
Vertex-based Anisotropic Texturing

Marc Olano, Shrijeet Mukherjee, Angus Dorbie ∗

SGI

Figure 1: An airport runway texture seen with MIP mapping and anisotropic texture filtering with two, four and eight samples

Abstract
MIP mapping is a common method used by graphics hardware to
avoid texture aliasing. In many situations, MIP mapping over-blurs
in one direction to prevent aliasing in another. Anisotropic textur-
ing reduces this blurring by allowing differing degrees of filtering
in different directions, but is not as common in hardware due to
the implementation complexity of current techniques. We present
a new algorithm that enables anisotropic texturing on any current
MIP map graphics hardware supporting MIP level biasing, avail-
able in OpenGL 1.2 or through the GL EXT texture lod bias or
GL SGIX texture lod bias OpenGL extensions. The new algorithm
computes anisotropic filter footprint parameters per vertex. It con-
structs the anisotropic filter out of several MIP map texturing passes
or multi-texture lookups. Each lookup uses MIP level bias and per-
turbed texture coordinates to place one probe used to construct the
more complex filter profile.

CR categories and subject descriptors: I.3.3 [Computer
Graphics]: Picture/Image generation — Display algorithms; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism
— Color, shading, shadowing and texture.

Keywords: Graphics Hardware, Interactive Rendering, Multi-
Pass Rendering, Anisotropic Texturing, Footprint assembly.

∗email:{olano,shm,dorbie@sgi.com}

1 INTRODUCTION
Texture mapping is a scene complexity multiplier. A complex im-
age mapped onto simple geometry makes the whole scene look
more complex. Graphics hardware generally uses MIP mapping
to avoid texture aliasing artifacts [16]. MIP mapping provides a
distance and angle variant isotropic low-pass filter. In other words,
the MIP filter size is dependent on both the distance and angle at
which a texture is seen, but gives the same amount of filtering in all
directions across the texture. Proper rendering of stretched textures
or textures seen from an angle requires anisotropic filtering.

We present a new anisotropic texture filtering algorithm based
on multiple simpler texture accesses. It enables anisotropic texture
filtering on existing platforms with hardware MIP mapping only,
as well as general anisotropic texturing on platforms with only a
limited degree of anisotropy.

1.1 Background
Texture mapping is common on graphics hardware because it pro-
vides detail even on simple geometry. Unfortunately, this same de-
tail creates aliasing artifacts when seen in the distance. The surveys
by Heckbert and Lansdale provide a good review of many texture
filtering techniques that address this problem [7, 10].

MIP mapping is one of the earliest methods, and remains a com-
mon hardware solution for aliasing. A MIP map consists of a pyra-
mid of pre-filtered and down-sampled textures. Each MIP level is
half the size in both directions of the one before. Texturing hard-
ware computes a texture scale factor per fragment (one screen sam-
ple that may be composed with others to produce a final pixel). The
texture scale indicates which two MIP levels are closest to the de-
sired filter width. The hardware may use one, two, four or eight of
the surrounding eight texels to reconstruct the fragment color [15].

While MIP mapping works well for textures seen head on, it
over-blurs textures seen at an angle, preventing aliasing in one di-
rection at the expense of detail in the other direction. In essence,
the texture is squished more in one direction than another, but MIP



a b c d

Figure 2: Assembling elliptical filter footprints (black) out of isotropic
MIP texture probes (grey). Grey areas outside the black footprint
indicate over-blurring, black areas outside the grey footprints indicate
potential aliasing. a: ordinary MIP mapping. b: normal footprint
assembly sampling pattern. c: under-sampling when probe size is
wrong. d: compensating with off-axis probes.

mapping only handles even (isotropic) texture reduction. The so-
lution is to use anisotropic texture filtering. Figure 1 illustrates
the problem for an airport runway texture, as well as the results of
our algorithm. At this viewing angle, runway markings that should
be visible are completely lost by MIP mapping, but preserved by
anisotropic texturing.

