Using Tiled Head-M ounted Displayswith a Single Video Source

Brian Douglas Strege

A paper submitted to the
Computer Science & Electrical Engineering Department
in partial fulfillment of the requirements for the M.S. degat
University of Maryland Baltimore County

April 2009

Certified by: Dr. Marc Olano

Advisor’s Signature: Date

ABSTRACT

Title of Paper: Using Tiled Head-Mounted Displays with a Single Video Seurc
Brian Douglas Strege, Computer Science, 2008

Paper directed by: Dr. Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

Head-mounted displays (HMDs) are used to create a sensenoénsion known as “virtual
reality” for various applications, such as flight simulatiaata visualization, or simply entertain-
ment. Recently, some HMDs are using multiple screens “tiggdund each eye in order to give
the user a greater sense of peripheral vision by providing feider field of view. Currently, only
specialized applications that output individual vide@ains to each of these “microdisplays” can
be used with tiled HMDs. This paper describes a system ektgriteir use to off-the-shelf 2D
and 3D applications. The system was developed using Graphmcessing Units (GPUs) as a
platform, and creates multiple video streams for each ofitieeodisplays, all from a single source
video stream. This is performed in real-time, with frameesahigh enough to run interactive

applications on a tiled HMD.

ACKNOWLEDGMENTS

Special thanks to Yuval Boger for the piSightpanel alignment files, Nathan Villagaray-

Carski for the converted Oval Office model, and Peter Shafidethe original Oval Office model.

TABLE OF CONTENTS

ACKNOWLEDGMENTS e ii
LISTOFFIGURES %
Chapter 1 INTRODUCTION 1
1.1 OVEIVIEW . . . o o e e e
1.2 Objective e e 2
Chapter 2 BACKGROUND AND RELATEDWORK 5
2.1 VirtualReality e e 5
2.2 Graphics ProcessingUnits e 7
23 Resampling 7
Chapter 3 APPROACH 12
3.1 ProblemDescription 12
3.1.1 PixelMap e
3.1.2 ImageResampling 3
3.2 Implementation e 14
3.2.1 Description of Microdisplays 15

3.2.2 LocationofSourcelmage 16

3.2.3 PixelMap Generation 22
3.24 HeightMap 24
3.25 GPUComputations 6 2
3.26 Resampling 28
Chapter 4 RESULTSAND ANALYSIS 31
4.1 TestPlatform 31
4.1.1 HMD e 31
4.1.2 GPU . . 32
4.1.3 Software Environment 32
4.2 TestApplication. 33
4.3 Performance 35
4.4 MemoryUsage e e e e 7 3
4.5 Feline Utilization e 38
46 ImageQuality 39
Chapter 5 CONCLUSION s 45
5.1 Contributions e e 45
5.2 FutureWork e 46
REFERENCES 47

11

1.2

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

LIST OF FIGURES

Example illustrating HMD field of view 3
Schematic of tiled HMD system using GPU-based hardwatiopm 3
Feline: example showing ellipses with different ecdeities over a texture map . 10
Feline: example showing probes overanellipse 10
Feline: using trilinear filtering alone produces blueyt 11
Feline: using Feline produces cleartext 11

lllustration of the mapping of pixels from the microdesys to the source image,

fromthetopdown. 13

lllustration of the mapping of pixels from the microdesygs to the source image,

fromthe eye’'s perspective e e 14
View of the three microdisplay planesinworld space 18
View of the three microdisplay planes fromabove 18
View of raycasting through the corners of the three nuislay planes 20
View of the projections of the three microdisplay planes. 20

View of the source image shown with the projections otlinee microdisplay planes 21
View of the source image shown with the three microdisplanes 21

A microdisplay planeinworldspace 23

3.10

3.11

3.12

3.13

3.14

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

The “bulge” height map function 25

Asamplegridsourceimage e 26
The grid image, mapped to the microdisplays 27
The grid image, mapped to the microdisplays using th&gdj height map function 27

A microdisplay pixel mapped to the sourceimage 30
Image of the piSight' tiled HMD 32
Office scene rendered in test application 34
Office scene rendered in test application, with micqgdismapping applied . . . 34
Car scene rendered in test application 35
Grid picture used as source imageo e e e e 40
Microdisplay results using grid picture as source image. 40
Example 12-microdisplay configuration 41
12-microdisplay results using grid picture as sourcagen 41
Comparison of basic trilinear filtering to usage of thérfeealgorithm 42
Image quality comparison of the three-microdisplayppiag example 44
Image quality comparison of the 12-microdisplay mag@xample 44

Vi

Chapter 1

INTRODUCTION

The term *“virtual reality” has entered the modern lexicomé&scribe any system which pro-
vides a convincing sense of immersion in some alternate atemgenerated world. Virtual Re-
ality (VR) systems find applications in a number of fields, veheir uses range from real-world
simulations such as flight training, to completely artificealities such as immersive video games.
For real-world simulations in particular, it is easy to see Yalue in training someone for a poten-
tially dangerous situation inside of a virtual world as opgd to reality which may put the user in

harm’s way.

1.1 Overview

For a virtual reality system to successfully immerse its urs® a virtual world, a number of
the user’s physical senses must be affected. While variagsware systems exist to provide audio
and even tactile information, the centerpiece of any vinteality system is its ability to provide
visual information. Many virtual reality systems today u$ead-Mounted Displays, or HMDs,
to provide this visual information. The earliest computased HMD was a very large unwieldy
system comprised of two heavy CRTs placed on either sideeotisier’s head, having the video
reflected to their eyes via half-silvered mirrors, and wabkeavy it had to be suspended from the

ceiling [1]. This device earned itself the nickname “Swofdamocles” — presumably due to the

intimidating appearance of its machinery suspended fracé#iling — and with it the HMD was
born [2].

As optical technologies progressed, HMDs were able to bedmyhter and less cumbersome,
as well as have much better resolution than they did in the edyen only CRT displays were
available. Another aspect of HMD technology that has imptbaver time is their visible field
of view, allowing the system to provide the user some sengeppheral vision instead of only
very narrow “tunnel-vision,” as can be seen in Figure 1.1.wkhker, as their field of view is
widened, HMDs tend to have a significant amount of geomeistodion around the periphery
of the display [3]. Some modern HMDs are combating this digio while offering wider fields
of view by utilizing multiple small displays, or “microdisgys,” for each eye as opposed to the
usual single display per eye. Each microdisplay can thernlted to its proper orientation and
“tiled” next to one another so as to create a contiguous Ve that curves around each of the
user’s eyes, allowing for much greater perceived periplvesen without the distortion of a single

display.

