
Real-tim e Shadin g:
Hardware Shadin g Effects

WolfgangHeidrich
TheUniversityof British Columbia

Abstract

In thispartof thecoursewewill review someexamples
of shading algorithmsthatwemightwantto implement
in a real-time or interactive system. This will help us
to identify commonapproaches for real-time shading
systems and to acquire information about feature sets
required for this kind of system.

Theshading algorithmswewill look at fall into three
categories: realistic materials for local andglobal illu-
mination, shadowmapping, andfinally bumpmapping
algorithms.

1 Realistic Materials

In this section we describe techniques for a variety of
different reflectionmodelsto the computation of local
illumination in hardware-basedrendering. Ratherthan
replacing thestandardPhongmodelby anothersingle,
fixed model, we seeka methodthat allows us to uti-
lize a wide varietyof differentmodelssothat themost
appropriate modelcanbechosenfor eachapplication.

1.1 Arbitrar y BRDFs for Local Illum ina-
tion

We will first consider the case of local illumination,
i.e. light that arrivesat objects directly from the light
sources. The more complicatedcaseof indirect illu-
mination (i.e. light that bouncesaround in the envi-
ronment before hitting the object) will be described in
Section1.3.

The fundamentalapproach for rendering arbitrary
materials works as follows. A reflection model in re-
flection model in computer graphics is typically given
in the form of a bidirectional reflectancedistribution
function (BRDF), which describesthe amountof light
reflected for eachpair of incoming (i.e. light) andout-
going (i.e. viewing) direction. This function caneither

be representedanalytically, in which caseit is calleda
reflection model), or it canberepresented in atabularor
sampledform asa four-dimensionalarray (two dimen-
sionseachfor theincoming andoutgoing direction).

The problem with both representations is that they
cannot directly be used in hardware rendering: the
interesting analytical models are mathematically too
complex for hardwareimplementations,andthetabular
form consumestoo muchmemory(a four-dimensional
table can easily consume dozens of MB). A differ-
ent approachhasbeenproposedby Heidrich andSei-
del [9]. It turnsout that mostlighting modelsin com-
putergraphics can be factored into independent com-
ponents that only depend on oneor two angles. These
canthenbeindependently sampledandstored aslower-
dimensional tablesthat consume much less memory.
KautzandMcCool [12] describeda methodfor factor-
izing BRDFsgiven in tabular form into lower dimen-
sional partsthatcanberenderedin a similar fashion.

Asanexamplefor thetreatmentof analytical models,
considertheoneby TorranceandSparrow[29]:� � � ���� ��	��

��� ��� �� � � ���	��� � � �	��� (1)

where
� �

is theBRDF, � is theanglebetween thesur-
facenormal �� andthevector

��
pointing towardsthelight

source,while � is theanglebetween �� andtheviewing
direction �� . Thegeometry is depictedin Figure1.

For a fixed index of refraction, the Fresnelterm �
in Equation 1 only dependson theangle � between the
light direction

��
andthemicro facet normal

��
, which is

thehalfway vector between
��
and �� . Thus,theFresnel

termcanbeseen asa univariatefunction � � � � � �).
The micro facetdistribution function � , which de-

fines the percentageof facets oriented in direction
��
,

dependson theangle between
��

andthesurfacenor-
mal �� , aswell asa roughnessparameter. This is true
for all widely used choicesof distribution functions, in-
cluding a Gaussian distribution of or of the surface

n➞

h
➞

l
➞

v➞

t
➞

h’➞

φ

θ θ

δβ
α

Figure1: The local geometry of reflection at a rough
surface.

height, as well as the distribution by Beckmann[3].
Sincetheroughnessis generally assumedto beconstant
for a given surface, this is againa univariatefunction� � � ��� � .

Finally, whenusing the geometry term � proposed
by Smith [27], which describes the shadowing and
masking of light for surfaces with a Gaussianmi-
cro facet distribution, this term is a bivariate function� � � � �!� � � � �	� � .Thecontribution of asinglepoint- or directional light
sourcewith intensity " # to theintensity of thesurface is
givenas " $
 � � � ��%� ��&� � � �!�'� " # . Theterm

� � � (� ��%���	� � ���&� canbesplit into two bivariateparts � � � � � � � �� � � ��� � and � � � � �!� � � � �&� �) � � �!� � �	� � , which are
then storedin two independent 2-dimensional lookup
tables.

Regular 2D texture mappingcanbe usedto imple-
mentthe lookup process. If all vectorsarenormalized,
thetexturecoordinatesaresimpledotproductsbetween
the surface normal, the viewing and light directions,
and the micro facetnormal. Thesevectorsand their
dot productscanbecomputedin softwareandassigned
astexture coordinatesto eachvertex of theobject.

Theinterpolation of thesetexture coordinatesacross
a polygon corresponds to a linear interpolation of the
vectors without renormalization. Since the reflection
modelitself is highly nonlinear, this is muchbetter than
simpleGouraud shading, but not asgoodasevaluating
theilluminationin everypixel (Phong shading). Thein-
terpolation of normals without renormalization is com-
monly known asfast Phongshading.

This method for looking up the illumination in two
separate2-dimensional texturesrequireseithera single

rendering passwith two simultaneous textures,or two
separate rendering passes with onetexture each in or-
der to render specular reflections on an object. If two
passes areused, their results aremultiplied using alpha
blending. A third rendering passwith hardwarelighting
(or a third simultaneous texture) is applied for adding a
diffuseterm.

If the light and viewing directions are assumed to
be constant, that is, if a directional light and an or-
thographiccameraareassumed,thecomputationof the
texture coordinatescaneven be done in hardware. To
this end, light and viewing direction as well as the
halfway vector betweenthemareusedasrow vectors
in thetexture matrix for thetwo textures:*++,
-.-/- � ��� ��	01�	21�&3 --.-/-4--.-/-65

7 889 �
*++, �
0� 2� 35
7 889

*++, � ��� �� � � - 5

7 889 (2)

*++,
� 0:� 2;� 3 -� 0 � 2 � 3 --<-<-=--<-<->5

7 889 �
*++, �
0� 2� 35
7 889

*++, � � �&�� ���	�- 5

7 889 (3)

Figure 2 shows a torus renderedwith two different
roughnesssettingsusingthis technique.