Summed-area tables [4] and RIP mapping [7, 11] were early
methods for anisotropic texturing. Both provide anisotropic fil-
tering when the compression is along one axis of the texture, but
perform as poorly as MIP mapping along the texture diagonal.

Heckbert’s elliptically weighted average (EWA) method offers
a better solution by using an elliptical Gaussian filter in texture
space [8]. The ellipse approximates the projection of a circular
Gaussian pixel filter from screen space to texture space. The el-
liptical filter can be constructed by integrating raw texels, or by
combining several MIP map samples within the filter footprint (a
process called footprint assembly).

Variations of footprint assembly to approximate an elliptical fil-
ter have proven most popular for attempts at specialized anisotropic
texturing hardware [1, 2, 5, 12, 14]. Footprint assembly-based al-
gorithms provide relatively good filtering with only a few MIP map
samples. McCormack presents a good comparison of several foot-
print assembly methods [12]. No commercial implementations ex-
ist for most of these. The NVIDIA GeForce is limited to a 2:1 ratio
between the major and minor axis lengths. Currently, only the ATI
Radeon supports a degree of anisotropy up to 16:1.

Other more complex and accurate techniques can produce better
results but are not as well suited to hardware implementation [3] or
require many more texture accesses [6].

1.2 Our Contribution
We propose a new anisotropic texturing algorithm that performs
footprint assembly using multi-texture lookups and/or multiple
passes under application control. The algorithm enables anisotropic
texturing on graphics hardware that does not natively support it,
and enables a greater degree of anisotropy on hardware with lim-
ited anisotropic texturing. The maximum degree of anisotropy is
limited only by the number of rendering passes used.

If multi-texture lookups are present [13], they can be used to di-
vide the total number of passes required. If vertex shading is also
present [9], it can be used to move most of the (now per-vertex)
footprint computations into the graphics hardware.

The overall computational costs are reduced since the elliptical
footprint parameters are computed with lower frequency (per vertex
instead of per fragment), though the practical effect of this result
is depends on the balance of host, vertex and fragment processing
power and load.

a b c d

Figure 3: Representation of probe assembly across a triangle in tex-
ture space (probe size not accurate). a: ordinary MIP texturing. b:
biased center probe. c: blend with second shifted probe. d: blend
with third probe.

Our new algorithm does require the ability to bias the MIP map
level that would otherwise be chosen by the texturing hardware.
This feature is available in OpenGL 1.2 or as an OpenGL extension
on a variety of hardware platforms, from the NVIDIA GeForce to
the SGI Onyx 3000 [13, 15].

The algorithm is described in Section 2, our experimental results
are in Section 3, and some final conclusions appear in Section 4.

2 MULTIPASS FOOTPRINT ASSEMBLY
The basis of EWA is a circular Gaussian filter kernel covering one
screen fragment. When a surface is viewed at an angle, the pro-
jection of this kernel into texture space can be approximated by
an elliptical Gaussian (represented by a black contour in Figure 2).
The grey circle in Figure 2a shows how the standard MIP footprint
avoids aliasing in the direction of most texture variation, but sam-
ples a large area of texture outside the desired elliptical footprint.
This translates into excess blurring of the texture.

Footprint assembly approximates the elliptical Gaussian by a
weighted sum of texture samples (also called probes or taps). Fig-
ure 2b shows the ’ideal’ probe pattern suggested by the Feline au-
thors [12]. Probes are sized to the ellipse minor (short) axis, spaced
along the ellipse major (long) axis, and weighted to approximate
the Gaussian filter profile (not shown). The main difference be-
tween footprint assembly algorithms is probe placement. Both the
ideal algorithm and hardware implementations compute the probe
placement per fragment, but designs for hardware use simpler com-
putations to get close to the true ellipse axis without the full eigen-
vector computation (detailed elsewhere [7, 12]).

For vertex-based anisotropic texturing, we instead compute the
probe placement per vertex. The probe size is set using a MIP
map level bias. An ordinary textured draw gives a set of large
MIP probes centered on each fragment across the geometry (Fig-
ure 3a). MIP level bias scales the probe size relative to the size
standard MIP mapping would have chosen. With MIP bias, we in-
stead get one smaller probe at each fragment (Figure 3b). To place
a probe within the texture area covered by the fragment, we perturb
the texture coordinates at each vertex a small amount in the desired
direction (Figure 3c, d).

