
Interactive Shading Language (ISL)
Language Description
April 12, 2001
Copyright 2001, Silicon Graphics, Inc. ALL RIGHTS RESERVED

UNPUBLISHED -- Rights reserved under the copyright laws of the United States. Use of a copyright notice is precautionary only and does not imply
publication or disclosure.

U.S. GOVERNMENT RESTRICTED RIGHTS LEGEND:
Use, duplication or disclosure by the Government is subject to restrictions as set forth in FAR 52.227.19(c)(2) or subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013 and/or in similar or successor clauses in the FAR, or the DOD or NASA FAR
Supplement. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd. Mountain View, CA 94039-7311.

Contents

I. Introduction
II. Files

III. Data types
IV. Variables and identifiers
V. Uniform operations

VI. Parameter operations
VII. Varying operations
VIII. Built-in functions
IX. Variable declarations
X. Statements

XI. Functions

I. Introduction

ISL is a shading language designed for interactive display. Like other shading languages, programs
written in ISL describe how to find the final color for each pixel on a surface. ISL was created as a
simple restricted shading language to help us explore the implications of interactive shading. As such,
the language definition itself changes often. While this may be a snapshot specification for ISL, ISL is
not proposed as a formal or informal language standard. Shading language design for interactive
shading is still an open area of research.

A. Features in common with other shading languages

The final pixel color comes from the combined effects of two function types. A light shader computes
the color and intensity for a light hitting the surface. Light shaders can be used for ambient, distant and
local lights. Several light shaders may be involved in finding the final color for a single pixel. A surface
shader computes the base surface color and the interaction of the lights with that surface. The term
shader is used to refer to either of these special types of function.

6 - 9

All shading code is written with a single instruction, multiple data (SIMD) model. ISL shaders are
written as if they were operating on a single point on the surface, in isolation. The same operations are
performed for all pixels on the surface, but the computed values can be different at every pixel.

Like other shading languages that follow the SIMD model, ISL data may be declared varying or
uniform. Varying values may vary from pixel to pixel, while uniform values must be the same at every
pixel on the surface.

B. Major differences from other shading languages

ISL has several differences and limitations that distinguish it from more full-featured shading languages:

The primary varying data type in ISL is limited to the range [0,1]. Results outside this range are
clamped.
ISL does not allow texture lookups based on computed results.
ISL does not allow user-defined parameters that vary across the surface. Such parameters must
either be computed or loaded as texture.

ISL is also different from most other shading languages in that more than one surface shader may be
applied to each surface. The shaders are applied in turn and may composite or blend their results. ISL no
longer supports explicit atmosphere shaders. Any light transmission effects between the surface and eye
can be handled in the final shader applied to each surface.

II. Files

The appearance of a shaded surface is defined by one or more ISL surface shaders and possibly one or
more ISL light shaders. Each shader is defined in its own ISL source files, which should have the file
name extension .isl.

A. File contents

Only one shader definition (whether light or surface) can appear in each .isl file. The .isl file may
include C preprocessor-like #include directives to get access to functions or global variable definitions
stored in another file.

Comments in isl may be either C or C++-style (/*comment*/ or // comment to end of line)

B. File compilation

There are two ways to compile a set of ISL files into the rendering passes used to compute surface
appearance. The first is to use the command line compiler and translator. The second is to use the ISL
run-time library. Both are documented in the shader(1) man page. The ISL compiler, islc, converts a set
of ISL files into a pass description (.ipf) file. Information on running islc can be found on the islc(1)
man page. The pass description file can be converted either to C OpenGL code with the command line
translator ipf2ogl (see the ipf2ogl(1) man page), or to a Performer pass file with the command line

6 - 10

translator ipf2pf (shipped with Performer 2.4 or later). The ISL Library consists of a set of C++ classes
that enable an application to compile that appearance consisting of ISL shaders into an OpenGL stream.
The compiled appearance can be associated with geometry from the application, and rendered to an
OpenGL rendering context opened by the application.

