. noise.c component of the Rayshade ray
tracer, 1991.

http://graphics.cs.uiuc.edu/~jch/mpnoise.zip
http://developer.intel.com/software/idap/ resources/technical_collateral/mmx/proctex2.htm
http://developer.intel.com/software/idap/ resources/technical_collateral/mmx/proctex2.htm
http://graphics.standford.edu/hanrahan/talks/rts1/slides
http://www.msdn.microsoft.com/directx
http://www-imagis.imag.fr/Membres/Fabrice.Neyret/publis/RR-3713-eng.html
http://www-imagis.imag.fr/Membres/Fabrice.Neyret/publis/RR-3713-eng.html
http://www-imagis.imag.fr/Membres/Fabrice.Neyret/publis/RR-3713-eng.html
http://www.nvidia.com/developer
http://oss.sgi.com/projects/ogl-sample/registry/
http://www.opengl.org/

	Abstract
	Introduction
	Previous work
	A Multipass Noise Algorithm
	SGI Implementation
	PixelTransfer and PixelMap
	Logical Shift Operations
	Random Value Synthesis
	Results

	NVidia Implementation
	Register Combiners
	Logical Shift Operations
	Random Value Synthesis
	Results

	Discussion
	Limited Precision
	Swizzle-Blits
	Logical Blend Modes

	Conclusion
	Acknowledgments

	References