1.2 Objective

Currently, each microdisplay in tiled HMDs must receiveitra@vn distinct video signal,
every application that wants to be used in tandem with the HMI3t be specialized so that it can
provide individual video sources for each microdisplayefiore, a potential user of a tiled HMD
would need to provide a large number of video sources in adaée able to drive the display
device. This translates into the user needing much morenaaedof their own: additional video
cards to provide the extra source outputs, and perhaps avks of additional computer systems
in order to accommodate the additional video cards. All &f &éxtra hardware greatly drives up
the overhead cost to be able to use a tiled HMD, and keepsubeiout of reach for the average

computer user. The ability to use tiled HMDs with applicagdhat provide only a single video

Fic. 1.1. Example illustrating HMD field of view. The angheshown is the horizontal field of
view corresponding to the smaller viewable image result. HMD technology has progressed,
their field of view has increased to allow the user to see mbtaeaperiphery of their vision,

resulting in a much more immersive experience.

Existing
video p———> :
source T T &

Single video stream Multiple video streams

GPU-based
hardware platform

Fic. 1.2. Schematic of tiled HMD system using GPU-based hareyéatform. The platform
would take a single video stream as an input, and output ag mdeo streams as the tiled HMD

has microdisplays.

source (or possibly a stereo source) is clearly desirablisiwould greatly reduce their overhead
cost of operation, increasing their potential user basdowhhg tiled HMDs to be driven by a
single video source would allow them to be used with any loé-shelf application; everything
from video games to DVDs would then be compatible.

The research described in this paper creates a framewodhwepands the functionality of
tiled HMDs, so that they may be used with a single video sauktigorithms have been developed
using a modern Graphics Processing Unit, or GPU, as a phatfdhe use of a versatile platform
such as a GPU allows the finished product to be easily adapted iuseable piece of hardware.
This piece of hardware would sit between any existing videroce and a tiled HMD, as shown in

Figure 1.2, so as to allow functionality with that existirgusce.

Chapter 2

BACKGROUND AND RELATED WORK

There has been quite a bit of work done which is related tordgsarch, both in terms of
HMD research as well as general computer graphics resedric will be useful to this system.

A description of the relevant previous work and backgrouridrimation is given in this section.

2.1 Virtual Reality

The first HMD was a large unwieldy piece of equipment nickndriee Sword of Damocles
[1, 2]. This first HMD, like many other pieces of display equient that followed it, was part of a
larger VR system. A sense of immersion was created by trgakia user’s head movements and
causing them to directly and immediately affect what wasdpelisplayed to their eyes, as if they
were “looking” around this 3D virtual world. An early discery from this system is that having
accurate representation of stereo vision in an HMD greaityeases the realism of the virtual
world, as opposed to simply displaying the same image vig\friom a single point in that world
to both of the user’s eyes.

It is worth noting that HMDs are not the only devices used tovey the visual data in VR
systems - certain applications are more suited to othestgpdisplays. One such alternate visual
system is the relatively simple Fish Tank VR, where stereages of a 3D scene are displayed on

a regular monitor, the user wears special stereo viewingsgkato have the correct halves of the

stereo image shown only to the corresponding eye, and this head is tracked to create a sense
of immersion by having movements affect what is actuallyngeadisplayed [4]. Another system
design is known as the CAVE, a recursive acronym for CAVE Anatic Virtual Environment [5].
This system is essentially a theater that a user walks ifter@the virtual environmentis projected
onto the surrounding walls. The user must still wear stetassgs and a tracking device. More
recent CAVE-like systems have strived to eliminate the-uwg@mn equipment altogether while still
providing stereo imagery and tracking, resulting in a lessstrained experience for the user [6].

On a different side of this discussion, it is also worth ngtilnat some HMDs are not intended
for VR; they are not attempting to create an immersive wooldd user. Rather, these systems
are intended taugmentreality by overlaying artificial computer-generated imf@tion on top of
the real world. Certain systems augment reality by capgureal-world images and rendering
them behind computer-generated information, using imagpucing devices attached to a head
unit along with the displays for each eye. The captured wneale images are then merged with
the computer-generated ones, and displayed to the usese Bystems are known as “video see-
through HMDs,” in contrast to “optical see-through HMDs hieh let the user directly see through
the screens into the real world. This method of augmentddyrealies on optical combiners —
essentially half-silvered mirrors — for the displays, id@rto allow the user to see through them
while remaining partially reflective to display the compugenerated imagery [7]. Systems such
as these have found use in creating Heads-Up Displays (HWbDish relay pertinent information
to a user in real-time while not restricting their vision.[8]

Also as mentioned earlier, the visible field of view of HMDsended for use in immersive
VR applications has become much better over the years. Wial8word of Damocles had only a
40 degree field of view, certain modern tiled HMDs have a digamtly wider 150 degree field of
view [9]. A much greater sense of immersion is created byethiéesd HMDs due to the increased
visual information at the user’s periphery. An academidenck of 1,381 people participated in a

recent survey about satisfactory HMD specifications, aeddsults indicated that a field of view

that is at least 120 degrees would be adequate for most academoses [10].

2.2 Graphics Processing Units

GPU technology has also advanced greatly over the yearsa@€yar interest to this re-
search is use of the inherent programmability of modern GRiSisig a process calleshading
Shading was first introduced a decade ago with the creati@enpwbprietary system called Pix-
elFlow, which utilized its own specialized shading langai@nd could run procedures written in
this language to render high-quality images in real-tirfld.[The GPU platform is already being
used to help drive new types of VR devices, such as immersareasscopic displays, via these
programmable shaders [12]. All modern GPUs execute shaigedures, which are now writ-
ten in more standardized languages and with well-definedeneand instruction requirements to

which many different GPUs conform [13].

2.3 Resampling

The algorithms described in this paper map from the existidgo source to the multiple
video streams needed for the tiled HMD. Whatever these mgppnay be, it is immediately obvi-
ous that the resolutions of the tiles and the locations theyapped to may not match. Converting
from one resolution to another is knownr@samplingand the best technique to accomplish this
is calledfiltering; making each pixel of the microdisplay the weighted sum ofahginal pixels,
according to some weighting scheme known adittex kernel.When we are discussing filtering,
we will specifically be talking abougxture filteringwith our source image- the visual data before
it is mapped to the microdisplays — as the textuBdlinear filtering is a very common method
which samples the four texels nearest to the exact pointetettiure to be mapped, and combines
them via weighted average based on their distance to that. panother technique used in texture

filtering is mipmappingwhere a texture is stored along with sequentially smabgies of itself,

halving its dimensions all the way down to a single pixel. Mggps are used to speed up rendering
and reduce image aliasingiilinear filtering is an extension of bilinear filtering which interpolates
between the two closest mipmap levels. Trilinear filteriggivery common filtering method, is
quite easy to implement, and is readily available in manyetigsment platforms.