III. Data types

All ISL data is classified as either varying, parameter or uniform. Varying data may hold a different
value at each pixel. Parameter data must have the same value at every pixel on a surface, but can differ
from surface to surface or from frame to frame. Changes to varying or parameter data do not require
recompiling the shader. Uniform data also has the same value at every pixel on the surface, but changes
to uniform data only take effect when the shader is recompiled.

The complete list of ISL data types is:

uniform float uf uf and pf are each a single floating point value

parameter float pf

uniform color uc uc and pc are each a set of four floating point values, representing a color,
vector or point. For colors, the components are ordered red, green, blue and
alpha. For points, the components are ordered x,y,z and w.parameter color pc

varying color vc vc is a four element color, vector or point that may have different values at
each pixel on the surface. Elements of the color are constrained to lie
between 0 and 1. Negative values are clamped to zero and values greater
than one are clamped to one

uniform matrix um um and pm are each a set of sixteen floating point values, representing a
4x4 matrix in row-major order (all four elements of first row, all four
elements of second row, ...)parameter matrix pm

uniform string us us is a character string, used for texture names.

ISL also allows 1D arrays of all uniform and parameter types, using a C-style specification:

uniform float ufa[n] ufa is an array with n uniform float point elements, ufa[0] through
ufa[n-1]

parameter float pfa[n] ufa is an array with n parameter float point elements, pfa[0] through
pfa[n-1]

uniform color uca[n] uca is an array with n uniform color elements, uca[0] through uca[n-1].

parameter color uca[n] pca is an array with n parameter color elements, pca[0] through
pca[n-1].

uniform matrix uma[n] uma is an array with n uniform matrix elements, uma[0] through
uma[n-1]

parameter matrix pma[n] pma is an array with n parameter matrix elements, pma[0] through
pma[n-1]

uniform string usa[n] usa is an array with n uniform string elements, usa[0] through usa[n-1]

6 - 11

IV. Variables and identifiers

Identifiers in ISL are used for variable or function names. They begin with a letter, and may be followed
by additional letters, underscores or digits. For example a, abc, C93d, and d_e_f are all legal identifiers.

Several variables are predefined with special meaning:

varying color FB Current frame buffer contents. This is the intermediate result
location for almost all varying operations.

parameter matrix shadermatrix Arbitrary matrix associated with the shader at compile time. This
may be used to control the coordinate space where the shader
operates.

uniform float pi The math constant.

V. Uniform operations

In the following, uf and uf0-uf15 are uniform floats; ufa is an array of uniform floats; uc, uc0 and uc1
are uniform colors; uca is an array of uniform colors; um, um0 and um1 are uniform matrices; uma is an
array of uniform matrices; us, us0 and us1 are uniform strings; usa is an array of uniform strings; and ur,
ur0 and ur1 are uniform relations.

A. uniform float

Operations producing a uniform float:

6 - 12

variable reference Value of uniform float variable.

float constant One of the following non-case-sensitive patterns:
0xH (hex integer);
0O (octal integer);
D; D.; .D; D.D;
DeSD; D.eSD; .DeSD; D.DeSD

Where
H = 1 or more hex digits (0-9 or a-f)
O = 1 or more octal digits (0-7)
D = 1 or more decimal digits (0-9)
S = +, - or nothing

(uf) Grouping intermediate computations.

-uf Negate uf

uf0 + uf1 Add uf0 and uf1

uf0 - uf1 Subtract uf1 from uf0

uf0 * uf1 Multiply uf0 and uf1

uf0 / uf1 Divide uf0 by uf1

uc[uf0] Gives channel floor(uf0) of color uc, where red is channel 0, green is channel
1, blue is channel 2 and alpha is channel 3.

um[uf0][uf1] Gives element floor(4*uf0 + uf1) of matrix um

ufa[uf] Element floor(uf) of array ufa where element 0 is the first element.