Wewould like to notethattheuseof texturesfor rep-
resenting the lighting modelintroduces an approxima-
tion error: while theterm �?� � is boundedby theinter-
val @ - � 5 A , thesecondterm �) � � � � ���	� � exhibits asingu-
larity for grazing viewing directions(� � �	� � -). Since
graphicshardwaretypically usesafixed-point represen-
tationof textures,thetexturevaluesareclampedto the
range @ - � 5 A . When these clamped valuesareusedfor
the illumination process,areasaround the grazing an-
glescanberenderedtoo dark,especially if thesurface
is very shiny. This artifact canbereducedby dividing
the valuesstored in the texture by a constant which is
later multiplied backonto the final result. In practice,
however, theseartifactsarehardly noticeable.

The samemethodscan be applied to all kinds of
variationsof theTorrance-Sparrowmodel,using differ-
ent distribution functions and geometry terms,or the
approximations proposedin [24]. With varying num-
bersof termsandrendering passes,it is alsopossible
to comeup with similar factorizationsfor all kinds of
other models. For example the Phong,Blinn-Phong

5 – 2

Figure2: A torusrenderedwith the proposedhardware multi-passmethodusingthe Torrance-Sparrowreflection
model(Gaussianheight distribution andgeometry termby [27]) anddifferentsettingsfor thesurfaceroughness. For
theseimages,thetorus wastessellatedinto B - -DC B - - polygons.

andCosineLobe models canall be renderedin a sin-
gle pass with a single texture, which caneven already
account for anambient andadiffusetermin addition to
thespecular one.

1.1.1 Anisotr opy

Although the treatment of anisotropic materials is
somewhat harder, similar factorization techniquescan
be applied here. For anisotropic models, the micro
facetdistribution function and the geometrical attenu-
ation factor also depend on the angle E betweenthe
facetnormal and a referencedirection in the tangent
plane. This referencedirection is givenin theform of a
tangentvector

�F
.

For example, the elliptical Gaussian model [31] in-
troducesananisotropic facet distribution functionspec-
ified astheproduct of two independent Gaussianfunc-
tions, onein thedirection of

�F
, andonein thedirection

of thebinormal �� C �F . Thismakes � abivariatefunction
in the angles and E . Consequently, the texture coor-

dinates canbecomputedin software in muchthesame
way as described above for isotropic materials. This
alsoholdsfor theother anisotropic modelsin computer
graphics literature.

Sinceanisotropic modelsdepend on both a normal
anda tangent pervertex, thetexturecoordinatescannot
be generatedwith the help of a texture matrix, even if
light andviewing directionsareassumedto beconstant.
This is dueto thefactthattheanisotropic termcanusu-
ally not be factored into a term that only depends on
the surfacenormal,andone that only depends on the
tangent.

Oneexception to this rule is themodelby Banks[2],
which is mentionedheredespite the fact that it is an
ad-hoc modelwhich is not basedon physical consider-
ations. Banksdefinesthe reflection off an anisotropic
surface as

" $
 � � �&�'� � G H�I	��%J K �� L%MNG O I	��%J K ��!L P Q � � � " # � (4)

where
��!J is theprojectionof thelight vector

��
into the

5 – 3

plane perpendicular to the tangent vector
�F
. This vec-

tor is thenusedasa shading normal for a Blinn-Phong
lighting modelwith diffuseandspecularcoefficients

G H
and
G O

, andsurface roughnessR . In [28], it hasbeen
pointed out that this Phongterm is really only a func-
tion of thetwo anglesbetweenthetangent andthelight
direction, aswell asthetangentandtheviewing direc-
tion. This fact was usedfor the illumination of lines
in [28].

Applied to anisotropic reflection models, this means
that this Phong term can be looked up from a 2-
dimensional texture, if the tangent

�F
is specified as a

texturecoordinate,andthetexturematrix is setup asin
Equation 3. Theadditional term � ���&� in Equation4 is
computedby hardware lighting with a directional light
sourceanda purely diffusematerial, so that theBanks
modelcanbe rendered with one texture andonepass
per light source. Figure3 showsimagesrenderedwith
this reflection model.

Figure 3: Disk and sphere illuminated with isotropic
reflection (left), anisotropic reflection with circular fea-
tures(center),andradial features(right).

1.1.2 Measured or Simulated Data

As mentioned above, the idea of factorizing BRDFs
into low-dimensional parts that can be sampledand
stored astexturesnot only applies to analytical reflec-
tion models,but alsoto BRDFsgivenin a tabular form.
Different numerical methods have beenpresentedfor
factorizing thesetabular BRDFs [12, 18]. The discu-
sion of theseis beyond the scope of this course,how-
ever.

The advantageof the analytical factorization is that
it is very efficient to adjust parametersof thereflection

model,so this canbe doneinteractively. The numeri-
cal methodstake too long for that. On the otherhand,
thebig advantageof thenumerical methodsis thatarbi-
trary BRDFsresulting from measurementsor physical
simulationscanbeused.Figure4, for example,shows
ateapot with aBRDFthatlooksbluefrom onesideand
redfrom another. ThisBRDFhasbeengeneratedusing
a simulation of micrgeometry[8].

Figure4: A teapot with a simulatedBRDF.

1.2 Global Illumi nation using Envir on-
ment Maps

The presentedtechniquesfor applying alternative re-
flection modelsto local illumination computations can
significantly increasethe realism of synthetic images.
However, true photorealism is only possible if global
effectsarealsoconsidered.Sincetexturemappingtech-
niques for diffuse illumination arewidely known and
applied, we concentrate on non-diffuse global illumi-
nation, in particular mirror- andglossyreflection.