In physics, if some physical property of an object is directilly dependent — i.e. results in
different values when measured along different axes — gfesrred to as aanisotropicproperty.
There are many physical properties which can exhibit aropgt but a simple one to visualize is
the change in appearance of certain materials when viewoed different angles. For example,
a flat surface of brushed metal will appear darker or lighteelol upon the viewing angle, even
though the lighting in the room has not changed. In terms peapance, the brushed metal is an
anisotropic surface In computer graphics, when a texture is being mapped atep gflancing
angle to the viewer, visual artifacts can form; angle-deleem effects such as these are referred to
asanisotropic effectfl4]. Trilinear filtering does not take into account any anigiformation from
the mapping — it is not aanisotropic filter— so it may not perform well during mappings involving
steep glancing angles. This may very well be the case wigd tHHMDs, as the microdisplays
towards the periphery of the eye may be at quite steep angles t® stretch around the full range
of the user’s vision. With that in mind, more robust filteriteghniques should be explored for use
with tiled HMDs.

One such filtering technique called Elliptical Weighted fage (EWA), is a very accurate
resampling technique for arbitrary mappings that may vedteep glancing angles [15]. EWA
works by treating each mapped pixel as an ellipse whose raagminor axes are directly com-
puted based upon the angles of the mapping. It uses a Gadtittgiarwhich is applied over the
entirety of this ellipse. However, despite its accuracy A/quite an elaborate and costly algo-
rithm, and would be difficult to incorporate into a real-tisyestem. Also, it would be quite difficult
to implement in such a way as to be executed on the GPU, eideinbapixel shader A system

called Feline (Fast Elliptical Lines) was developed to appnate EWA visually, while requiring

much less computation [16]. Feline is built on top of an emgtrilinear filtering engine, and
is a much simpler algorithm than EWA. Since trilinear filteyiis inherently available in modern
GPUs, Feline would seem a good fit to be implemented insidgofed shader.

EWA and Feline both use ellipses to cover the swath of texanea — in our case, source
image area — which is to be sampled. As the glancing anglesteger, the ellipses will get more
eccentric, and this will result in more area being sampleskas in Figure 2.1. In contrast to EWA,
Feline does not apply a filter over the entire area of thipgdli Instead, Feline samples the area
defined by these ellipses by using a certain number of “pfaddesg the length of the ellipse, as
seen in Figure 2.2. These probes in turn use trilinear filteto determine their own results, which
are then combined by weighted average, using Gaussian tseiBly using trilinear filtering to
sample the ellipse at only a few locations, Feline greattg doawn on computation as compared
to the exhaustive EWA technique.

The location of the probes is determined by first calculatirgmajor and minor radii of the
ellipse, and the number of probes used is determined by tleeafathe radii. To determine the
radii of each ellipse, as well as the eccentricity, Felinestine told the rates of change in texture
space with respect to screen space at each pixel. More sp#ygifusing the convention, v to
represent coordinates in texture space, angto represent coordinates in screen space, the partial
derivativesdu/0x, 0u/dy, Ov/0x anddv/Jy must be known to Feline in order for it to execute.

The benefits of using Feline over simple trilinear filterirnde seen in Figures 2.3 and 2.4.
Using only trilinear, the text applied to the plane at a glag@angle appears quite blurry, while the

text filtered using Feline is clear.

AN
[1\
\ |/
V

FiG. 2.1. Feline: example showing ellipses with different exdeities over a texture map. Image
taken from “Feline: Fast Elliptical Lines for AnisotropieXture Mapping,” by McCormack et al.

FiGc. 2.2. Feline: example showing probes over an ellipse. Nwdért is used to step through
the probes. Image taken from “Feline: Fast Elliptical Lif@sAnisotropic Texture Mapping,” by
McCormack et al.

10

FiG. 2.3. Feline: using trilinear filtering alone produces bjuext. Image taken from “Feline:
Fast Elliptical Lines for Anisotropic Texture Mapping,” cCormack et al.

FIG. 2.4. Feline: using Feline produces clear text. Image tékean “Feline: Fast Elliptical Lines
for Anisotropic Texture Mapping,” by McCormack et al.

11

Chapter 3

APPROACH

There are a number of technical challenges in mapping aesundgo source to the individual
microdisplays of a tiled HMD. For the duration of this papee will consider these problems with
just one eye, assuming in any implementation of the systene tvould be distinct video sources

for each eye —i.e. a stereo source.

3.1 Problem Description

Before we can begin describing the implementation detdilsuo system, we must clearly

define the technical problems that we will encounter.

3.1.1 Pixel Map

The image from the original video source must comprise thieeefield of view of the tiled
HMD, so that there can be image data displayed around theegr@riphery of the user’s vision.
Due to the curvature of the microdisplays around each egeetis not a one-to-one mapping of
pixels from the source image to the microdisplays. As careba t1 Figures 3.1 and 3.2, each pixel
in the microdisplays will correspond to a certain regioniaefs in the rendered image, depending
on the physical position of the pixels in the microdisplays.

There is more than one way to create this mapping, as thetati@m of the microdisplays

12

Pixels
Microdisplays

FiG. 3.1. lllustration of the mapping of pixels from the micrspliays to the source image, from
the top down. Note that at the periphery of the user’s visi@ingle pixel of the microdisplay
corresponds to many more pixels of the source image thathia¢ pixels near the center.

says nothing of where the source image actually lies. Wingseource image is placed will greatly
affect the mapping, as it will determine exactly where thgp®al regions of each microdisplay
will reside. Also, the dimensions of the source image musibed so as to allow the microdisplay
mappings to cover a large portion of this original imageh# ticrodisplays only covered a small
portion of the source image, much of the original data wowdd /e seen by the user, and the
immersive effect of the peripheral tiles may be lost. Fidhe mapping should be able to account
for potential lens distortion of the microdisplays themrssl Treating each microdisplay as a plane

will not necessarily be an accurate representation of tigsipal hardware being used.

