PixelFlow Shading Language
Marc Olano
Revised: 15 September 1997

1 Overview

The PixelFlow shading language is a special purpose C-like language for describing the shading of
surfaces on the PixelFlow graphics system. On PixelFlow, some shading function written in the shading
language is associated with each primitive. The shading function is executed for each visible pixel (or
sample for antialiasing) to determine its color. The language is based heavily on the RenderMan shading
language!.

2 Data

2.1 Built in types

Only a few simple data types are supported. The simplest type is void. As with C, it is only used as a
return type for functions that have no return value. There is a floating point type, float, used for most
scalar values. There is a fixed point type, fixed, provided for efficiency. And there are literal strings,
useful for print formatting?. Note that, unlike RenderMan, the string type is not used as an identifier for
texture maps, instead a scalar ID is used.

The fixed type has two parameters: the size in bits and an exponent. So it is really a class of types,
given as fixed<size, exponent>. For exponents between zero and the bit size, the exponent can also be
thought of as the number of fractional bits. Note however, that an exponent larger than the size or less
than zero is perfectly legal. A two byte integer would be fixed<16, 0>, while a two byte pure fraction
would be fixed<16, 16>. It is possible to translate back and forth between the real value and stored value
using these equations:

real_value = stored_value

stored_value = real_value
However, it is much less confusing to always think of the real value. For example, with a fixed<8,8>,
never think of the value as 128, instead think 0.5. An unspecified fixed point type can also be used,
declared simply as fixed, and its size and exponent will be chosen automatically?.

It is also possible to have arrays of these basic types, declared in a C-like syntax (i.c. float color[3]).
The declaration float color[3], declares color to be a 1D array of three floats, color[0], color[1], and
color[2]. You can also look at color as a variable of type float[3], and an equivalent definition would be
float[3] color. Note the behavior of mixing these two types of definitions: float[2][3] color_list, float[3]
color_list[2] and float color_list[2][3] are all equivalent. As with C, it is not necessary to give all of the
indices for an array at once. While color_list[1][1] is a float, color_list[0] and color_list[1] arc each
float[3] 1D arrays. Where RenderMan uses separate types for points, vectors, normals, and colors, pfman
uses arrays.

-exponent

exponent

2.2 Type attributes

As with RenderMan, types may be declared to be cither uniform or varying. A varying variable is
one that might vary from pixel to pixel, similar plural in MasPar’s mpl. A uniform variable is one that
will not vary from pixel to pixel, similar to singular in MasPar’s mpl. It deserves mentioning again that
declaring a variable to be varying does not imply that it will vary, only that it might. If not specified,
shader parameters default to uniform and local variables default to varying.

Variables of the fixed type may be declared signed or unsigned. The size of a fixed point type does
not include the extra sign bit added by signed. So a signed fixed<15,0> takes 16 bits. If not specified, all
fixed point variables default to signed.

1 Upsill, Steve, The RenderMan Companion, Addison-Wesley, 1990.

2 As of September 13, 1997, strings for calls to printf are not supported.

3 As of September 13, 1997, automatic fixed point variables are not supported. The sizes produced by
automatic fixed types will have to be pessimistic in their size estimation. Error analysis and explicit fixed
point sizes is sure to make better use of memory.

There are a number of additional attributes for shader parameters. One transformation type can be
given for any parameter. These are transform_as_vector, transform_as_normal, transform_as_point,
transform_as_plane, or transform_as_texture*. A parameter can also be declared to be unit if it should
be unit length. For example, you might declare a parameter

unit transform_as_vector float v[3];
These attributes only affect what happens to the parameter before it is passed to the shader. They do not
affect how the parameter is used inside the shader. For example, a unit parameter will not remain unit
length. These attributes also cannot be used to distinguish versions of an overloaded function.

2.3 User defined types
Aliases can be defined for types with a C-like typedef statement. typedef is only legal outside
function definitions. The typedef statement only provides aliases for types, no distinction is made
between equivalent types with different names. The statement
typedef float Point[3], Normal[3];
declares Point and Normal to both be types which can be used completely interchangably with float[3].

3 Expressions

3.1 Operators
The set of operators and operator precedence is fairly similar to that of C (it was based on a grammar
for ANSI C). The full list of operators and their precedence is given in Figure 1.