The probes are weighted by blending with either a per-vertex
or per-pass alpha. Any set of weights can be computed by work-
ing from the alpha for the last sample backwards to the first. Ta-
ble 1 shows the results for three samples with two choices of final
weights. For example, for three equal weight probes, the first is
drawn using the alpha associated with the geometry. The second
uses an alpha of 1/2, for an even weight of 1/2 for both. The third
uses an alpha of 1/3, resulting in 1/3 weight for the third probe and
1/2 ∗ 2/3 = 1/3 weight for the other two.

2.1 Per-Vertex Computation
The per-vertex computations introduce two issues that don’t ap-
pear in per-fragment algorithms. First, a single polygon may span



Probe # 1 2 3 1 2 3

Desired weights 1/3 1/3 1/3 1/4 1/2 1/4
Rendering Alpha 1 1/2 1/3 1 2/3 1/4

Pass 1 Contribution 1 0 0 1 0 0
Pass 2 Contribution 1/2 1/2 0 1/3 2/3 0
Pass 3 Contribution 1/3 1/3 1/3 1/4 1/2 1/4

Table 1: Two cases for alpha blending three probes, the rendering
alpha applies to the new probe and 1-alpha is the multiplier for all old
probes.

a range of texture scales and different degrees of anisotropy. We
may have a polygon with 2:1 anisotropy at the near vertex and 8:1
or worse at the far vertex. Second, the direction of anisotropy may
change. For example, it could line up with the s texture direction at
one vertex and t at another.

While the degree of anisotropy varies across a polygon, we are
limited to a single choice for the number of texture probes and MIP
level bias. Thus, a successful per-vertex algorithm must correctly
handle having the wrong number of texture probes at the wrong
size (Figure 2c). In our implementation, we choose the number of
probes and MIP bias once per-object, not just per-polygon.

The direction of anisotropy may also vary across a polygon. If
this change is not smooth, we get meaningless offsets in the middle
of the polygon (Figure 4a,b). With a per-vertex algorithm, the probe
weights and texture offsets for each texture pass must be consistent
across the polygons.

These concerns lead us to use a different sampling strategy than
has been used by per-fragment footprint assembly algorithms. We
solve both per-vertex issues by sampling the entire footprint instead
of just placing probes along the major direction of anisotropy (Fig-
ure 2d/Figure 4c-f). This allows adequate reconstruction of a vari-
ety of filter shapes, from circular to highly eccentric, with the same
set of probes and weights.

To compute the probe pattern, we establish a simple transfor-
mation between a circular Gaussian filter and the desired elliptical
filter. Probe positions are transformed from the circular to elliptical
domain. Weights come directly from the probe’s position in the cir-
cular Gaussian. To ensure adequate overlap of samples, we choose
a MIP bias based on the distance to other nearby samples:

MIPbias = log
2

(

probespacing

MIPspacing

)

2.2 Sampling Distribution
This leaves one degree of freedom in the algorithm — the probe
sampling pattern. This can be decomposed into two parts, the sam-
pling pattern within a cannonical circular domain and the transfor-
mation from circle to ellipse.

One choice of transformation aligns the major axis of the ellipse
with the x-axis in the circular domain and the minor axis with the
y-axis (Figure 4a, Table 2). This choice is most similar to the axis
computations for classic footprint assembly, but it is not well de-
fined (or well behaved) for near-circular footprints. The selection
of what axis is longer may change rapidly and unpredictably.

The transformation from screen to texture that originally de-
fined the filter ellipse provides a much more stable coordinate sys-
tem (Figure 4c), but one that requires a particularly dense sam-
pling to avoid directional artifacts (Figure 4d). Note that using
the Screen coordinate system is equivalent to implementing screen-
based super-sampling in software.