3.1.2 Image Resampling

Another consideration is the fact that the source image eamig arbitrary resolution, as well
as aspect ratio. As stated earlier, the pixels of the mispdys will not directly correspond to
the pixels of the source image, meaning that some form ofrpbiag will have to be performed
during the execution of the mapping on the GPU. Trilineaefiiitg was tested, as well as a pixel

shader-based implementation of the Feline algorithm.

13

[T 1] \

!

Source Image Microdisplays

FiG. 3.2. lllustration of the mapping of pixels from the micrspliays to the source image, from
the eye’s perspective. Note that at the periphery the cdvagions “fan out” and become non-
rectangular in terms of the original pixels.

3.2 Implementation

In order to develop an implementation of our mapping syseemymber of things must first
be defined. First and foremost, the size and orientation di e@alividual microdisplay must be
precisely defined, as well as the location of the eye. Negtsihe and orientation of the source
image must be chosen, preferably in such a way to make thedmmays all map inside of it —i.e.
have nothing map out-of-bounds. Once this is complete, ticeodtisplays can be projected onto
the source image, and the pixel map calculations can be rkadb. pixel of each microdisplay will
be projected onto the source image, and its mapped locatlbibesstored. Finally, once all of the
pixel maps have been created, the microdisplays can reicgiues from a single source image by
simply using the mappings. All of these steps, in additiootter elements of our implementation,

are described in detail in this section.

14

3.2.1 Description of Microdisplays

The first step that must be taken in any implementation oflpnaps is to mathematically
define exactly where in space a microdisplay lies. For nowwilleconsider each microdisplay
to be a finite flat plane. The easiest method of defining whetleanworld each microdisplay lies
is to simply keep track of its four corner points. In order t ttis, we will require the exact
width and height of each microdisplay — including any anaesatiue to the manufacturing of
the hardware. Since a height and width by itself means ngtimira world of infinite space, we
will use the convention established by the HMD chosen forarsthis project (discussed later in
Chapter 4), namely that each microdisplay is at a distandefrmim the eye. This assumes that all
microdisplays have a common focal point — namely, the eyedHfanthe sake of simplicity, we
will use this focal point as the origin of our world. Lastlyewvill also require the rotational angles
of each microdisplay about each axis (i.e. the pitch, roifj gaw), again to exact manufacturing
specifications. Knowledge of the distance between each eyédvbe required for stereo vision,
but since we are dealing with distinct sources for each egentitl not be needed.

In the implementation, defining a microdisplay first stargscbeating and storing the four
corner points of a given microdisplay, without rotationalfjiven microdisplayy, has a width of
w and a height oh, the corner points of the non-rotated versiomgfdenoted:, would be defined

in space as follows:

SIS

w
2

IS NS
|

N

yBL = yMBR = | —

I
—_

I
—_

I
—_

—1

where a subscript 6f L denotes @op leftcorner point, and so on. Note that theoordinate
of all of the corner points is -1 as opposed to 1. This maisttie distance of 1 from the origin, but

makes some of the math a bit simpler later on. Now the micpdalysmust be rotated to its proper

15

orientation. In order to do this, we simply must rotate eamimer point with the same sequence of
rotation matricies. If the angles of rotation for the miaspdaym ared,, 6, andé,,, for roll, pitch

and yaw, respectively, then the rotation matricies are kémae:

cos(6,) sin(6,) 0 1 0 0
R. = —sin(0,) cos(6,) 0 |.By=10 vcos(d,) sin(6,) |
0 0 1 0 —sin(6,) cos(b,)

sin(fy) 0 cos(By)

To rotate the corner points, the rotation matricies are simqultiplied with the non-rotated

points. Using the top left corner af as an example:

mrr = R, RprnTL

These calculations are performed on each microdisplayte sil of the proper corner point
locations. A visual representation of the data computedupis point on a three-microdisplay
example can be seen in Figure 3.3, where each microdisp&hoisn as a plane with a different
color, and the world’s axes are shown with the origin defirgetha location of the user’s eye. This

particular example set of microdisplays will be used fredlyefor the duration of this paper.

3.2.2 Location of Source Image

The next step in the process is to determine where the sauaggei lies in world space. Like
the microdisplays, the source image can be thought of asne ptaowever, the only information

available about the source image is its resolution, ancedimat is not related to the resolutions of

16

the microdisplays, the only information that can be gatthiém@m this is the source image’s aspect
ratio. The location of the source image will ultimately dieiwhere the pixels get mapped, so the
method used to determine this will have a profound effecherrésulting images.

We align the source image with the axes, so that the normaingpfrom the center of the
source image goes directly through the eye. This will keepirtiage directly in front of the eye
— much as the microdisplays were before they were rotateda-lagical relationship with the
parameters of the world surrounding it. However, unlike thierodisplays, the source image’s
distance from the eye will not be 1. Instead, it will be choseme the closest it can be to the
eye without cutting through any of the microdisplay plan&s.can be seen in Figure 3.4, the mi-
crodisplays at the sides “stick through” the microdisplayhie center, so the source image in this
case would come as close to the eye as possible withouteeterg a microdisplay plane. There-
fore, thez-coordinate of the source image plagewill be the minimum tranformed-coordinate
(since we are dealing with negative values) in all of the odesplay planes. To determine this,
we can simply check all of the corner points of the microdigpl and set. to be the minimum
z-coordinate found.

Now thats. has been determined, the height and width of the source imagerld space
must be calculated. Lat, ands, denotehalf of the height and width of the source image, respec-

tively — half so that the corner points of the source imagelmadefined as follows:

— Sz Sz r Sz
STL = Sy |»STR= | Sy |[+SBL = | =Sy | »SBR = | —Sy
Sz Sz Sz Sz

The method used to calculatgands, will be to make the source image as small as possible,
while having no mapped pixels from the microdisplays fali-oftbounds of the source image, and

also while maintaining its aspect ratio. This will be accdistped by determining the polygons that

17

FiG. 3.3. View of the three microdisplay planes in world spacke microdisplays are shown as
different colors to distinguish them from one another. Thexis is red;y green and: blue. The
eye is positioned at the origin, looking straight down thaxis in the negative direction; towards

the microdisplays.

FiG. 3.4. View of the three microdisplay planes from above. Nb&t the microdisplay planes cut
into each other; this is an overlap which will result in a sesssimage when viewed with the actual
hardware. The source image will be placed as close to thessyessible without intersecting any

of the microdisplay planes.