Operation Associativity | Purpose
() — expression grouping
++ —= [] — postfix increment and decrement, array index
++ = = ! — prefix increment and decrement, arithmetic and
logical negation
() — type cast
~ left xor / cross product / wedge product®
* /% left multiplication, division, mod
+ - left addition, subtraction
& left bitwise and’
| left bitwise or®
<< >> left shift?
< <= >= > left comparison
== I= left comparison
&& left logical and
[left logical or
?: right conditional expression
= 4= —= *= /= ~= right assignment!®
, — expression list

Figure 1. Operator precedence

3.2 Operations on arrays!l
Operations on arrays are defined as the corresponding vecor, matrix, or tensor operation. The unary
operations act on all elements of the array. Addition, subtraction, and assignment require arrays of equal

4 As of March 4, 1995, vectors and points are transformed the same and normals and planes are
transformed the same.

3 As of September 13, 1997, unit has no affect (parameters declared unit are not normalized).

6 As of March 4, 1995, none of xor, cross product, or wedge product are implemented.

7 & only works between identical fixed point types.

8 | only works between identical fixed point types.

9 As of September 13, 1997, left and right shift are only implemented for varying integer shift values
10 As of September 13, 1997, = is not implemented

1T As of September 13, 1997, Array cross product, and inverse do not work.

dimension and do the operation between corresponding elements (i.e. a + b gives the standard matrix
addition of a and b). The comparison operations also require arrays of equal dimension, though only ==
and != are defined.

Multiplication between vectors gives a dot product, between vector and matrix, matrix and vector, or
matrix and matrix gives the appopriate matrix multiplication. More generally, multiplication between any
two arrays gives the tensor contraction of the last index of the first array against the first index of the
second array. In other words, for float a[3][3][3], float b[3][3][3] and float ¢[3][3][3][3],

c=a*bh;
is equivalent to
float i, j, k, I;
for(i=0; i<3; i++)
for(j=0; j<3; j++)
for(k=0; k<3; k++)
for(1=0; 1<3; 1++) {
c[il[jlk]] = 0;
for(m=0; m<3; m++)
c[il[j1Kk]] += a[i][jl[m] * b[m][K][1];
}

Division can also be used as a matrix inverse. 1/ a is the inverse of a square matrix aand b/ a
multiplies b by the inverse of square matrix a.

Finally, the # operator gives the cross product between two vectors or the tensor wedge product
between two arrays.

3.3 Inline arrays!2

C-style array initializers are allowed in any expression as an anonymous array. So a 3x3 identity
matrix might be coded as {{1,0,0},{0,1,0},{0,0,1}}, while the computed elements of a point on a
paraboloid might be filled in with {x, y, x*x+y*y}.

3.4 Einstein summation notationl3

Inside any statement block, the uniform integer variables $1, $2, ... are automatically defined. For
example for float a[3], b[3], the expression a[$1] * b[$1] is equivalent to a[0]*b[0] + a[1]*b[1] +
a[2]*b[2] (which in this case, is equivalent to a * b).

4 Statements

4.1 Compound statements
As with C, anywhere a statement is legal, a compound statement is legal as well. A compound
statement is just a list of statements delimited by § and }.

4.2 Expression statements
Any expression followed by a ; is a legal statement.

4,3 Standard control statements
Most of the control statements are borrowed directly from C.14

if (condition expression) statement for true
if (condition_expression) statement_for_true else statement_for false
while (condition_expression) loop_statement
do loop_statement until (condition_expression);
for (initial expression; condition expr; increment expression) loop_statement
break;
continue;

12 As of September 13, 1997, inline arrays can only have constants for their array elements.

13 As of September 13, 1997, Einstein summation notation is not implemented

14 Due to limitations of PixelFlow, the condition_expression’s must be uniform for all of the looping
control statements. The condition for an if can be either uniform or varying.

return;
return return_value expression;
In addition, there are several control statements taken from the RenderMan shading language to aid
in shading. They are illuminance, illuminate, and solar.
The illuminance statement,
illuminance () statement
illuminance (position_expression) statement
illuminance (position_expression, axis_expression, angle expression) statement
acts like a loop over the available light sources. It can also be thought of as an integral over the incoming
light. For each light that can hit a pixel at the given position, or can hit a surface at the given position
with the given orientation and visibility angle, the light source function is run, returning a light color and
intensity that can be used in the statement. The light direction can be accessed using the px_rc_1
parameter to the shader. The light color can be accessed using the px_rc¢_cl parameter to the shader.
The illuminate and solar statements,
illuminate (position_expression) statement
illuminate (position_expression, axis_angle, angle_expression) statement
solar (axis_angle, angle expression) statement
solar () statement
provide the information the illuminace statement uses to tell if a light source function should be run or
not. They can also be thought of as conditional statements that only execute the associated statement if
the current pixel position falls within the light’s area. The four statements above correspond to a point
light, a spot light, a directional light, and an ambient light!5.