Wedescribe hereanapproachbasedon environment
maps, as presented by Heidrich and Seidel [9], be-
causethey offer a good compromise between render-
ing quality and storage requirements. With environ-
mentmaps,2-dimensional textures insteadof the full
4-dimensional radiancefield [19] canbe usedto store
theillumination.

1.3 View-independent Envir onment Maps

Thetechniques describedin the following assumethat
environmentmapscanbe reused for different viewing
positionsin different frames, oncethey have beengen-
erated. It is therefore necessaryto choosea representa-
tion for environment mapswhich is valid for arbitrary
viewing positions. This includesboth cubemaps[6]

5 – 4

andparabolic maps[9], bothof which aresupportedon
all modernplatforms.

1.4 Mirr or and Diffuse Terms with Envi-
ronment Maps

Once an environment map is given in a view-
independent parameterization, it canbe usedto adda
mirror reflection term to an object. Using multi-pass
renderingandeitheralphablending or anaccumulation
buffer [7], it is possible to adda diffuseglobal illumi-
nation term through the useof a precomputedtexture.
Two methodsexist for thegeneration of sucha texture.
Oneway is, that a global illumination algorithm such
asRadiosity is usedto compute thediffuseglobal illu-
mination in every surfacepoint.

Thesecond approachis purelyimage-based, andwas
proposedby Greene[6]. Theenvironmentmapusedfor
the mirror termcontainsinformationabout the incom-
ing radianceS!# � (� �� � , where

(
is thepoint for whichthe

environment mapis valid, and
��
thedirection of thein-

cominglight. This informationcanbeusedto prefilter
theenvironment mapto representthediffuse reflection
of anobject for all possiblesurfacenormals. Likeregu-
lar environmentmaps,this texture is only valid for one
point in space,but canbeusedasanapproximation for
nearby points.

1.5 Fresnel Term

A regular environment map without prefiltering de-
scribes the incoming illumination in a point in space.
If this information is directly usedas the outgoing il-
lumination, aswith regular environment mapping, only
metallic surfacescanbe modeled. This is becausefor
metallic surfaces(surfaceswith a high index of refrac-
tion) theFresneltermis almostone,independent of the
anglebetweenlight direction andsurfacenormal. Thus,
for a perfectly smooth(i.e. mirroring) surface, incom-
ing light is reflectedin themirror direction with a con-
stantreflectance.

For non-metallicmaterials (materialswith asmallin-
dex of refraction), however, thereflectancestrongly de-
pends on the angle of the incoming light. Mirror re-
flections on thesematerials should be weightedby the
Fresneltermfor theangle betweenthe normalandthe
viewing direction �� .

Similar to the techniques for local illuminationpre-
sented in Section1, the Fresnelterm � � � ��� � � for the

mirror direction �R T canbestoredin atexturemap.Since
hereonly theFresneltermis required,a 1-dimensional
texturemapsufficesfor thispurpose.ThisFresnelterm
is renderedto theframebuffer’s alphachannel in a sep-
araterenderingpass.Themirror part is thenmultiplied
with this termin a second pass, anda third passis used
to addthediffusepart.Thisyieldsanoutgoingradiance
of S�$
 ��� SVU M S H , whereSVU is thecontribution of
themirror term,while S H is thecontribution dueto dif-
fusereflections.

In addition to simply adding the diffusepart to the
Fresnel-weightedmirror reflection, we canalsousethe
Fresneltermfor blendingbetweendiffuseandspecular:S�$
 ��� SVU M�� 5XW � � S H . This allowsusto simulate
diffusesurfaceswith a transparent coating: the mirror
termdescribesthereflection off thecoating. Only light
not reflected by thecoating hits theunderlying surface
andis therereflecteddiffusely.

Figure5 shows imagesgeneratedusing thesetwo ap-
proaches. In the top row, the diffuse term is simply
addedto the Fresnel-weighted mirror term (the glossy
reflection is zero). For a refractive index of 1.5 (left),
which approximately corresponds to glass, the object
is only specular for grazing viewing angles, while for
a high index of refraction (200, right image),which is
typical for metals,thewholeobject is highly specular.

Thebottom row of Figure5 shows two imagesgen-
eratedwith the second approach. For a low index of
refraction, thespecular termis againhigh only for graz-
ing angles, but in contrastto the imageabove, the dif-
fusepart fades out for theseangles. For a high index
of refraction, which,aspointedout above,corresponds
to metal,thediffusepartis practically zeroeverywhere,
sothattheobject is a perfect mirror for all directions.

1.6 Precomputed Glossy Reflection and
Transmission

We would now like to extend the concept of environ-
ment mapsto glossy reflections. The idea is similar
to the diffuseprefiltering proposedby Greene[6] and
the approachby Voorhies andForan [30] to useenvi-
ronmentmapsto generate Phonghighlights from di-
rectional light sources. Thesetwo ideascanbe com-
bined to precomputean environmentmap containing
theglossyreflection of anobject with aPhongmaterial.
With this concept,effects similar to theonespresented
by Debevec[5] arepossible in realtime.

5 – 5

Figure5: Top row: Fresnel weightedmirror term.Secondrow: Fresnelweighted mirror termplusdiffuseillumina-
tion. Third row: Fresnelblending between mirror anddiffuseterm.Theindices of refractionare(from left to right)
1.5,5, and200. Bottomrow: a prefilteredversion of themapwith a roughness of 0.01, andapplicationof this map
to a reflective sphere andtorus.

5 – 6

As shown in [15], thePhongBRDFis givenby� � � ��%� ��&�V
 G�O � I �R Y K �� L P Q �� ���&�
 G�O � I �R T K �� L P Q
�

� ���&�Z� (5)

where �R Y , and �R T are the reflected light- and viewing
directions, respectively.