Behavior is undefined if floor(uf0) falls outside the array.

f (...) Function call to a function returning uniform float result

Uniform float assignments take the following forms, where lvalue is either a uniform float variable or a
floating point element from a variable (var[uf0] for a uniform color or a uniform float array,
var[uf0][uf1] for a uniform matrix or uniform color array or var[uf0][uf1][uf2] for a uniform matrix
array):

lvalue = uf Simple assignment

lvalue += uf Equivalent to lvalue = lvalue + uf

lvalue -= uf Equivalent to lvalue = lvalue - uf

lvalue *= uf Equivalent to lvalue = lvalue * uf

lvalue /= uf Equivalent to lvalue = lvalue / uf

B. uniform color

Operations producing a uniform color:

6 - 13

variable reference Value of uniform color variable

color(uf0,uf1,uf2,uf3) red=uf0; green=uf1; blue=uf2; alpha=uf3

uf color(uf,uf,uf,uf)

(uc) Grouping intermediate computations

-uc

uc0 + uc1

uc0 - uc1

uc0 * uc1

uc0 / uc1

Each uniform float operation is applied component-by-component

um[uf] Row floor(uf) of matrix um

uca[uf] Element floor(uf) of array uca, where element 0 is the first element.

Behavior is undefined if floor(uf0) falls outside the array.

f (...) Function call to a function returning uniform color result

Uniform color assignments take the following forms, where lvalue is either a uniform color variable or a
color element from a variable (var[uf0] for an element of a color array or row of a uniform matrix or
var[uf0][uf1] for a uniform matrix array):

lvalue = uc Simple assignment

lvalue += uc Equivalent to lvalue = lvalue + uc

lvalue -= uc Equivalent to lvalue = lvalue - uc

lvalue *= uc Equivalent to lvalue = lvalue * uc

lvalue /= uc Equivalent to lvalue = lvalue / uc

Color elements can also be set individually. See section A above.

C. uniform matrix

Operations producing a uniform matrix:

6 - 14

variable reference Value of uniform matrix variable

matrix(uf0,uf1,uf2,uf3,
uf4,uf5,uf6,uf7,
uf8,uf9,uf10,uf11,
uf12,uf13,uf14,uf15)

Matrix with rows (uf0,uf1,uf2,uf3), (uf4,uf5,uf6,uf7), (uf8,uf9,uf10,uf11)
and (uf12,uf13,uf14,uf15)

uf matrix(uf,0,0,0, 0,uf,0,0, 0,0,uf,0, 0,0,0,uf)

(um) Grouping intermediate computations

-um

um0 + um1

um0 - um1

Each uniform float operation is applied component-by-component

um0 * um1 Matrix multiplication:
result[i][k] = sum j=0..3(um0[i][j] * um1[j][k])

uma[uf] Element floor(uf) of array uma where element 0 is the first element.

Behavior is undefined if floor(uf0) falls outside the array.

f (...) Function call to a function returning uniform matrix result

Uniform matrix assignments take the following forms, where lvalue is either a uniform matrix variable
or one element of a uniform matrix array variable, accessed as var[uf]:

lvalue = um Simple assignment

lvalue += um Equivalent to lvalue = lvalue + um

lvalue -= um Equivalent to lvalue = lvalue - um

lvalue *= um Equivalent to lvalue = lvalue * um

Matrix elements can also be set individually. See sections A and B above.

E. uniform string

Operations producing a uniform string:
variable reference Value of uniform string variable

constant string String inside double quotes ("string")

usa[uf] Element floor(uf) of array usa where element 0 is the first element.

