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ABSTRACT
Procedural texture mapping is a powerful technique, and use
of the Perlin noise function makes procedural textures ap-
pear so realistic and interesting. It is also an expensive tech-
nique, and executing a texturing procedure on a per-pixel
basis is costly, and usually prevents the method from being
used in real time applications. In this paper, we present a
method for computing the Perlin noise function for procedu-
ral texturing using forward differencing. With this method,
we can compute neighboring texture samples with a few ad-
ditions instead of a number of multiplications thus reducing
the computation time to real-time performance.

1. INTRODUCTION
Texture mapping is one of the easiest ways to add realism
and complexity to a rendered image. In conventional texture
mapping, a two-dimensional image is required, which can be
taken from a photograph or a drawing, and is stored in mem-
ory. Coordinates of the texture image are associated with
points on the object’s surface, and the image is then applied
to the surface of the object by the implied mapping. The
main disadvantage of 2D texture mapping is that it requires
large amounts of memory to store images, especially when
a large variety of textures are used. Another disadvantage
is that if the surface of the object changes dramatically, the
correspondences between the texture coordinates and the
object coordinates needs to be re-evaluated.

Procedural texturing typically uses solid texture coordinates.
In solid texturing, three-dimensional texture coordinates are
associated with three dimensional world coordinates of points
on the surface. This correspondence is easier and more
direct than parameterizing a surface with two-dimensional
surface coordinates. When the object is drawn, the texture
on the point is computed from the texturing function based
on the corresponding texture coordinate. With procedural
solid texturing, there is no need to store a texture image.
Instead, texture is described by a mathematical function.

To add irregularity to the mathematically described texture,
a random value is commonly added. This random value is
called noise and it has some properties to make the texture
appear more natural.

While procedural texturing is highly flexible, its disadvan-
tage is its speed. Since the texture is computed pixel by
pixel when the object is drawn, it requires significant com-
putational power to compute the texture in real-time. Our
objective for this research is to overcome this computational
cost to realize real-time procedural texture mapping.

We used the parametric procedural texturing described in
[3] to generate texture and value noise for the noise function.
For the texture to be computed pixel by pixel, we have to
evaluate a quadratic function and several noise functions for
each pixel. In this paper, we utilize forward differencing to
compute the noise function to execute this texturing func-
tion in real-time.

Our texturing model is described in Section 2. In Section 3
the noise function we utilized is described. In Section 4 we
explain how to use forward differencing for our noise compu-
tation and its algorithm is described. Results are presented
in Section 5.

2. TEXTURE MODEL
We use the parameterized procedural solid texturing model
proposed in [3]. The texturing model maps solid texture
coordinate s = (s, t, r) into a color space c. Texture coordi-
nates are associated with object coordinates by some func-
tion (s, t, r) = S(x, y, z) where (x, y, z) is the object’s three
dimensional coordinate. The simplest example of function
S is the identity mapping.

The texture model has the form p(s) = c (f(s)). Function f
is a parameterized texturing function, which gives the index
to the color space and c is a mapping from this index into a
color space. Function f has two components represented as

f(s) = q(s) +
X
i

ain(Ti(s)) (1)

where q is a quadric classification function and n is a noise
function,



The quadric function controls the basic shape of the texture

q(s) = As2 + 2Bst+ 2Csr + 2Ds+ Et2 + 2Ftr
+2Gt+Hr2 + 2Ir + J (2)

where s, t, r is a texture coordinate, A to J are parameters
for controlling textures. By changing the parameter of q, we
can make wide variety of textures including ramps, concen-
tric cylinders and concentric spheres.

The noise function adds irregularity to the texture. Function
n is a noise function which implements value noise. The
parameter ai controls the amplitude of the noise function,
Ti controls the frequency and the phase. In our model, fixed
number of noise function is used, typically four.

For example, a marble texture can be described as

f(s) = r +
4X
i

2−in(2is, 2it, 2ir). (3)

Another example is wood texture and this is described as

f(s) = s2 + t2 + n(4s, 4t, r). (4)

More example are described in [3].