Thus, the specular global illumination using the
PhongmodelisS�$ � �R T �V
 G�O � [�\!] ^_ ` I �R T K �� L P Q � SV# � �� ��a b � �� � � (6)

which is only a function of thereflection vector �R T and
theenvironmentmapcontaining the incomingradianceSV# � �� � . Therefore, it is possible to take amapcontainingSV# � �� � , andgenerateafilteredmapcontaining theoutgo-
ing radiancefor aglossy Phongmaterial. Sincethis fil-
tering is relatively expensive, it canon mostplatforms
not beredone for every framein aninteractive applica-
tion. On special graphics hardwarethat supports con-
volution operations, however, it can be performedon
thefly, asdescribedby Kautzet al. [13].

Thebottom row of Figure5 shows sucha prefiltered
mapaswell as applications of this map for reflection
and transmision. If the original environment map is
given in a high-dynamic range format, then this pre-
filtering techniqueallows for effectssimilar to theones
describedby Debevec[5].

2 Shado w Mapping

After discussing models for local illumination in the
previouschapter, we now turn to global effects. In this
chapterwedealwith algorithmsfor generatingshadows
in hardware-basedrenderings.

Shadows are probably the visually most important
global effect. This fact has resulted in a lot of re-
search on how to generate them in hardware-based
systems. Thus, interactive shadowsare in principle
a solved problem. However, current graphics hard-
ware rarely directly supports shadows, and,as a con-
sequence,fewer applications thanonemight expectac-
tually usethedevelopedmethods.

In contrastto theanalytic approachshadow volumes,
shadow maps[33] area sampling-basedmethod. First,
the sceneis rendered from the position of the light
source,using a virtual imageplane(seeFigure6). The
depth imagestoredin the c -buffer is thenused to test
whether a point is in shadow or not.

point
light source

occluder

receiver

virtual
image plane
with
depth image

Figure6: Shadow mapsusethe c -buffer of animageof
thescenerenderedfrom thelight source.

To this end, each fragment as seen from the cam-
eraneeds to be projectedonto the depthimageof the
light source. If thedistanceof thefragment to thelight
source is equal to the depthstored for the respective
pixel, thenthefragment is lit. If thefragment is further
away, is is in shadow.

A hardwaremulti-passimplementation of this prin-
ciple hasbeenproposedin [25]. The first stepis the
acquisition of the shadowmapby rendering the scene
from thelight sourceposition. For walkthroughs,this is
a preprocessing step,for dynamic scenesit needsto be
performedeachframe.Then,for eachframe,thescene
is renderedwithout the illumination contribution from
thelight source. In asecond renderingpass,theshadow
mapis specified asa projective texture, anda specific
hardware extension is usedto mapeachpixel into the
local coordinate spaceof the light source andperform
thedepthcomparison.Pixelspassing thisdepth testare
marked in the stencil buffer. Finally, the illumination
contribution of the light source is added to the lit re-
gionsby a third rendering pass.

The advantageof the shadow mapalgorithm is that
it is a general methodfor computing all shadows in the
scene, andthat it is very fast, sincethe representation
of the shadows is independent of the scenecomplex-
ity. On thedown side,there areartifactsdueto thedis-
cretesampling andthe quantization of the depth. One
benefitof the shadowmap algorithm is that the ren-
deringquality scales with the available hardware. The
methodcould be implemented on fairly low end sys-
tems,but for high endsystemsa higher resolution or
deeper c -buffer could bechosen,sothat thequality in-

5 – 7

creases with the available texture memory. Unfortu-
nately, the necessaryhardware extensions to perform
the depthcomparison on a per-fragment basisarecur-
rently only availablehaveuntil recently only beenavail-
able on two high-end systems, the RealityEngine [1]
andtheInfiniteReality [20].

2.1 Shado w Maps Using the Alpha Test

Instead of relying on a dedicatedshadowmap exten-
sion, it is also possible to useprojective textures and
the alphatest. Basically, this methodis similar to the
methoddescribedin [25], but it efficiently takesadvan-
tageof automatictexturecoordinategeneration andthe
alpha testto generateshadow maskson a per-pixel ba-
sis. This methodtakes one rendering passmore than
required with theappropriatehardwareextension.

In contrastto traditionalshadow maps,whichusethe
contentsof a c -buffer for thedepthcomparison,weuse
a depth mapwith a linear mapping of the c valuesin
light source coordinates. This allows us to compute
the depth valuesvia automatictexture coordinategen-
eration insteadof a per-pixel division. Moreover, this
choice improves the quality of the depthcomparison,
becausethedepth rangeis sampleduniformly, while ac -buffer representsclosepoints with higher accuracy
thanfar points.

As before, theentirescene is renderedfrom thelight
sourceposition in a first pass.Automatictexture coor-
dinategeneration is used to setthetexturecoordinateof
eachvertex to the depth asseenfrom the light source,
anda 1-dimensional texture is usedto definea linear
mapping of this depth to alpha values. Sincethe al-
phavaluesarerestrictedto therange @ -ed d d 5 A , near and
far planeshave to be selected,whosedepths are then
mappedto alphavalues 0 and1, respectively. The re-
sult of this is an image in which the red, green, and
bluechannelshavearbitraryvalues, but thealphachan-
nel stores the depth information of the sceneas seen
from thelight source. This imagecanlaterbeusedasa
texture.

For all object points visible from the camera,the
shadow map algorithm now requires a comparison of
the point’s depth with respect to the light source with
the corresponding depthvalue from the shadowmap.
Thefirst of thesetwo valuescanbeobtainedby apply-
ing the same1-dimensional texture that was usedfor
generating the shadow map. The second value is ob-
tained simply by using theshadow mapasa projective

texture. In order to compare the two values, we can
subtract themfrom eachother, andcompare the result
to zero.

With multi-texturing, this comparison can be im-
plemented in a single rendering pass. Both the 1-
dimensional texture andthe shadowmaparespecified
assimultaneoustextures,andthetextureblendingfunc-
tion is used to implement the difference. The result-
ing � valueis

-
at eachfragmentthat is lit by the light

source,and f - for fragmentsthatareshadowed.Then,
analphatestis employed to comparetheresultsto zero.
Pixels passing the alphatestaremarked in the stencil
buffer, so that the lit regionscanthenberenderedin a
final renderingpass.