Behavior is undefined if floor(uf0) falls outside the array.

f (...) Function call to a function returning uniform string result

Strings can include escape sequences beginning with ’\’:

6 - 15

character sequence name

\O Octal character code

\xH Hex character code

\n Newline

\t Tab

\v Vertical tab

\b Backspace

\r Carriage return

\f Form feed

\a Alert (bell)

\\ Backslash character

\? Question mark

\’ Single quote

\" Embedded double quote

Uniform string assignments take the following forms, where lvalue is either a uniform string variable or
one element of an uniform string array variable, accessed by var[uf]:

lvalue = us Simple assignment

F. uniform relations

Operations producing a uniform relation (used in control statements discussed later):

6 - 16

uf0 == uf1

uf0 != uf1

uf0 >= uf1

uf0 <= uf1

uf0 > uf1

uf0 < uf1

Traditional comparisons: equal, not equal, greater or equal, less or equal, greater,
and less

uc0 == uc1 True if all elements of uc0 are equal to the corresponding elements of uc1

uc0 != uc1 true if any elements of uc0 does not equal the corresponding element of uc1

um0 == um1 True if all elements of um0 are equal to the corresponding elements of um1

um0 != um1 True if any elements of um0 does not equal the corresponding element of um1

us0 == us1

us0 != us1

Traditional string comparison: equal and not equal

(ur) Grouping intermediate computations

ur0 && ur1 True if both ur0 and ur1 are true

ur0 || ur1 True if either ur0 or ur1 are true

!ur True if ur is false

It is not possible to save uniform relation results to a variable.

VI. Parameter operations

In the following, pf and pf0-pf15 are parameter floats; pfa is an array of parameter floats; pc, pc0 and
pc1 are parameter colors; pca is an array of parameter colors; pm, pm0 and pm1 are parameter matrices;
and pma is an array of parameter matrices. Also, uf0 and uf1 are uniform floats and uc is a uniform color
as defined above.

A. parameter float

Operations producing a parameter float:

6 - 17

variable reference Value of parameter float variable.

uf Convert uniform float to parameter float.

(pf) Grouping intermediate computations.

-pf Negate pf

pf0 + pf1 Add pf0 and pf1

pf0 - pf1 Subtract pf1 from pf0

pf0 * pf1 Multiply pf0 and pf1

pf0 / pf1 Divide pf0 by pf1

pc[pf0] Gives channel floor(pf0) of color pc, where red is channel 0, green is channel
1, blue is channel 2 and alpha is channel 3.

pm[pf0][pf1] Gives element floor(4*pf0 + pf1) of matrix pm

pfa[uf] Element floor(uf) of array pfa where element 0 is the first element. Note that
currently the array index must be uniform.

Behavior is undefined if floor(uf0) falls outside the array.

f (...) Function call to a function returning parameter float result

Parameter float assignments take the following forms, where lvalue is either a parameter float variable
or a floating point element from a variable (var[uf0] for a parameter float array):

lvalue = pf Simple assignment

lvalue += pf Equivalent to lvalue = lvalue + pf

lvalue -= pf Equivalent to lvalue = lvalue - pf

lvalue *= pf Equivalent to lvalue = lvalue * pf

lvalue /= pf Equivalent to lvalue = lvalue / pf

B. parameter color

Operations producing a parameter color:

6 - 18

variable reference Value of parameter color variable

uc Convert uniform color to parameter color.

color(pf0,pf1,pf2,pf3) red=pf0; green=pf1; blue=pf2; alpha=pf3

pf color(pf,pf,pf,pf)

(pc) Grouping intermediate computations

-pc

pc0 + pc1

pc0 - pc1

pc0 * pc1

pc0 / pc1

Each parameter float operation is applied component-by-component

pm[pf] Row floor(pf) of matrix pm

pca[uf] Element floor(uf) of array pca, where element 0 is the first element. Note
that currently the array index must be uniform.

Behavior is undefined if floor(uf0) falls outside the array.

f (...) Function call to a function returning parameter color result

Parameter color assignments take the following forms, where lvalue is either a parameter color variable
or a color element from a variable (var[uf0] for an element of a color array):

lvalue = pc Simple assignment

lvalue += pc Equivalent to lvalue = lvalue + pc

lvalue -= pc Equivalent to lvalue = lvalue - pc

lvalue *= pc Equivalent to lvalue = lvalue * pc

lvalue /= pc Equivalent to lvalue = lvalue / pc

Unlike uniform colors, parameter colors cannot currently be set by element.