3. NOISE FUNCTION
The noise function is used to add irregularity to a procedural
texture. The properties of a noise function is important fac-
tor to achieve realistic textures. The output of a noise func-
tion should be random, but correlated. Noise functions are
repeatable pseudorandom functions with a known frequency
bandwidth, do not exhibit obvious periodicities, stationary
and isotropic [1]. Several noise functions which satisfy these
properties have been studied so far [4],[5],[6],[7]. Lattice
value noise is the one of the most popular implementation
of noise for procedural texturing.

To generate lattice value noise, uniformly distributed ran-
dom numbers are assigned to integer coordinates in texture
space. These points form an integer lattice in texture coor-
dinates. The cube formed by eight adjacent integer lattice
points is called a cell. The noise value within the cell is com-
puted from the random values at the eight corner points of
the cell by interpolation. This interpolation is usually as
smooth as possible. In our case we need to be as efficient as
possible, so we use tri-linear interpolation.

Given a point p whose texture coordinate is (s, t, r), noise is
computed as follows. First, we find in which cell the point
resides. We then compute the random values assigned to
the eight vertices of the cell. We then interpolate these eight
values to determine the noise value at the given point p.

Let the coordinates s0, t0, r0 be the floor of s, t, r respec-
tively, and likewise s1, t1, r1 be their respective ceiling. Let
the eight vertices of the cell be N0, N1, · · · , N7. Their coor-
dinates areN0 : (s0, t0, r0), N1 : (s1, t0, r0), · · · , N6 : (s1, t1, r1), N7 :
(s0, t1, r1), where {s/t/r}1 = {s/t/r}0 + 1. Let noise value
at the vertex Ni be ni, i = 0, · · · , 7. (Figure1)

After obtaining the random values on each of the eight ver-
tices, noise is interpolated in terms of each coordinate. The

Figure 1: The cell in the texture coordinate.

noise value at point a is linearly interpolated from N0 and
N1 in terms of s coordinate, i.e.

na = n0 + (n1 − n0)
s− s0

s1 − s0
(5)

The noise value is computed similarly at points b, c, d. The
noise value is computed at point e and f by interpolating na
and nb, nc and nd in terms of the t coordinate, respectively.

ne = na + (nb − na)
t− t0
t1 − t0

(6)

Finally, the noise value at point p is computed from noise
value at e and f .

noise = ne + (nf − ne)
r − r0

r1 − r0
(7)

Since s1 = s0 + 1, t1 = t0 + 1andr1 = r0 + 1, equation
(5),(6),(7) can be rewritten as

na = n0 + (n1 − n0)(s− s0)
ne = na + (nb − na)(t− t0)

noise = ne + (nf − ne)(r − r0) (8)

s − s0 represents relative position from s0 and s satisfies
s0 ≤ s ≤ s1 = s0 + 1. Therefore, (s − s0) can be replaced
by sf which represents the fractional part of s and same as
t and r. Then equation (8) can be rewritten as:

na = n0 + (n1 − n0)sf (9)
ne = na + (nb − na)tf (10)

noise = ne + (nf − ne)rf (11)

where sf , tf and rf represents the fraction part of s, t and r
respectively. Incorporating equation (9) and (10) to (11),

noise = a+ bsf + ctf + drf + esf tf + ftfrf

+grfsf + hsf tfrf (12)

where coefficients a to h are the constants determined by
ni, i = 0, · · · , 7, i.e. the cells which point p resides. This
equation shows that trilinear interpolation is a cubic func-
tion of the coordinates.

4. TEXTURE COMPUTATION
Scan conversion algorithm draw a polygon from one edge to
the another along each scan line. For example, at the scan
line j, a polygon may be drawn by scanning from (i0, j)



Figure 2: Texture coordinate and scan line

to (i1, j), as shown in Figure 2. Let the corresponding tex-
ture coordinate of these points be (s0, t0, r0), and (s1, t1, r1).
(Note these are not the same values as the corner lattice
points in the previous section.) The texture coordinates
(s, t, r) of each pixel on this scanline of the polygon are lin-
early interpolated between these two points are linearly in-
terpolated from them.