Without support for multi-texturing, the samealgo-
rithm is much more expensive. First, two separate
passes arerequired for applying the texture maps,and
alpha blending is usedfor the difference. Now, the
framebuffer containsan � value of

-
at eachpixel that

is lit by the light source,and f - for shadowedpixels.
In the next stepit is then necessary to set � to

5
for

all the shadowedpixels. This will allow us to render
thelit geometry, andsimply multiply eachfragmentby5%W � of thecorresponding pixel in theframebuffer (the
valueof

5gW � would be
-

for shadowed and
5

for lit
regions). In order to dothis, wehaveto copy theframe-
buffer onto itself, thereby scaling � by B _ , where � is
the number of bits in the � channel. This ensuresthat5) B _ , thesmallest value f - , will bemapped to

5
. Due

to the automatic clamping to the interval @ -ed d d 5 A , all
larger values will alsobemapped to

5
, while zeroval-

uesremainzero. In addition to requiring anexpensive
framebuffer copy, this algorithm also needs an alpha
channel in theframebuffer (“destination alpha”), which
might not beavailableon somesystems.

Figure7 showsanengineblock wheretheshadowre-
gionshave beendeterminedusing this approach.Since
thesceneis renderedat leastthreetimesfor everyframe
(four times if the light source or any of the objects
move),therenderingtimesfor thismethod strongly de-
pendonthecomplexity of thevisible geometryin every
frame,but not at all on thecomplexity of thegeometry
casting the shadows. Scenesof moderate complexity
can be rendered at high frame rateseven on low end
systems. Theimagesin Figure7 areactually theresults
of texture-based volumerendering using 3D texturing
hardware (see[32] for the details of the illumination
process).

5 – 8

Figure 7: An engine block generatedfrom a volume
datasetwith andwithout shadows.Theshadowshave
been computed with our algorithm for alpha-coded
shadow maps.The Phongreflection model is used for
theunshadowedparts.

3 Bump Mapping Algorithms

Bump maps have become a popular approach for
adding visual complexity to a scene, without increas-
ing the geometric complexity. They have beenused
in software rendering systems for quite a while [4],
but hardware implementationshave only occurredrela-
tively recently, andseveral different methodsarepos-
sible, depending on the level of hardware support
(e.g.[23, 22, 9, 14]).

The original approachto bump mapping [4] defines
surface detail as a height value at every point on a
smoothbasesurface. Fromthis texture-mappedheight
value, one can compute a per-pixel normal by taking
the partial derivativesof the height values. Sincethis
is a fairly expensive operation, most recent hardware
implementations [22, 9, 14] precomputethenormal for
every surfacepoint in an offline process, and store it
directly in a texture map.

The bump mapping scheme that hasbecome most
popular for interactive applications recently is de-
scribed in detail in a technical report by Kilgard [14].
First, the light and the viewing vectorat every vertex
of the geometry is computed andtransformedinto the
local coordinateframeat that vertex (“tangentspace”,
see[22]). In theoriginal version,this is asoftwarestep,
which cannow, however alsobedonedirectly in hard-
ware [16]. Then, these local vectors are interpolated
across the surfaceusingGouraudshading andthe per-
pixel bump mapnormals arelooked up from a texture

map. A simple reflection model containing a diffuse
anda Phongcomponentcanthenbe implementedasa
numberof dot productsfollowed by successive squar-
ing (for the Phongexponent). Theseoperations map
easilyto the register combiner facility present in mod-
ernhardware[21].

3.1 Shado ws for Bump Maps

Thebasicapproachto bumpmapping asoutlinedabove
can be extended to approximate the shadows that the
bumpscastonto eachother. Note that approacheslike
shadowmapsdo not work for bumpmapsbecausedur-
ing the rendering phase the geometryis not available;
only per-pixel normalsare. Shadowing algorithms for
bumpmapsthereforeencodethevisibility of everysur-
facepoint for every possible light direction. This is
simplifiedby thefact thatbumpmapsarederivedfrom
height fields (i.e. terrains), which allows us to usethe
notion of a horizon. In a terrain, a distant light source
located in acertain direction is visible from agivensur-
facepoint if andonly if it is locatedabove thehorizon
for thatsurfacepoint. Thus,it is sufficient to encodethe
horizon for all height field points anddirections. This
approachis called horizon mapping, first presentedby
Max [17].

Thequestionis, how this horizon informationcanbe
representedsuch that it consumeslittle memory, and
suchthat the testof whethera given light direction is
above or below the horizon for any point in the bump
mapcanbe doneefficiently in hardware. We describe
herea methodproposedby Heidrich et al. [8].

We start with a bump map given as a height field,
as in the original formulation by Blinn [4]. We then
selecta numberof random directions �
ih a # j , and
shootraysfrom all height field points k into eachof the
directions a # . For theshadowing algorithm wewill only
recorda booleanvaluefor eachof these rays,namely
whethertheray hits anotherpoint in theheight field, or
not. In Section 3.2wewill describehow to useasimilar
preprocessing stepfor computing indirect illumination
in bumpmaps.

Now let us consider all the rays shot from a single
surface point k . We project all the unit vectors for
thesampling directions

�a #Xl � into the tangent plane,
i.e. we drop the c coordinateof

�a # in the local coordi-
nateframe. Thenwe fit an ellipsecontaining asmany
of those2D points that correspondto unshadowed di-
rectionsaspossible,withoutcontaining toomany shad-

5 – 9

oweddirections.Thisellipseis uniquelydeterminedby
its (2D)m centerpoint n , adirection

� o 0 � o 2 � p describing
the direction of the major axis (the minor axis is then
simply

� W o 2 � o 0 � p), and two radii R P and R q , one for
theextentalong eachaxis.

a
c

r2

r1

Figure 8: For the shadowtest we precompute2D el-
lipses at eachpoint of the height field, by fitting them
to the projections of the scattering directions into the
tangentplane.