18

each microdisplay will map to when projected onto the soin@ge, and then “fitting” the source
image to these projections. Since thealue of the source image is already known, determining
the projections of the microdisplay planes is rather simplgain, this can be done on the basis
of performing calculations only on the corner points of thenadisplays. Each corner point will
have a ray cast through it, originating at the eye (the oyjgia seen in Figure 3.5. The resulting
projected point will be the point on that ray which haszalue equal ta.. The basic parametric

equation for a line between two pointandb in 3-d space is as follows:

I(t) =ta+ (1—1t)b

However, since we are always casting our rays from the qrigih be zero. Therefore, a ray
cast through any corner point of any microdisplay,will be defined by the following extremely

simple formula:

r(t) =tm

This can be used to determine thandy values of the projected point, denotedvhen the

z value iss,:

r(t)y=tm=mp
=tm, =p, =S5,
=>t="=

_ s _ s
= Pz = m_zzmm’py = =My

mz

Once this is done for every corner point, we will have detesdithe corner points of the
projections of all of the microdisplays onto the source imad\s seen in Figure 3.6, this has

projected the microdisplays onto the source image planacesve have not yet determined the

19

Fic. 3.5. View of raycasting through the corners of the threeradisplay planes. Since the
HMD has a large field of view, these rays “fan out” quite a bihefefore, the farther away the
source image is placed, the larger it must be to prevent aosodisplay pixels from being mapped

out-of-bounds.

FIG. 3.6. View of the projections of the three microdisplay @anThe microdisplay image areas
have been essentially “flattened” onto a plane that is sostarties, from the eye.

20

FiG. 3.7. View of the source image shown with the projectionshefthree microdisplay planes.
The source image, shown in grey, has been made as small aslpedsile still fully containing
all of the microdisplay projections, as well as maintainitggoriginal aspect ratio. This image
most clearly shows the mapping results as a whole, sinceetfiens of the source image that the
microdisplays map to can be easily seen along with the soonage itself.

FiG. 3.8. View of the source image shown with the three micrddisplanes. This illustrates how
large the source image must be in comparison to the origir@befisplay planes, so as to prevent
any out-of-bounds mapping.

boundaries of the source image, it is not shown. Now that ¢ineer points have been foung,

is chosen to be the largestabsolute value of these projected points, and likewise wjthThe
source image has now been fitted to the projections, and tilestep is to increase eithey or s,,
depending on the specific configuration, so as to maintaiagpect ratio of the source image. The
source image concept can be seen in Figure 3.7, which shevebtiice image plane fitted to the
microdisplay projections. Notice that the source imageldeen made as small as possible in the
horizontal direction, while still containing all of the nmaxlisplay projections (the vertical direction
is not tightly fit, in order to maintain the original aspedio® Figure 3.8 shows the source image
plane along with the original microdisplay planes, whidbstrates how large the source image

must be to prevent any out-of-bounds pixel mapping from tieradisplays.

3.2.3 Pixel Map Generation

Now that the coordinates of the microdisplays and sourcgtave been determined, work
can begin on computing the pixel map. What is required is augtkve computation of the ex-
act sub-pixel location in the source image correspondirngyesy pixel of each microdisplay. In
other words, rays will be cast from the eye through the cesfteach microdisplay pixel, and the
resulting pixel in the source image that it hit will be recedd

In the previous section, it was seen that given a point — rdispday corner points, at the time
— it is very easy to calculate the location on the source invelgieh a ray cast through that point
will hit. Therefore, the last part that remains is finding éxact center point of each microdisplay
pixel in world space, since they are the points that the raitde cast through. Figure 3.9 shows
a microdisplayn, in world space, as well as denoting some relevant vectdhsetpixel map. The

corner points are initially known, all other vectors andrsiare unknown.

22

FIG. 3.9. A microdisplay plane in world spacﬁ is the vector frommnr;, to mrg, andV is the
vector frommy, to mp. The pointf is the exact center point of the first pixel in the microdigpla
h is an increment vector that will move one pixel over horizadigt andv is an increment vector

that will move one pixel down vertically.

To calculate the unknown variables, we will start with thetees leading along the edges of

the microdisplay, from corner point to corner point:

H = mpr — mpy,

—

V =mpr —mrr

23

Now the increment vectors and# must be computed. Let, andm, denote the horizontal

and vertical resolutions of the microdisplay The increment vectors are as follows:

)
T

mp

<t

<y
I

E

Finally, the center of the first pixef,, must be computed. This point will serve as the starting

position for the iteration through all of the other pixels:

—

f— —l—h—l—ﬁ
=mrL 9 9

Now that all of the unknown variables have been computedutating the entire pixel map
is simply an exercise in looping through the center pointadtepixel by adding the increment
vectors tof, and ray casting through those points onto the source ima@gee the point on the
source image is determined, it must be converted out of waartdldinates to the actual pixel value

based upon the source image’s resolution.

3.24 Height Map

All of the computations that have been performed so far tater¢he pixel maps are im-
plemented as preprocessing on the CPU; this map only neddls ¢oeated once, and must be
completed before operations can be carried out on the GPWa&seen in Figure 3.9, these maps
are created by starting with the corner pixel and simplyaneenting along through each pixel in
order to create a full mapping. These mappings could have r@asily been computed with a
matrix multiplication-based planar transformation on @RU, or their creation could have been
avoided altogether by doing planar transformations orflthen the GPU - in fact, matrix multi-
plications are faster than texture lookups. However, tbhit®n would be much less versatile for

the finished product because it does not allow for treatiot @sicrodisplay as anything other than

24

ffl’fffi*"o;’o,o’&;&‘\\\\\\@\

f?%%“,‘:’o‘o’ “\‘\\‘\\\\\i \ |
{00 TN
THGTIVIPY

FiIG. 3.10. The “bulge” height map function.

a plane. With the incrementing method, a height map can bly egplied to each pixel, based on
some function of its position on the microdisplay. An exaenpéight map function called “bulge”

is shown in Figure 3.10, whose equatibfx;, y) is as follows:

—x2+xmh —yY° + ymy
h(z,y)zb-(— t—7——5— 1

th 7y

where(z, y) is the current pixel position, arids the maximum height of the bulge. Note that
all negative values are clamped to zero.