C. parameter matrix

Operations producing a parameter matrix:

6 - 19

variable reference Value of parameter matrix variable

um Convert uniform matrix to parameter matrix.

matrix(pf0,pf1,pf2,pf3,
pf4,pf5,pf6,pf7,
pf8,pf9,pf10,pf11,
pf12,pf13,pf14,pf15)

Matrix with rows (pf0,pf1,pf2,pf3), (pf4,pf5,pf6,pf7), (pf8,pf9,pf10,pf11)
and (pf12,pf13,pf14,pf15)

pf matrix(pf,0,0,0, 0,pf,0,0, 0,0,pf,0, 0,0,0,pf)

(pm) Grouping intermediate computations

-pm

pm0 + pm1

pm0 - pm1

Each parameter float operation is applied component-by-component

pm0 * pm1 Matrix multiplication:
result[i][k] = sum j=0..3(um0[i][j] * um1[j][k])

pma[uf] Element floor(uf) of array pma where element 0 is the first element.
Note that currently the array index must be uniform.

Behavior is undefined if floor(uf0) falls outside the array.

f (...) Function call to a function returning parameter matrix result

Parameter matrix assignments take the following forms, where lvalue is either a parameter matrix
variable or one element of a parameter matrix array variable, accessed as var[uf]:

lvalue = pm Simple assignment

lvalue += pm Equivalent to lvalue = lvalue + pm

lvalue -= pm Equivalent to lvalue = lvalue - pm

lvalue *= pm Equivalent to lvalue = lvalue * pm

Unlike uniform matrices, parameter matrices cannot currently be set by element.

VII. Varying operations

In the following, vc is a varying color. Also, pf0 and pf1 are parameter floats and pc is a parameter color
as defined above.

A. varying color

Operations producing a varying color:

6 - 20

variable reference Value of varying color variable

Note: when a varying variable is used, texgen value of -3 is passed to the
application geometry drawing function (see the description under texture()).
While the geometry drawing function may choose to act on this value,
OpenGL Shader will set the texture generation mode appropriately.

pc Convert parameter color to varying, clamping the resulting color to [0,1].
After this conversion, every pixel has its own copy of the color value.

Possible targets for varying assignments are:

FB All channels of the framebuffer

FB.C Set only some channels, leaving the others alone. C is a channel specification, consisting of
some combination of the letters r,g,b and a to select the red, green, blue and alpha channels.
Each letter can appear at most once, and they must appear in order. This can be used to
isolate individual channels: FB.r, FB.g, FB.b, FB.a, or to select arbitrary groups of
channels: FB.rgb, FB.rb, FB.ga.

Varying assignments into the framebuffer can take the following forms, where lvalue is FB or FB.C (as
described above):

FB = f (...) Function call to a function returning varying color result

All varying functions also implicitly have access to the value of FB when the
function is called.

Except for certain built-in functions explicitly noted later, varying functions can
only be assigned directly into all channels of the framebuffer. To combine the
results of a varying function with the existing frame buffer contents, you must save
the existing frame buffer into a variable. For example:

NO OK

FB.r = f();
varying color a = FB;
FB = f();
FB.bga = a;

lvalue = vc Copy vc into lvalue

lvalue += vc

lvalue -= vc

lvalue *= vc

Add, subtract, or multiply lvalue and vc, putting the result in lvalue.

Assignments into varying variables can only take this form:

variable = FB Copy framebuffer to variable

B. varying relations

6 - 21

Operations producing a varying relation (used in control statements discussed later):

FB[vf0] == vf1

FB[vf0] != vf1

FB[vf0] >= vf1

FB[vf0] <= vf1

FB[vf0] > vf1

FB[vf0] < vf1

Traditional comparisons: equal, not equal, greater or equal, less or equal, greater,
and less

Performs per-pixel comparison between frame buffer channel uf0 and reference
value uf1. Frame buffer channel 0 is red, channel 1 is green, channel 2 is blue and
channel 3 is alpha.