For thefitting process,webegin with theellipse rep-
resented by the eigenvectors of the covariance matrix
of all points corresponding to unshadowed directions.
We then optimize the radii with a local optimization
method. As an optimization criterion we try to max-
imize the numberof light directions inside the ellipse
while at thesametimeminimizing thenumber of shad-
oweddirections insideit.

Oncewe have computed this ellipse for eachgrid
point in theheight field, theshadowtestis simple.The
light direction

��
is alsoprojectedinto thetangentplane,

andit is checked whether the resulting 2D point is in-
sidetheellipse(correspondingto alit point) or not(cor-
responding to a shadowedpoint).

Both theprojection andthe in-ellipsetestcanmath-
ematically beexpressedvery easily. First, the2D coor-
dinates

� 0
and
� 2

have to be transformedinto thecoor-
dinate system definedby theaxesof theellipse:

� J0Dr
 I s o 0o 2?t K s � 0 Wvu 0� 2 Wvu 2vt L � (7)� J2 r
 I s W o 2o 0wt K s � 0 Wvu 0� 2 Wvu 2vt L (8)

Afterwards, thetest5XW � � J0 � qR qP W � � J2 � qR qqyx - (9)

hasto beperformed.
To mapthesecomputationsto graphicshardware,we

representthesix degrees of freedom for theellipsesas

2 RGB textures. Then the required operations to im-
plementEquations7 through 9 aresimple dot products
aswell asadditionsandmultiplications. This is possi-
bleusing theOpenGLimagingsubset[26], availableon
mostcontemporary workstations, but alsousing some
vendorspecific extensions, suchas the register com-
biner extension from NVIDIA [21]. Depending on the
exact graphics hardwareavailable, the implementation
details will have to vary slightly. Thesedetails for dif-
ferentplatformsaredescribedin atechnical report [11].

Figure9 shows someresults of this shadowing algo-
rithm.

Figure9: A simplebump mapwith andwithout shad-
ows

3.2 Indirect Illumi nation in Bump Maps

Finally, we would like to discussa method for com-
puting theindirectlight in bumpmaps[8], i.e. thelight
thatbouncesaround multiple timesin thebumpsbefore
hitting thecamera.

As in the caseof bump map shadows, we start by
choosing asetof randomdirections a #Vl � , andshoot-
ing rays from al points k on the height field into all
directions a # . This time,however, we do not only store
a booleanvaluefor every ray, but ratherthe2D coordi-
natesof theintersection of thatray with theheight field
(if any). That is, for every direction a # , we storea 2D
map z	# that,for everypoint k , holdsthe2D coordinates
of thepoint { visible from k in direction a # .

Using this precomputed visiblity information, we
can then integrateover the light arriving from all di-
rections. For every point k in theheight field, we sum
uptheindirectillumination arriving from any of thedi-
rections a # , asdepictedin Figure10.

If we assumethat both the light andthe viewing di-
rection vary slowly acrossthe height field (this corre-
sponds to the assumption that thebumps arerelatively
small compared to the distancefrom both the viewer
andthelight source),thentheonly strongly varying pa-

5 – 10

v➝

−l
➝

p| q

−d
➝

i

Figure10: With the precomputedvisibility , the differ-
ent paths for the illumination in all surfacepoints are
composedof pieces with identical directions.

rametersarethesurfacenormals. Morespecifically, for
the radiance leaving a grid point k in direction �� , the
important varying parameters are the normal �� } , the
point { r
 z	# @ k A visible from k in direction

�a # , and
thenormal ��!~ in thatpoint.

In particular, the radiancein direction �� caused by
light arriving from direction

��
andscatteredoncein di-

rection
W �a # is givenby thefollowing formula.SV$ � k � ��&�V
 � � � ��!} � �a # � ��	� I ��!}	K �a # L �� � � � ���~ � �� � W �a # � I ���~ K �� L � SV# � { � �� � � d (10)

Usually, theBRDF is writtenasa4D function of thein-
comingandthe outgoing direction, both given relative
to a local coordinateframewherethelocal surfacenor-
mal coincideswith the c -axis. In a height field setting,
however, the viewing and light directions aregiven in
someglobal coordinatesystem that is not alignedwith
the local coordinate frame,so that it is first necessary
to perform a transformation between the two frames.
To emphasizethis fact,wehavedenotedtheBRDFasa
function of theincoming andoutgoing direction aswell
asthesurfacenormal. If we plan to useananisotropic
BRDFonthemicrogeometrylevel,wewouldalsohave
to includea referencetangent vector.

Note that the term in parenthesis is simply the di-
rect illumination of a height field with viewing direc-
tion
W �a # , with light arriving from

��
. If we precompute

this term for all grid points in the height field, we ob-
tain a texture S H containing the direct illumination for
eachsurface point. This texture canbe generated us-
ing a bump mapping stepwherean orthographic cam-
erapoints down onto the height field, but

W �a # is used
astheviewing direction for shading purposes.

Oncewe have S H , the second reflection is just an-
other bump mappingstepwith �� asthe viewing direc-
tion and

�a # asthelight direction. This time, theincom-
ing radianceis not determined by the intensity of the
light source,but ratherby thecontentof the S H texture.

For eachsurfacepoint k we look up thecorresponding
visible point {
 z # @ k A . The outgoing radiance at { ,
which is stored in the texture as S H @ { A , is at the same
time theincoming radianceat k .

Thus,wehavereducedcomputing theonce-scattered
light in eachpoint of the height field to two succes-
sive bump mapping operations, wherethe second one
requiresanadditional indirection to look up theillumi-
nation. We caneasily extend this technique to longer
paths, andalsoaddin thedirect termat each scattering
point. This is illustratedin theFigure11.