We can get a more stable coordinate system that still tracks the
direction of anisotropy by not sorting the major and minor ellipse

a b

c d e

f

Figure 4: Sampling patterns to assemble elliptical filter footprints
(black) from MIP texture probes (grey, drawn here without overlap
for clarity). a: along major axis of ellipse, poorly behaved as direction
of anisotropy changes. b: avoiding switch in axis, severe aliasing. c:
sampling full footprint. d: pattern c as ellipse orientation rotates. e:
pattern c rotated to align with direction of anisotropy. f: final pattern.

System Ellipse Screen Max
Axis 1 Acosθ ∂s/∂x max(∂s/∂x, ∂s/∂y)

Asinθ ∂t/∂x max(∂t/∂x, ∂t/∂y)
Axis 2 −Bsinθ ∂s/∂y min(∂s/∂x, ∂s/∂y)

Bcosθ ∂t/∂y min(∂t/∂x, ∂t/∂y)

Table 2: Coordinate systems. Each system has two axes and each
axis has a s and t components. Partials are elements of the pixel-
to-texture Jacobian, A and B are the lengths of the major and minor
ellipse axes, and θ is the angle subtended by the major axis

axes. This is prone to serious aliasing if used with a line of samples
(Figure 4b), but behaves much more reasonably given a symmetric
sampling pattern (Figure 4c,e).

Our final selection for sampling pattern uses a staggered arrange-
ment (Figure 4f). This avoids the doubling-up that occurs in the
center of the axis-aligned pattern. We also choose an approximate
coordinate system that is somewhat easier to compute and behaves
well as it is interpolated across the polygons (Max in Table 2).

3 RESULTS
We have tested this algorithm on SGI Onyx 3000, SGI Onyx2, SGI
Octane2 and NVIDIA GeForce graphics subsystems. The Onyx
and Octane2 do not support anisotropic rendering in the rasterizer,
whereas the GeForce could have fixed 2:1 anisotropy (which we did
not use for these tests).

Our tests on the SGI Onyx 3000 and Onyx2 used the
SGIS multisample extension. SGIS multisample allows probe com-
bination using separate screen super-samples instead of alpha
blending. This is faster and retains full precision, but limited our
tests to a maximum of eight probes. We used from one to eight
probes for our tests on all systems. Higher numbers of probes are
possible using alpha blending.

Both the geometry and pixel fill rendering requirements are mul-
tiplied by the number of passes used. All of our tests modeled the
typical case of a large textured surface with low geometric com-
plexity. Despite the object covering a large fraction of the screen,
our eight rendering passes did not have a significant impact on the
rendering frame rate.

We evaluated various coordinate systems and sample locations



a

b c

d e

Figure 5: Effect of sampling pattern and MIP bias. a: normal MIP
mapping, notice blurring of foreground edges and background. b:
correctly sized probes along axis of anisotropy. c: same size probes
(now too small) for pattern covering full footprint. d: larger probes
along axis of anisotropy. e: larger (now correctly sized) probes cov-
ering full footprint

within them. Table 2 defines three of the more interesting coordi-
nate systems. The Screen coordinate system is equivalent to super-
sampling the MIP mapped texture. It exhibited aliasing artifacts
we attributed to directional effects shown in Figure 4d. The El-
lipse coordinate system was superior from some directions, but had
instabilities caused by by the singularity in Figure 4a. These singu-
larities could be seen sweeping evenly across the polygons as the
model rotated. The Max coordinate system produced good results.
It is better behaved than the Ellipse system but is still oriented along
the direction of maximum anisotropy.

We also experimented with different probe placements for each
coordinate system. Our tests included probes along the major axis,
jittered off of the major axis, at the end of both axes, at the corners
of an axis-aligned square, and on a jittered grid within the circular
footprint. Of these combinations, the best overall visual quality was
achieved with the axis-aligned square pattern and Max coordinate
system. Snapshots of some of these results are shown in Figure 5.

4 CONCLUSIONS AND FUTURE WORK
We have presented a new anisotropic texturing algorithm that works
on a variety of hardware with limited or no native anisotropic tex-
turing support. The algorithm composes multiple perturbed MIP
map renderings to build an anisotropic filter kernel.