The derivative of the texture coordinates along the scan line
are

(ds/di, dt/di, dr/di) =
�
s1 − s0

i1 − i0
,
t1 − t0
i1 − i0

,
r1 − r0

i1 − i0

�
(13)

The texture coordinates of the point between the edges is
now computed as

(s, t, r) = (s0 + ∆ids/di, t0 + ∆idt/di, r0 + ∆idr/di) (14)

Given the texture coordinates at pixel (i, j), we can compute
the color by evaluating the texturing function (1). Gener-
ally, this texture is computed by pixel by pixel. That is, the
texture is computed every step of scan conversion by com-
puting the texture coordinate and evaluating the texturing
equation. If we compute the texture color only on at the
enpoints of the scanline then linearly interpolate the result-
ing color, we will miss the detail of the texture across large
polygons.

To make procedural texturing comutation in real-time, we
apply the forward differencing technique to the noise func-
tion.

4.1 Forward Difference
The computation of successive values of a polynomial can be
done efficiently with forward differencing [2]. In computer
graphics, this has been used for drawing lines or curves.
One of example is line drawing on the screen, such as Bre-
senham’s line or circle drawing algorithms.

We utilize forward differencing to hasten the computation
of successive noise values across the scanline, because com-
putation of the noise function is expensive and can be rep-
resented as a cubic function of the coordinates for linearly
interpolated noise.

The texture coordinates on the scanline are linearly interpo-
lated and the derivative of the texture coordinate along the

scan line, ds/di, dt/di, dr/di are computed for each scan line.
Suppose the texture coordinate at (i0, j) is (s0, t0, r0). Then
the texture coordinate at (i0 + ∆i, j) on the same scan line
is computed by (s0 + ∆ids/di, t0 + ∆idt/di, r0 + ∆idr/di).

Incorporating screen coordinate i and the derivatives of tex-
ture coordinates ds/di, dt/di and dr/di to equation (12) ,
noise can be represented as a function of ∆i. By replacing
(s0, t0, r0) with (s, t, r) and regard i as the ∆i,

noise(∆i) = a+ b(s+ ∆ids/di)
+ c(t+ ∆idt/di) + d(r + ∆idr/di)
+ e(s+ ∆ids/di)(t+ ∆idt/di)
+ f(t+ ∆idt/di)(r + ∆idr/di)
+ g(r + ∆idr/di)(s+ ∆ids/di)
+ h(s+ ∆ids/di)(t+ ∆idt/di)(r + ∆idr/di)
= αi3 + βi2 + γi+ δ (15)

where α, β, γ and δ are constants determined by constants
a to h and s, t and r. Calculation of constans is described
in Appendix.

Therefore, the function noise is a cubic polynomial in terms
of i. Instead of evaluating this function for each pixel posi-
tion (i, j), we can use forward differencing to avoid a lot of
expensive multiplication, which is replaced by small number
of setup multiplication and successive additions.

In scan conversion algorithms, the screen coordinate of i
is incremented by one for each step. Thus noise can be
computed iteratively with forward difference as

noise(i+ 1) = noise(i) + ∆n(i) (16)

∆n(i) can be represented as

∆n(i) = noise(i+ 1)− noise(i)
= α(i+ 1)3 + β(i+ 1)2 + γ(i+ 1) + δ

−(αi3 + βi2 + γi+ δ)
= 3αi2 + i(3α+ 2β) + α+ β + γ (17)

Since equation (17) contains quadratic term of i, ∆n is a
function of i. Therefore, we apply forward difference to
∆n(i).

∆n(i+ 1) = ∆n(i) + ∆(∆n(i))
= ∆n(i)∆2n(i) (18)

Using similar computation in refeqn:deltan to ∆n(i), we
have

∆2n(i) = 6αi+ 6α+ 2β (19)

This still contains i, therefore we apply forward difference
once more.