+

+

Indirect Illum.

d➛n , v
➛

Indirect Illum.

d➛2 ,−d➛3

Indirect Illum.

d➛1 ,−d➛2

Direct Illum.

l➛,−d➛1

Direct Illum.

 l
➛,−d➛2

Direct Illum.

 l
➛

 ,−d➛3

Direct Illum.

 l
➛, v➛

+

+

Figure11: Extending the dependent testscattering al-
gorithm to multiple scattering. Eachbox indicatesa
texturethat is generatedwith regular bumpmapping.

For the total illumination in a height field, we sum
up the contributions for several suchpaths (some40-
100 in mostof our scenes). This way, we compute the
illumination in thecomplete height field at once, using
two SIMD-style operationson the whole height field
texture: bump mapping for direct illumination, using
two given directions for incoming andoutgoing light,
aswell asa lookupof theindirect illuminationin a tex-
turemapusingtheprecomputed visibility datain form
of thetextures z # .
3.2.1 Use of Graphic s Hardware

In recentgraphics hardware, both on the workstation
andon the consumer level, several new features have
been introduced that we can make use of. In par-
ticular, we assume a standard OpenGL-like graphics
pipeline [26] with someextensionsasdescribed in the
following.

Firstly, we assumethe hardware hassomeway of
rendering bump maps. This can either be supported

5 – 11

through specific extensions(e.g. [21]), or through the
OpenGLimagingsubset [26], asdescribedby Heidrich
andSeidel[9]. Any kind of bumpmapping schemewill
besufficient for our purposes,but thekind of reflection
modelavailable in this bump mappingstepwill deter-
mine what reflection model we can useto illuminate
our hight field.

Secondly, we will need a way of interpreting the
componentsstored in one texture or imageas texture
coordinates pointing into another texture. One way
of supporting this is the so-called pixel texture ex-
tension [10, 9], which performs this operation during
transfer of imagesinto theframebuffer, andis currently
only availableon somehigh-endSGI machines.Alter-
natively, we canusedependenttexture lookups, a vari-
ant of multi-texturing, that hasrecently becomeavail-
ableon somenewer PCgraphics boards. With depen-
denttexturing, wecanmaptwo or moretexturessimul-
taneously ontoanobject, wherethetexturecoordinates
of thesecond textureareobtainedfrom thecomponents
of the first texture. This is exactly the feature we are
looking for. In casewe have hardware that supports
neither of the two, it is quitesimple, althoughnot very
fast, to implementthe pixel texture extension in soft-
ware: theframebuffer is readout to mainmemory, and
eachpixel is replacedby a valuelooked up from a tex-
ture,usingthepreviouscontentsof thepixel astexture
coordinates.

Using these two features, dependent texturing and
bump mapping, the implementation of the dependent
testmethodasdescribed above is simple. As depicted
in Figure 10, the scattering of light via two points k
and { in the height field first requires us to compute
the direct illumination in { . If we do this for all grid
points we obtain a texture S H containing the reflected
light causedby the direct illumination in each point.
This texture S H is generated using the bump mapping
mechanism thehardware provides.Typically, thehard-
ware will support only diffuse and Phongreflections,
but if it supportsmoregeneral models, thenthese can
alsobeusedfor our scattering implementation.

The second reflection in k is alsoa bump mapping
step(althoughwith different viewing- andlight direc-
tions), but this time the direct illumination from the
light source has to be replaced by a per-pixel radi-
ancevalue corresponding to the reflected radianceof
the point { visible from k in the scattering direction.
We achieve this by bump mapping the surface with a
light intensity of

5
, andby afterwardsapplying a pixel-

wisemultiplicationof thevaluelookedupfrom S H with
thehelp of dependenttexturing. Figure12 shows how
to conceptually setupamulti-texturing systemwith de-
pendent texturesto achieve this result.

Si
p�

q

Li
Ld

Figure 12: For computing the indirect light with the
help of graphics hardware,we conceptually require a
multi-texturingsystemwith dependenttexture lookups.
This figureillustrateshow this system hasto besetup.
Boxes indicateone of the two textures, while incom-
ing arrowssignal texturecoordinatesandoutgoingones
meantheresulting color values.

Thefirst textureis the z�# thatcorrespondsto thescat-
tering direction a # . For each point k it yields { , the
point visible from k in direction a # . The second tex-
ture S H contains thereflected direct light in eachpoint,
which actsas an incoming radiance at k . Figure 13
shows someresults of themethod.

Figure13: A bumpmapwith andwithout indirect illu -
mination

By using thishardwareapproach,wetreatthegraph-
ics board asa SIMD-like machinewhich performs the
desired operations, and computes one light path for
eachof the grid points at once. This useof hardware
dramatically increasesthe performanceover the soft-
wareversion to analmostinteractive rate.

4 Conc lusion

In this part, we have reviewed someof the morecom-
plex shading algorithmsthat util ize graphicshardware.
While theindividualmethodsarecertainly quitediffer-
ent,there aresomefeaturesthat occurin all examples:

5 – 12

� The most expensive operations (i.e. visibility
computations, filtering of environmentmapsetc.)
arenot performedon thefly, but aredone in apre-
computing step.� Theresults of theprecomputation arerepresented
in a sampled (tabular) form that allows us to use
texture mapping to apply the information in the
actual shaders.� The shaders themselves are often relatively sim-
ple due to the amount of precomputation. They
mostlyhavethejob of combining theprecomputed
texturesin variousflexible ways.� The textures needto be parameterized in sucha
way that the texture coordinatesareeasyandeffi-
cientto generate,ideally directly in hardware.

Reference s

[1] Kurt Akeley. RealityEnginegraphics. In Com-
puter Graphics (SIGGRAPH’93 Proceedings),
pages 109–116,August 1993.

[2] David C. Banks. Illumination in diverse codi-
mensions. In ComputerGraphics (Proceedings
of SIGGRAPH’94), pages327–334,July 1994.

[3] PetrBeckmann andAndreSpizzichino. TheScat-
tering of Electromagnetic WavesfromRoughSur-
faces. McMillan, 1963.