An example of the effect of using this height map can be seéiigares 3.11, 3.12 and 3.13.
First, we have a colored grid used as a sample source imags) whi be frequently used for the
duration of this paper as a source image example. Next, we thavgrid source image mapped
to the microdisplays, using the three-microdisplay examplote that discontinuities of the grid

lines between the three resulting images are caused by énkap\of the projections, as well as the

25

'’

FiG. 3.11. A sample grid source image.

manufacturing anomalies of the microdisplays themselVég. projections overlap a bit because
of the optics used to tile the microdisplays around each eyen the HMD is actually used,
the resulting image appears seamless. Finally, the lagidrisaa mapping to the microdisplays
using the “bulge” height map function. Notice the distontjroduced by the application of the
height map; more sophisticated height map functions coel@jplied to compensate for any
potential distortion caused by the optics of the microdigplthemselves. Issues such as barrel
distortion may be remedied by including a height map to therodisplay information. Also, real-
world visual issues such as an astigmatism could potenballsimulated by including the proper

distortions.

3.25 GPU Computations

Now that the computation of the pixel maps has been completedccan actually perform
the mappings on the GPU to generate the multiple video ssehat we want from our system.
The generation of the pixel maps is implemented as prepsoagsn the CPU; the map itself is

passed to the GPU by being packed into two 32-bit RGBA testunee for the integer values of

26

FIG. 3.12. The grid image, mapped to the microdisplays. Thestresulting images from each
microdisplay are shown side-by-side.

FiG. 3.13. The grid image, mapped to the microdisplays usinghkge” height map function
with ab of 0.15.

27

the mapping, the other for the sub-pixel floating point valuBoth textures use 16 bits for their

x coordinates and 16 bits for thejrcoordinates. Using 16 bits each was chosen both for floating
point accuracy, as well as for allowing high resolution seuimages to be indexed properly. Each
microdisplay has its own individual pair of these two teesjreach with dimensions equal to the
resolution of the microdisplay. Also being passed to the Géthe existing or “original” video
source, as shown back in Figure 1.2.

For each frame, as dictated by the frame rate of the origimaice, the GPU will receive
the original frame as a texture. Then, for each microdispglag GPU will receive the textures
containing their pixel maps. One microdisplay at a time, @U performs the lookups into
the original source frame texture based on the locationsaibed in the pixel map textures, and
renders the output to a texture. These lookups have beeriimepited in a pixel shader, exploiting
the inherent parallelism of the GPU to keep up with the fraate of the original source, thereby
acheiving real-time results. All of the output texturestirthe GPU can then be sent to the HMD in

whatever configuration is necessary to properly match tleetineir corresponding microdisplays.

3.2.6 Resampling

The final piece of the implementation is the resampling beerdormed on the GPU. Simply
looking up a pixel color based solely on the pixel maps woulskenthe finished image look
quite rough, since the resolutions of the microdisplaystaednapped area will not match up. A
result resembling a poorly scaled image wouldn’t help tladisen factor for any VR application.
Trilinear filtering is a very common filtering method, and &sg to implement — in fact, it is
intrinsic to HLSL, the shading language used by XNA. Howetrdmear filtering does not perform
particularly well during texture mapping where the surfacat a steep angle away from the user.
Since this may be somewhat akin to what will happen to the mapixels toward the periphery
of the user’s vision, a more robust filtering technique stddag examined for this research. An

existing system called Feline appears to be a suitableittigoto both provide high-quality results

28

at steep angles as well as be simple enough to implementrnwatipixel shader. Note that the
algorithm of Feline requires some branching, which in turakes any attempt to implement it
inside of a pixel shader require Shader Model 3.0 or higlepravious versions do not support
dynamic flow control [17].

To implement Feline, the partial derivatives indicatintesaof change between texture space
(original image pixels) and screen space (microdisplaglp)xmust be calculated for each mi-
crodisplay pixel. This information must be passed to the Gi*Order for Feline to be able to
run properly in a pixel shader. As with the pixel maps, theseial derivatives can be calculated
during the preprocessing phase of execution, packed irdgtare, and passed to the GPU. They
use the convention, v to represent coordinates in texture space,angdto represent coordinates
in screen space, so we will use that convention in regardsliod-as well. During the same
preprocessing loop as determines the pixel map, rays wil o cast through theornersof the
microdisplay pixels as well, not just the centers. From,thie can determine their locations on
the source image, and in turn the partial derivatiesoz, du/dy, dv/0x anddv/Jy.

Figure 3.14 shows a single pixel mapped from a microdispdlye¢ source image. The corner
points are known due to ray casting during preprocessingo, & and 0y are both equal to 1,
since the change in pixels in screen space in both diredsansingle pixel. Computing the partial

derivatives is now just a matter of averaging:

du __ (TRy—TLg)+(BRy—BLg)

oz 2
du _ (BLy—TLy)+(BR:—TRxz)
oy 2
v _ (I'Ry—TLy)+(BRy—BLy)
ox P)
v _ (BLy—TLy)+(BRy—TRy)
oy 2

Once these patrtial derivatives have been computed dureggreessing for every pixel of

every microdisplay, they are packed into a single 32-bit R@&ture. Much like the pixel map,

29

m TR

BR
BL

FiG. 3.14. A microdisplay pixel mapped to the source imagé., TR, BL and BR are all two-
element column vectors containing their source image ¢oatels for the top left, top right, bottom
left and bottom right points of the mapped pixel, respetfive

there is one of these textures for each microdisplay — extepteach derivative uses only eight

bits. This texture is passed to the GPU along with the pixgb textures, and is then used for

resampling in the pixel shader implementation of Feline.

30

Chapter 4

RESULTSAND ANALYSIS

A working implementation of our system was created basech tipe algorithms defined in
the previous chapter. We have performed a series of tesig thss implementation, and we present

the results as well as a complete analysis in this chapter.

41 Test Platform

A single platform was used throughout the development, @mgintation and testing of our
system, and it is described below. While a specific type efittHMD was used throughout the

work on this paper, this research is general enough to apgpy tiled HMD.

411 HMD

The tiled HMD used for the development of this system was iBpt™ from the Baltimore-
based company Sensics, Inc. They offer a range of models/aitbus fields of view going up to
180 degrees, as well as having models with many differentxausof microdisplays per eye, with
each microdisplay having a resolution of 80800. All of our microdisplay description require-
ments mentioned in Chapter 3, such as the exact sizes ofikgdarée provided in a configuration
file unique to each individual HMD. Actual testing was donéhwa model using six microdisplays

per eye. A picture of the piSight can be seen in Figure 4.1. The array of tiles for each eye are

31

FIG. 4.1. Image of the piSigh tiled HMD. Image used with permission from Sensics, Inc.

both kept behind a larger U-shaped black cover, to minimimbiant light seen by the user. The
remaining pieces of the HMD are for structural support, tegkéhe entire unit firmly on the user’s

head while also providing a platform to mount tracking degiand cable guides.