∆3n(i) = ∆2n(i+ 1)−∆2n(i)
= 6α (20)

Initial values of the forward differences are obtained by plu-
gin i = 0. Then we have

noise0 = δ

∆n0 = α+ β + γ

∆2n0 = 6α+ 2β
∆3n0 = = 6α (21)



Then noise is iteratively computed as

noise + = ∆n
∆n + = ∆2n

∆2n + = ∆3n (22)

4.2 Noise Computation Algorithm
In this section, the algorithm to compute noise value with
forward difference for scan conversion is described. Noise is
computed by equation (22) in each step of scan conversion.
We have to decide the constant a to h and α, β, γ and δ.

Constants a to h depend on the noise value at the lattice.
We have to locate which cell the current point is in. Once
it is located and these constants are computed, same con-
stants can be used as long as scan line proceed within the
same cell. If scan line reached another cell, these constants
have to be re-computed. Constants α, β, γ and δ depend on
constants a to h and derivatives of the texture coordinate
along the scan line dsdi, dtdi and drdi. These derivatives are
constants during one scan line and they are updated when
it has changed.

In summary, forward differences in equation (22) are re-
computed when

• scan line reaches different cell or

• scan line has changed

Pseudo code of noise computation algorithm is shown below.

noise_compuation {

for j = min_edge to max_edge {
Compute dsdi, dtdi, drdi
Compute a, b, c, d, e, f, g, h
Compute alpha, beta, gamma, delta
Compute n, dn, d2n, d3n

for i = edge_left to edge_right{

if ( (i,j) is in the same cell ){
n += dn
dn += d2n
d2n += d3n

} else {
Compute a, b, c, d, e, f, g, h
Compute alpha, beta, gamma, delta
Compute n, dn, d2n, d3n

}
}

}
}

With simple example of edge information and texture co-
ordinate, we explain the algorithm. Suppose we want to
render square on the screen and corresponding texture co-
ordinate is assigned as in figure 3. In this figure, dashed
line shows the integer texture coordinate, i.e. a lattice and

let r = 0. Suppose now we scan from point A to B. The
arrow shows the current scan line. dsdi, dtdi and drdi can
be computed from the distance between point A and B and
corresponding texture coordinate. Point A resides in the cell
whose left bottom texture coordinate is (0, 0, 0). Compute
the coefficients from the random value assigned to this cell
and compute forward differences. Then plot the pixel along
the scan line. At the point P, scan line enter the different
cell from the one which point A resides. The left bottom
coordinate of the cell is (1, 0, 0). Therefore we have to re-
compute the coefficients and the forward difference. After
reaching point B, scan line proceed to next line, i.e j = j+1.
At this time, derivatives of texture coordinate (dsdi etc)
might change depend on the texture coordinate assignment.
Therefore, these derivatives might be re-computed for every
scan line. Then we re-compute the coefficients and forward
differences.

By using forward differences, evaluation of polynomial to
compute noise at each pixel is reduced to a couple of ad-
dition. Foward differences remain same as long as the scan
line proceeds the same cell and derivatives of the texture co-
ordinate along the scan line remains same. In other words, if
the texture coordinate is very dense, then overhead of com-
puting the coefficients dominate the noise computation. In
this case, it is much slower than the way of computing the
noise function pixel by pixel.

5. SIMULATION
We measured our method against per-pixel computation.
Both techniques were implemented and measured on a Win-
dows NT 4.0 Pentium III 500Mhz PC, using the C program-
ming language. We measure the time to render a 256× 256
pixel image of a cube, shown in Figures 4 and 5. We used the
following function to synthesize the texture for these images

Wood : f(s) = 10s2 + 10r2 + noise(5s, 5t, r) (23)

Marble : f(s) = r +
3X
i=0

noise(2−is, 2−it, 2−ir) (24)

In both cases, the vertex on the bottom of the cube image

Figure 3: Coefficients are recomputed when the cell
has changed.



Table 1: Rendering time comparison
Texture Pixel by pixel (sec) Forward diff.(sec)
Wood 0.1322 0.1211
Marble 0.2353 0.2053

was the origin of the texture coordinate system. The top
vertex of the image in Figure 4 was assigned (1, 1, 1). Since
the wood texture uses a single unscaled octave of noise, only
one noise cell is accessed in this image.