It is not possible to save varying relation results to a variable.

VIII. Built-in functions

The following is a preliminary set of provided functions returning uniform results.

uniform float abs(uniform float x)

parameter float abs(parameter float x)

absolute value of x

uniform float acos(uniform float x)

parameter float acos(parameter float x)

inverse cosine, radian result is between 0 and pi

uniform float asin(uniform float y)

parameter float asin(parameter float y)

inverse sine, radian result is between -pi/2 and pi/2

uniform float atan(uniform float f)

parameter float atan(parameter float f)

inverse tangent, radian result is between -pi/2 and pi/2

uniform float atan(uniform float y;
uniform float x)

parameter float atan(parameter float y;
parameter float x)

inverse tangent of y/x, radian result is between -pi
and pi

uniform float ceil(uniform float x)

parameter float ceil(parameter float x)

round x up (smallest integer i >= x)

uniform float clamp(uniform float x;
uniform float a; uniform float b)

parameter float clamp(parameter float x;
parameter float a; parameter float b)

clamp x to lie between a and b

6 - 22

uniform float cos(uniform float r)

parameter float cos(parameter float r)

cosine of r radians

uniform float exp(uniform float x)

parameter float exp(parameter float x)

ex

uniform float floor(uniform float x)

parameter float floor(parameter float x)

round x down (largest integer i <= x)

uniform matrix inverse(uniform matrix m)

parameter matrix inverse(parameter matrix
m)

matrix inverse
m*inverse(m) = inverse(m)*m = identity matrix

uniform float log(uniform float x)

parameter float log(parameter float x)

natural log of x

uniform float max(uniform float x;
uniform float y)

parameter float max(parameter float x;
parameter float y)

maximum of x and y

uniform float min(uniform float f ;
uniform float g)

parameter float min(parameter float f ;
parameter float g)

minimum of x and y

uniform float mod(uniform float n;
uniform float d)

parameter float mod(parameter float n;
parameter float d)

Remainder of division n/d

n - d*floor(n/d)

uniform matrix perspective(uniform float
d)

parameter matrix perspective(parameter
float d)

matrix to perform perspective projection looking
down the Z axis with a field of view of d degrees.
matrix(cotan(d/2),0, 0, 0,

0, cotan(d/2),0, 0,
0, 0, 1, 1,
0, 0, -2,0)

uniform float pow(uniform float x;
uniform float y)

parameter float pow(parameter float x;
parameter float y)

xy

6 - 23

uniform matrix rotate(uniform float x;
uniform float y; uniform float z; uniform
float r)

parameter matrix rotate(parameter float x;
parameter float y; parameter float z;
parameter float r)

rotate r radians around axis (x,y,z)

uniform float round(uniform float x)

parameter float round(parameter float x)

round x to the nearest integer

uniform matrix scale(uniform float x;
uniform float y; uniform float z)

parameter matrix scale(parameter float x;
parameter float y; parameter float z)

matrix(x,0,0,0, 0,y,0,0, 0,0,z,0, 0,0,0,1)

uniform float sign(uniform float x)

parameter float sign(parameter float x)

sign of x: -1, 0 or 1

uniform float sin(uniform float r)

parameter float sin(parameter float r)

sine of r radians

uniform float smoothstep(uniform float a;
uniform float b; uniform float x)

parameter float smoothstep(parameter
float a; parameter float b; parameter float
x)

smooth transition between 0 and 1 as x changes from
a to b.

0 for x < a, 1 for x > b

uniform color spline(uniform float x;
uniform color c[])

uniform float spline(uniform float x;
uniform float c[])

parameter color spline(parameter float x;
parameter color c[])

parameter float spline(parameter float x;
parameter float c[])

evaluate Catmull-Rom spline at x based on control
point vector, c.