412 GPU

Development and testing took place on a desktop with an Allelea HD 3870 X2. While
this video card supports the very latest DirectX 10.1 andd8h&lodel 4.0 features, they are
not actually needed; a GPU that meets only the specificafmmBirectX 9 and Shader Model
3.0 would have been perfectly adequate for the implememtadf the algorithms in this paper.
Regardless, the improved performance of the latest graptsicdware does allow the test bed to

drive more tiles per HMD.

4.1.3 Software Environment

All implementation was done in Microsoft's XNA Game Studi®2which is a set of tools

geared towards game developers that provides easy intgfasth human input devices and

32

graphics hardware [18]. This platform was chosen to simphi development of the system,
as it has many built-in functions useful for the manipulatid graphics primitives. XNA makes it
easy to send data to and from the GPU, as well as to create aralistom shaders. The majority
of the code for this research was written in the C# XNA codingimnment, with the exception

of the shader code which was written in HLSL.

4.2 Test Application

In addition to implementing all of the algorithms descrilaethe previous chapter, a small test
application was also developed in order to see the mappegkesnahile interacting with a scene
in real-time. Because this framework was developed to b@numsingle system, all of the source
images will be generated on the same GPU as all of the mappitidie performed. This can take
processing power away from the GPU, so any rendered scengsmerally kept relatively simple.
This test platform can perform the mappings on its own rezdlaécene, a still image, or video
clips. Figure 4.2 shows a simple example office scene in gtapplication. The user is free to fly
around the environment via mouse and keyboard input. Theestapped to three microdisplays
is shown in Figure 4.3, where the original office image hasntherodisplay mappings applied,
and the three resulting images are displayed side-by-Kio that this mapping occurs in the test
application in real-time; the user is still free to fly arouhé environment.

Another feature of the application, available only whendexning scenes (i.e. not displaying
stillimages or video clips), is to actually render the scanenany times as there are microdisplays,
with each camera pointed at the proper angle for each meptai so as to “look through” it to see
what it would be displaying. This mode can be used in compangith the mapping technique,
to show what the mapped scene “should” look like. This willdeen in the discussion of image

guality in Section 4.6.

33

FiG. 4.2. Office scene rendered in test application.

FIG. 4.3. Office scene rendered in test application, with mis@dy mapping applied.

34

FIG. 4.4. Car scene rendered in test application.

4.3 Performance

Performance testing was done while rendering an even sirsgg@e, so as to have as minimal
a performance hit on the GPU as possible; this scene is showigure 4.4. XNA clamps per-
formances to no higher than 60 Frames Per Second (FPS), isrgeiterally desirable to achieve
60 FPS for real-time applications. The more 8800 microdisplays that the application has to
drive, the slower the performance will be due to the incrédasember of texture lookups. The test
bed, an ATl Radeon HD 3870 X2, has a Texture Fill Rate of 26 48@<s [19]. The theoretical

maximum number of microdisplays, to run at 60 FPS can be found as follows:

t

60FPS =
my, X My, X 8a X n

wheret is the texture fill rateyn; x m, is the total pixels per microdisplay, andis the
number of texture accesses needed by the mapping. Note thalways multiplied by 8 since

XNA inherently uses trilinear filtering. When only trilineiltering is usedg = 3, since there are

35

texture accesses to the source image, the integer mappiogeteand the floating point mapping
texture. When Feline is used, > 4, since there is an additional required texture access to the
derivatives texture, as well as how ever many additionab@raccesses are needed by the Feline

algorithm. That puts the theoretical maximum panels drate0 FPS as follows:

ny < 28.65

wheren, is for trilinear only, andr; is for Feline. Actual performance tests are listed in the

following table:

Number of Microdisplays FPS w/ Trilinear| FPS w/ Feline
3 60 60

6 60 60

12 60 60

18 60 60

24 60 30

30 60 30

36 12 10

48 7 5

These results are not far off from the expected results, thightrilinear implementation not
suffering a performance hit until 36 microdisplays (expélcabout 38.19), and Feline not suffer-
ing a performance hit until 24 microdisplays (expected soha less than 28.65). It does appear
that the performance of trilinear “drops off” faster thae fherformance of Feline; trilinear goes
straight from 60 to 12 FPS when the number of microdisplayedseased by only 20%, while
Feline doesn't achieve similarly bad performance until tinenber of microdisplays is doubled.

This discrepancy is difficult to explain, but could be due twanber of reasons. Trilinear filtering

36

is built into XNA as well as the GPU, so there may be a large athotiunseen optimization hap-
pening with trilinear that is not present with Feline. Thasitd cause Feline to show performance
decay more uniformly, and at a slower pace relative to thecase in microdisplays. Another
possible cause is the way in which texture cache affect®praénce; since Feline requires more

texture accesses, there is more opportunity for cacheatitin.

44 Memory Usage

Another aspect of the GPU utilization is the question of homclnmemory the different
filtering methods are consuming. Each mapping texture hasrdar of pixels equal ta x m;, x
m, — essentially the panel resolutions times the amount oflpanand the individual maps are
packed into these textures so as to leave them as contigectasigles. For example, the mapping
textures for a set of three microdisplays at 8800 each could have a resolution of 8QB0O0.
When the number of microdisplays gets large, so too do theedares! DirectX 10 hardware
allows for texture sizes up to a maximum of 8X82192, therefore setting a very high limit of 130

microdisplays at 800600 each — packed X3 into an 8006 7800 texture.

37

The basic trilinear filtering method described earlier iszgitwo of these mapping textures
to be loaded onto the GPU. The Feline implementation reguine extra: the derivatives texture.
The memory usage for various numbers of 8800 microdisplays utilizing either trilinear or

Feline is as follows:

Number of Microdisplays Mapping Texture Size Trilinear Feline

3 800x 1800 10.99 MB | 16.48 MB
6 1600x 1800 21.97 MB | 32.96 MB
12 2400x 2400 43.95 MB | 65.92 MB
24 2400x4800 87.89 MB | 131.84 MB
48 4800x4800 175.78 MB| 263.67 MB
130 8000%x 7800 476.07 MB| 714.11 MB

While most modern GPUs have the ability to store all but thigdst of these memory re-
guirements, consideration must be taken that the effeatemory of the GPU will be reduced
by storing these large maps in texture memory; it will linmétmemory available to the GPU to

render other things, such as the source image itself if @weiyis being run on a single platform.