In figure 5, the top vertex was assigned the point (2, 2, 2)
in texture coordinates. Since the marble texture uses four
octaves of noise, this example accesses 162 = 256 cells of
noise per displayed face, for a total of 768 noise cells.

We measured the computation time for the per-pixel imple-
mentation and our forward differencing version by averaging
10 runs, to avoid anomalies due to the operating system.
The results are shown in table 1. These results show that
our current prototype implementation of the forward differ-
encing method renders the images about 10% faster than
pixel by pixel computation.

To indicate the correctness of the algorithm, the images us-
ing both algorithm are shown in figure 6 and 7. Differences
of these two images are shown in figure 8. In these figures,
white pixels indicate no error, and black pixels indicate there
is an error. Actual value is only 1 out of 0 to 255 range.

Also noise value when scan line proceeds 256 pixels in tex-
ture coordinate from (0,0,0) to (2,2,2) is shown in figure 9.
Figure 10 and 11 shows the difference of noise value for the
images 6 and 7 of one scan line. Dashed line shows the edge
of the cell. At the first pixel of the each cell, there is no
difference at all. However, as scan line proceed the cell, the
difference is getting bigger. Since the range of noise value is
0 to 1, the difference is relatively small. Therefore, we can
not see the any noticeable differences from rendered images.

These figures show that our algorithm correctly produces
images as pixel by pixel noise computation algorithm.

The only error we would expect to see is the accumulation

Figure 4: Wood Texture

error due to imprecision of the higher derivative.

6. CONCLUSIONS
In this paper, we presented a method to compute the noise
function for procedural texturing more efficiently by using
forward differencing. This method can compute a noise
function faster than per-pixel computation.

Our implementation is limited to trilinearly-interpolated noise
cells, which yield a cubic polynomial in the texture coordi-
nates. Most noise implementations use tricubic interpola-
tion of noise cells, which would require a degree nine poly-
nomial and thus nine forward difference variables. It is not
yet clear whether such high-degree forward differencing is
an effective and efficient choice for noise synthesis.

We limited our presentation to the noise function, but the
entire texturing function can also be forward differenced to
make texturing computation faster. We suspect forward dif-
ferencing will play a significant role as the graphics com-
munity explores real time implementations of increasingly
complex lighting and texturing.
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Figure 5: Marble Texture



(a) Pixel by pixel (b) Forward difference

Figure 6: Image comparison : Wood Texture

(a) Pixel by pixel (b) Forward difference

Figure 7: Image comparison : Marble Texture

(a) Wood (b) Marble

Figure 8: Difference between pixel by pixel and forward diff.



(a) Pixel by pixel (b) Forward difference

Figure 9: Noise value comparion

(a) Wood (b) Marble

Figure 10: Noise value difference between pixel by pixel and forward diff.

Figure 11: Noise value difference: Marble octave 4 only
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Appendix
The coefficients a to h in equation 12 are as follows:

a = n0

b = n1 − n0

c = n3 − n0

d = n4 − n0

e = n0 − n1 + n2 − n3

f = n7 − n4 − n3 + n0

g = n5 − n4 − n1 + n0

h = n4 − n5 + n6 − n7 − e

where ni, i = 0, · · · 7 are random value at vertices of the cell.
The coefficients α to δ can be computed as follows:

α = h
ds

di

dt

di

dr

di

β = e
ds

di

dt

di
+ f

dt

di

dr

di
+ g

dr

di

ds

di

+h(s
dt

di

dr

di
+ t

dr

di

ds

di
+ r

ds

di

dt

di
)

γ = b
ds

di
+ c

dt

di
+ d

dr

di
+ e(s

dt

di
+ t

ds

di
) + f(t

dr

di
+ r

dt

di
)

+g(r
ds

di
+ s

dr

di
) + h(sr

dt

di
+ tr

ds

di
+ st

dr

di
)

δ = a+ bs+ ct+ dr + est+ ftr + grs+ hstr.