[4] JamesF. Blinn. Simulation of wrinkled surfaces.
In ComputerGraphics (SIGGRAPH’78 Proceed-
ings), pages 286–292,August1978.

[5] PaulE.Debevec.Rendering syntheticobjectsinto
realscenes:Bridging traditional andimage-based
graphics with global illumination and high dy-
namicrange photography. In ComputerGraphics
(SIGGRAPH’98 Proceedings), pages 189–198,
July 1998.

[6] Ned Greene. Applications of world projections.
In Proceedings of Graphics Interface ’86, pages
108–114,May 1986.

[7] Paul E. Haeberli andKurt Akeley. The accumu-
lation buffer: Hardwaresupport for high-quality
rendering. In ComputerGraphics (SIGGRAPH
’90 Proceedings), pages 309–318,August 1990.

[8] W. Heidrich, K. Daubert, J.Kautz,andH.-P. Sei-
del. IlluminatingMicro GeometryBasedon Pre-
computed Visibilit y. In ComputerGraphics(SIG-
GRAPH ’00 Proceedings), pages 455–464, July
2000.

[9] WolfgangHeidrich andHans-PeterSeidel. Real-
istic, hardware-accelerated shading and lighting.
In ComputerGraphics(SIGGRAPH’99 Proceed-
ings), August1999.

[10] SiliconGraphicsInc. PixelTextureExtension, De-
cember1996. Specification document,available
from http://www.opengl.org.

[11] Jan Kautz, Wolfgang Heidrich, and Katja
Daubert.Bumpmapshadowsfor OpenGLrender-
ing. Technical ReportMPI-I-2000-4-001, Max-
Planck-Institut für Informatik,2000.

[12] JanKautz and Michael D. McCool. Interactive
rendering with arbitrary BRDFs using separable
approximations. In Rendering Techniques ’99
(Proc. of EurographicsWorkshop on Rendering),
pages247– 260,June 1999.

[13] Jan Kautz, Pere-Pau Vázquez, Wolfgang Hei-
drich,andHans-Peter Seidel.Unifiedapproachto
prefiltered environment maps.In RenderingTech-
niques ’00.

[14] Mark Kilgard. A practical androbust bumpmap-
ping technique. Technicalreport, NVIDIA, 2000.
available from http://www.nvidia.com.

[15] RobertR.Lewis. Makingshadersmorephysically
plausible. In Fourth Eurographics Workshop on
Rendering, pages47–62,June1993.

[16] Erik Lindholm, Mark Kilgard, andHenry More-
ton.A user-programmablevertex engine. In Com-
puter Graphics (SIGGRAPH’01 Proceedings),
August2001.

[17] NelsonL. Max. Horizon mapping: shadows for
bump-mapped surfaces. The Visual Computer,
4(2):109–117,July 1988.

[18] Anis Ahmad Michael D. McCool, JasonAng.
Homomorphicfactorization of BRDFs for high-
performancerendering. In ComputerGraphics
(SIGGRAPH ’01 Proceedings), 2001.

5 – 13

[19] Gavin Miller, Steven Rubin, and Dulce Pon-
celeon. Lazydecompression of surfacelight fields
for precomputedglobal illumination. In Render-
ing Techniques ’98 (Proceedings of Eurograph-
ics Rendering Workshop), pages 281–292,March
1998.

[20] JohnS.Montrym,DanielR.Baum,David L. Dig-
nam,andChristopherJ. Migdal. InfiniteReality:
A real-timegraphicssystem.In Computer Graph-
ics (SIGGRAPH’97 Proceedings), pages293–
302,August1997.

[21] NVIDIA Corporation. NVIDIA OpenGLExten-
sionSpecifications, October 1999. Available from
http://www.nvidia.com.

[22] Mark Peercy, John Airey, andBrian Cabral. Ef-
ficient bump mapping hardware. In Computer
Graphics (SIGGRAPH’97 Proceedings), pages
303–306,August1997.

[23] AndreasSchilling, GünterKnittel, andWolfgang
Straßer. Texram: A smart memory for textur-
ing. IEEE ComputerGraphicsand Applications,
16(3):32–41, May 1996.

[24] Christophe Schlick. A customizablereflectance
model for everyday rendering. In Fourth Euro-
graphics Workshopon Rendering, pages73–83,
June1993.

[25] Marc Segal, Carl Korobkin, Rolf van Widenfelt,
Jim Foran,andPaul Haeberli. Fastshadow and
lighting effects using texture mapping. Com-
puter Graphics (SIGGRAPH’92 Proceedings),
26(2):249–252,July 1992.

[26] Mark Segal and Kurt Akeley. The OpenGL
Graphics System: A Specification (Version 1.2),
1998.

[27] BruceG.Smith.Geometrical shadowing of aran-
domrough surface.IEEETransactionson Anten-
nasand Propagation, 15(5):668–671,September
1967.

[28] Detlev Stalling, Malte Zöckler, and Hans-
Christian Hege. Fastdisplay of illuminatedfield
lines. IEEE Transactions on Visualization and
ComputerGraphics, 3(2):118–128,1997.

[29] KennethE. TorranceandE. M. Sparrow. Theory
for off-specular reflection from roughened sur-
faces.Journal of theOptical Society of America,
57(9):1105–1114, September 1967.

[30] D. Voorhies and J. Foran. Reflection vector
shading hardware. In ComputerGraphics (SIG-
GRAPH ’94 Proceedings), pages 163–166, July
1994.

[31] Gregory J. Ward. Measuring and modeling
anisotropic reflection. Computer Graphics(SIG-
GRAPH ’92 Proceedings), pages 265–273, July
1992.

[32] RüdigerWestermannandThomasErtl. Efficiently
usinggraphicshardwarein volumerendering ap-
plications. In Computer Graphics (SIGGRAPH
’98 Proceedings), pages169–178,July 1998.

[33] Lance Willi ams. Casting curved shadowson
curved surfaces. In Computer Graphics (SIG-
GRAPH ’78 Proceedings), pages 270–274, Au-
gust1978.

5 – 14