A Catmull-Rom spline passes through all of the
control points. The derivative of the curve at each
control point is half the difference between the next
and previous control points. The full curve is covered
between x=0 and x=1

uniform float sqrt(uniform float x)

parameter float sqrt(parameter float x)

square root of x

6 - 24

uniform float step(uniform float a;
uniform float x)

parameter float step(parameter float a;
parameter float x)

0 for x<a

1 for x>=a

uniform float tan(uniform float r)

parameter float tan(parameter float r)

tangent of r radians

uniform matrix translate(uniform float x;
uniform float y; uniform float z)

parameter matrix translate(parameter float
x; parameter float y; parameter float z)

matrix(1,0,0,0, 0,1,0,0, 0,0,1,0, x,y,z,1)

The following is a preliminary set of provided functions returning varying color results.

varying color texture(
uniform string texturename[;
parameter matrix xform[;
uniform float texgen]])

varying color texture(
uniform float texturearray[][;
parameter matrix xform[;
uniform float texgen]])

varying color texture(
uniform color texturearray[][;
parameter matrix xform[;
uniform float texgen]])

Map texture onto surface, using texture coordinates
defined with object geometry. Versions with array
textures are 1D texturing only (using the s texture
coordinate).

Optional float texgen (>= 0) is passed to the geometry
drawing function so it can generate a different (application
defined) set of per-vertex texture coordinates. If texgen is
not given, a value of 0 will be passed to the geometry
drawing function.

Optional matrix xform is a matrix for transforming the
texture coordinates. If xform is not given, the identity
matrix is used (i.e. texture coordinates are used as given).

Note: negative texgen values are used for built-in texture
generation modes. These negative values are also passed
to the geometry drawing function. While the geometry
drawing function may choose to act on these value,
OpenGL Shader will set the texture generation mode
appropriately.

texture use texgen code

texture() >= 0

project() -1

environment() -2

varying variable use -3

6 - 25

varying color environment(
uniform string texturename[;
parameter matrix xform])

varying color environment(
uniform float texturearray[][;
parameter matrix xform])

varying color environment(
uniform color texturearray[][;
parameter matrix xform])

Map texture onto surface, as a spherical environment map.
Versions with array textures are 1D texturing only (using
the s texture coordinate).

Optional matrix xform is a matrix for transforming the
texture coordinates. For example, it can be used to set the
map up direction. If xform is not given, the identity matrix
is used (i.e. texture coordinates are used as generated).

Note: environment also passes a texgen value of -2 to the
application geometry drawing function.

varying color project(
uniform string texturename[;
parameter matrix xform])

varying color project(
uniform float texturearray[][;
parameter matrix xform])

varying color project(
uniform color texturearray[][;
parameter matrix xform])

Project texture onto surface using parallel projection down
the Z axis. Versions with array textures are 1D texturing
only (using the X coordinate only).

Optional matrix xform is a matrix for transforming before
projection. For example, to project in shader space, use
inverse(shadermatrix). If xform is not given, the identity
matrix is used.

Note: project() also passes a texgen value of -1 to the
application geometry drawing function.

varying color transform(parameter
matrix xform)

Transform the varying color in the frame buffer by the
given matrix

varying color lookup(parameter float
lut[])

varying color lookup(parameter color
lut[])

Lookup each frame buffer channel in the given lookup
table.

Each channel is handled independently, so the resulting
red component of the result comes from the red
component lut[n*FB.r]. Similarly, for green from
lut[n*FB.g] and blue from lut[n*FB.b]

varying color blend(varying color v) Channel by channel blend: FB*(1-v) + v = v*(1-FB) + FB

varying color over(varying color v) Alpha-based blend of FB over v:
v*(1-FB.a) + FB*FB.a

varying color under(varying color v) Alpha-based blend of FB under v:
FB*(1-v.a) + v*v.a

varying color ambient() Return sum of ambient light hitting surface

varying color diffuse() Return sum of diffuse light hitting surface

varying color specular(parameter float
e)

Return sum of specular light hitting surface, using e as the
exponent in the Phong lighting model