The algorithm requires the ability to bias the MIP level used in
texturing, but this is a common extension to ordinary MIP map
hardware found on a wide variety of platforms.

In the future, we would like to try using lower degree anisotropic
samples as the probes instead of MIP samples. For example, the
NVIDIA GeForce has native support for 2:1 anisotropy. We should
be able to achieve convergence to the desired footprint with fewer
probes when those probes are already oriented elliptical samples,
amplifying the limited built-in anisotropy to something much better.

Our selection of coordinate systems and sampling patterns was
somewhat ad-hoc. We achieved excellent results, but getting the
best results for a given number of samples demands a more thor-
ough examination of the choices. It is also possible that better re-
sults could be achieved by specifying different per-vertex weights
and probe offsets within the circular kernel.

Many of the artifacts of per-vertex computation could be avoided
through adaptive tessellation of the objects.

For much more accurate anisotropic texturing or other filter
shapes, it should be possible to do per-vertex control point trans-
formation for NIL mapping [6]. This is not as practical as foot-
print assembly for real-time use since it would require a much larger
number of passes.

The algorithm could also be exploited for depth of field effects,
blurring the texture more in front of and behind the focal plane.

Finally, as a tool for better performance, real-time scene man-
agement software could control the number of probes used for
anisotropic texturing on a per object basis. Distant or less important
objects may use fewer samples. This gives application control over
the choice between fidelity and performance.

References
[1] ATI. Radeon charisma engine and pixel tapestry architecture. ATI White

Paper, 2000.

[2] BARKANS, A. C. High-quality rendering using the talisman architecture.
1997 SIGGRAPH / Eurographics Workshop on Graphics Hardware (August
1997), 79–88.

[3] CANT, R. J., AND SHRUBSOLE, P. A. Texture potential mip mapping, a new
high-quality texture antialiasing algorithm. ACM Transactions on Graphics
19, 3 (July 2000), 164–184. ISSN 0730-0301.

[4] CROW, F. C. Summed-area tables for texture mapping. Computer Graphics
(Proceedings of SIGGRAPH 84) 18, 3 (July 1984), 207–212.

[5] EVERITT, C. Anisotropic texture filtering in OpenGL. NVIDIA White Paper,
September 2000.

[6] FOURNIER, A., AND FIUME, E. Constant-time filtering with space-variant
kernels. Computer Graphics (Proceedings of SIGGRAPH 88) 22, 4 (August
1988), 229–238.

[7] HECKBERT, P. S. Survey of texture mapping. IEEE Computer Graphics &
Applications 6, 11 (November 1986), 56–67.

[8] HECKBERT, P. S. Fundamentals of texture mapping and image warping.
Master’s thesis, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, June 1989.

[9] KILGARD, M. J. NV vertex program extension specification. NVIDIA,
2000.

[10] LANSDALE, R. C. Texture mapping and resampling for computer graph-
ics. Master’s thesis, Department of Computer Science, University of Toronto,
January 1991.

[11] LARSON, R. D., AND SHAH, M. S. Method for generating addresses to
textured graphics primitives stored in RIP maps. US Patent 05222205, 1993.

[12] MCCORMACK, J., PERRY, R., FARKAS, K. I., AND JOUPPI, N. P. Fe-
line: Fast elliptical lines for anisotropic texture mapping. Proceedings of
SIGGRAPH 99 (August 1999), 243–250.

[13] OPENGL ARB. Extension specification documents. http://www.opengl.org/,
2000.

[14] SCHILLING, A., KNITTEL, G., AND STRASSER, W. Texram: A smart mem-
ory for texturing. IEEE Computer Graphics & Applications 16, 3 (May 1996),
32–41. ISSN 0272-1716.

[15] SEGAL, M., AKELEY, K., FRAZIER, C., AND LEECH, J. The OpenGL
Graphics System: A Specification (Version 1.2.1). Silicon Graphics, Inc.,
1999.

[16] WILLIAMS, L. Pyramidal parametrics. Computer Graphics (Proceedings of
SIGGRAPH 83) 17, 3 (July 1983), 1–11.