4.4 Declaration statements

Variable declarations can occur anywhere a statement can. They consist of a type and a list of new
variable names to declare. Each variable name can have additional array dimensions and an expression
for the initial value.

float a[3], b=2%x, ¢;
declares a as an uninitialized 1D float array with 3 elements, b as a float with an initial value twice
whatever is in the x variable at the declaration time, and ¢ as an uninitialized float.

Each compound statement defines a new scope, so variables can be redefined within a compound
statement without conflicting with function or variable names in other scopes. It is illegal, however, to
have a variable in any scope with the same name as any user defined type. This is true even if the typedef
occurs after the variable declaration.

5 Functions

5.1 Overloading

Function overloading similar to C++ is supported. So functions of the same name that can be
destinguished by their input parameters are considered distinct. This provides the ability to have seperate
versions of functions for uniform and varying parameters, float and fixed, or different fixed point types.
Note that functions cannot be overloaded based on their return parameters and operator overloading is not
supported.

5.2 Definition
A function definition gives the return type, name, parameters, and body that define the function.
Function definitions cannot be nested. By default, function parameters and return types are uniform. A
simple function definition:
float factorial(float n) {
if(m>1)
return n * factorial(n);

151 don’t really like the way this works in RenderMan. Is there a use to placing some of the light code
within an illuminate statement and some outside? Is it too specialized for a couple of particular light
types? Whether I understand it or not, it’s there.

else
return 1;
}
The formal parameters to a function have their own scope level between the global scope and the function
body, so their names can hide the global function names. As with variables, it is illegal to have a function
or parameter with the same name as a user defined type, regardless of where in the source the typedef
occurs.

5.3 Shading functions!6

There are several special return types to indicate that a function has some special rendering purpose
and may need to be called by the PixelFlow rendering library. These are primitive, interpolator, surface,
light, and image. A primitive function computes which pixels are in some rendering primitive like a
triangle or sphere; an interpolator function computes the value for some shading parameter across a
number of pixels; a surface function computes the shading on a surface (the archetypal shading function);
a light function computes the color and intensity of a light; and an image computes the final color and
location of the image pixels (handling image warping, fog effects, etc.). For all of these functions, each
parameter can have a default value in case the graphics library is not given a value for that parameter.
These are given just by putting an = value (just like variable initialization) in the parameter list. These
default values must be compile-time constants. It is perfectly legal to call a surface shading function from
inside another surface shading function!”?. In this case, only one illuminance statement can occur in
cither the original surface shader or any called by it.

5.4 Prototypes
Any function that is to be used before it is defined, or that is defined in a different source file, must
have a prototype. A function prototype is just like a function definition, but with a ; instead of the
function body
float factorial(float n);

5.5 Internal details and External linkage

The pfman shading language compiler turns shading language source code into C++ source code that
must be further compiled with a C++ compiler. The function definitions created by the compiler and
function calls made by it correspond directly to C++ function definitions and function calls. It is possible
(and supported) to call C++ functions from shading language functions and to call shading language
functions from C++. This facility is limited to functions using types that the shading language supports.

Pfman adds some additional arguments added by the compiler. The new first argument is a pointer to
the PixelFlow IGCStream where the instruction stream for the pixel processors should go. The new
second argument is a pointer to a PixelFlow GLStage class, which contains information about the
rendering context. The new third argument is a pointer to the PixelFlow pixel memory map class. For
functions with a varying return value, the new third argument is the address for the return value. All the
other arguments follow. There are C++ classes for varying float and fixed parameters giving their
address, and in the case of fixed parameters, their size and binary point position. Details of these types
and the prototypes for the different kinds of shading functions are beyond the scope of this document.

Standard C or C++ functions can be used by pfman by prefixing their prototype with extern “C” or
extern “C++”. All of the uniform math library routines are declared this way. These tell pfman not to
add the extra function parameters. Similarly, pfman functions that contain only uniform operations can be
declared extern “C” or extern “C-++” for use by code outside of pfman.

16 As of September 13, 1997, only surface and light are supported.
17 As of September 13, 1997, it is not possible to call either surface shaders from inside surface shaders.