IX. Variable declarations

6 - 26

A variable declaration is a type name followed by one (and only one) variable name. Each variable name
may optionally be followed by an initial value. Some examples:

uniform float fvar;

uniform float farray[3];

uniform float fvar = 3;

parameter matrix = 1;

uniform string = "mytexture"

varying color cvar;

Variable and functions names are bound using static scoping rules similar to C. The same name cannot
occur more than once within the same block of statements (bounded by ’{’ and ’}’), but can be redefined
within a nested block:

not legal legal
{
 uniform float x;
 uniform float x;
}

{
 uniform float x;
 {
 uniform color x;
 }
}

X. Statements

In the following, uf is a uniform float, ur is a uniform relation and vr is a varying relation as defined
above.

Legal ISL statements are:

6 - 27

assignment; Performs assignment

variable declaration; Creates and possibly initializes variable

{list of 0 or more
statements}

Executes statements sequentially

if (ur) statement Execute statement if uniform relation ur is true

if (ur) statement else
statement

Execute first statement if ur is true, and second statement if ur is
false.

if (vr) statement Restricts the currently active set of pixels to those where the given
varying relation is true. The active set of pixels starts as all visible
pixels within the shaded object, but may be restricted by one or
more if statements.

Frame buffer operations in statement only operate on the active
subset of pixels. Any uniform operations or varying variable
assignments are still applied for all pixels.

if (vr) statement else
statement

The first statement executes with the same restricted set of pixels as
the previous if statement. The second statement executes with the
active pixels restricted to those that were active when the if
statement was reached but where the varying relation was false.

In both statements, the active set of pixels only restricts frame
buffer operations. Uniform operations and assignment to varying
variables are not affected by the set of active pixels.

repeat (uf) statement repeat statment max(0,floor(uf)) times.

XI. Functions

Every function has this form:
type function_name(formal_parameters) { body }

The type is one of the ordinary types or a shader type:

ambientlight Light contributing to ambient() function.

distantlight Light shining down the z axis. It is transformed by shadermatrix, which can be used
to point in other directions. Contributes to the diffuse() and specular() functions.

pointlight Light positioned at the origin. It is transformed by shadermatrix, which can be used
to position it in the scene. Contributes to diffuse() and specular() functions.

surface Surface appearance. Should compute the base surface color and lighting
contribution (though calls to ambient(), diffuse() and specular()).

atmosphere Equivalent to surface. Atmospheric effects like fog are handled in the last surface
shader in the shader list.

The set of formal parameter declarations are a semi-colon separated list of uniform variable declarations,

6 - 28

with initial values. Initial values are required for all formal parameters. For shaders, the initial values
are interpreted as defaults for any variable not set explicitly by the application. Arrays in the formal
parameter list for a shader are not currently visible to the application. The initial values for parameters
of ordinary functions are not currently used, but they are still required.

The body is just a list of statements. The result of each shader is just the value left in FB when the
shader exits.

The last statement of any function should be the special statement
return value;.

The return statement can only appear as the last statement in a function, and the type of value should
match the function type. For functions returning a varying color, the return is optional. If return is
omitted on a varying color function, the function return value is the value of FB at the end of the
function.

Light shaders return a varying color giving the light that reaches the surface. This color may include
effects like shadowing, but not the interaction with the surface itself.

Surface shaders return a varying color giving the final color of the surface. At the start of the shader, FB
contains the color of the closest surface previously seen at each pixel. Shaders with transparency should
handle any blending with this existing color. In order for surfaces with varying opacity to work, it is also
necessary that the application and/or scene graph sort transparent surfaces, and surfaces with varying
opacity should be treated as transparent.

Atmosphere shaders start with FB set to the final rendered color for each pixel. They return the
attenuated color.

An example shader:

surface shadertest(
 uniform color c = color(1,0,0,1);
 uniform float f = .25)
{
 FB = diffuse();
 FB *= c*f;
 return FB;
}

6 - 29