45 Feline Utilization

The Feline algorithm was implemented in a pixel shader temtlly perform the resampling
for the microdisplays. If a particular point on a microdespls at a steep enough angle in reference
to the viewer’s eye, Feline will be used for the filtering —erthise it reverts to a basic trilinear
filtering scheme.

Figure 4.5 shows an image that was fed directly into the fgsliGation as the source image,
using the three-microdisplay example used throughout @h&with a 4:3 grid source image
aspect ratio. The application was modified to draw red piggrywhere the Feline algorithm

does not revert to trilinear filtering, which can be seen iguFe 4.6. This figure shows that the

38

vast majority of the image uses simple trilinear filteringpexeas it is only using the more complex
portions of the algorithm at its very left edge. Feline’sgesanly towards the edges was expected,
as the edges are angled away from the user more so than tlee cktite picture.

The three-microdisplay configuration used is a fairly covstve example, however. Some
other configuration files have microdisplays very close t® ¢dges of the user’s periphery, re-
sulting in much more stretched panel projections. An exanoplthis can be seen in Figure 4.7,
which shows a 12-microdisplay configuration where the matwbards the periphery stretch out
a great deal in terms of their corresponding source image dfeggure 4.8 indicates where the
Feline algorithm does not revert to trilinear on the 12-mdtsplay configuration, and yet just as
with the three-microdisplay configuration, Feline is usaty@t the extreme left edge. A close-up
comparison of the bottom left corner where Feline is usetiésvs in Figure 4.9.

As can be seen in Figure 4.9, Feline does make the resultingam bit clearer when it
actually comes into usage. However, this improvement ig anticable when the source image
has very clearly defined edges, such as the shown grid imaggtoin other scenes, or especially
video clips, this improvement is barely noticable; and agais only used in small portions at the
extreme periphery of the mappings. Given the performartdeken by using Feline, in addition to
its very small usage area for even tiled HMDs with very widilBeof view, it appears that Feline is
quite unnecessary for the purposes of this system. Simijphear filtering runs much faster, saves
memory, and the microdisplay panels are never at such a ategg so as to noticeably effect the

results.

4.6 Image Quality

The test application allows for the rendered scene to edtbrmine the microdisplay images
via the mapping method described in this paper, or by simpbcty rendering them. This is

useful for image quality comparisons, as it allows us to seatwhe mapping result “should”

39

T-H'"I

nte
il

FIG. 4.5. Grid picture used as source image.

INNEN |

5

-
- os

rrrrrtrl

B

.

Lo

117
|
|

L

| AREEEN

G EE]

1111

=

FIG. 4.6. Microdisplay results using grid picture as sourcegendl he red region on the left is
where trilinear filtering would not be used.

i ! -

40

FIG. 4.7. Example 12-microdisplay configuration, with panelsdrds the left edge very
stretched out over the user’s periphery.

| [

\
T W | |

FIG. 4.8. 12-microdisplay results using grid picture as sour@ge. The red region on the left is
where trilinear filtering would not be used.

41

FIG. 4.9. Comparison of basic trilinear filtering to usage ofHedine algorithm. The image on
the left uses Feline, whereas the image on the right uses todisiear filtering.

be producing. Figure 4.10 shows two side-by-side imagesintiage on the left being a directly
rendered version of the corresponding mapped image orghie fihis uses the three-microdisplay
example from earlier, and the results are quite similar éoréndered version. Since the directly
rendered image and the mapped image look so much alike, theinggalgorithm is working very
well; it is producing results based upon a source image tuakt &s if they have been rendered
directly from scene information. This success in mappingralered scene shows that the system
would also work well in mapping any other video source, simgecene information was used to
produce the results — only the source image was used.

Figure 4.11 also shows two side-by-side images, except #ppad version here looks signif-
icantly pixelated and less visually pleasing. This usesl@wnicrodisplay example from earlier,
and the disparity in quality as compared to the three-mispldy example stems from the fact
that certain microdisplays only have a small amount of datalable for their mapping. As can
be seen in Figure 4.7, the microdisplays near the centerroafyto a very small area within the
source image. Contrast this with the three-microdisplaangxde seen in Figure 3.7, where all of

the microdisplays map to a relatively large section of theseimage. When a microdisplay maps

42

to a smaller area, there are fewer source image pixels irspgaate; therefore the microdisplay is
getting filled with less data. Since the resolution of eacbradisplay panel does not change, this
smaller amount of data must be scaled up a great deal, proglpbielated results. This problem

could be mitigated by simply increasing the resolution @& fiource image, but doing so would

slow down the overall performance of the system.

43

FiG. 4.10. Image quality comparison of the three-microdisptegpping example. The image
on the left is directly rendered, whereas the image on th# hgs been created via mapping an
original source image.

FIG. 4.11. Image quality comparison of the 12-microdisplay piag example. The image on the
left is directly rendered, whereas the image on the rightdess created via mapping an original
source image.

44

Chapter 5

CONCLUSION

We have presented a system enabling tiled HMDs for use witttieg video sources, which
allows them to be used with off-the-shelf applications apased to requiring separate video
sources for each tile. The GPU was used as a platform to h#vellequired processing to convert
a single video source into many to drive a tiled HMD. Algonitk for execution on the GPU as
well as preprocessing on the CPU were described and implecheand their performance was
analyzed. The resampling technique Feline was implemeatetishown not to be advantageous
to the system described in this paper. The implementatidhi®tystem performed at frame rates

high enough for interactive applications.

5.1 Contributions

The development of this system has shown that driving atildD without having individual
video signals for each tile is possible, and can be done usirrgnt GPU technology at interactive
frame rates. This research has identified the inputs redjtordescribe the physical properties of a
tiled HMD — such as each tile’s exact height and width — allay system to map a single video
signal to its tiles. The choice of the source image’s locatioworld space has been recognized as
a large variable in any mapping implementation, and a basibad to place the source image has

been described. The research described in this paper isxddtian for the usage of tiled HMDs

45

with a single video source, and could be adapted into a stameldardware platform allowing a

consumer to very easily use a tiled HMD with any off-the-§gplication.

5.2 Future Work

This work has many things that could be done to expand itstimmality in the future. The
first — and most obvious — way that this research could be dgtéin the future would be to
incorporate stereo vision into the system. This would dyeatpand the overall field of view of
the system, and could potentially make much greater useedfetine algorithm, implemented in
this research. Also, since this research is geared towdRd$eVices, it would be useful to perform
a user study with various real-world usage situations terd@he what “looks good” to an average
user. For example, since the source image can be of any tiesplil would be interesting to see
what the minimum tolerable source resolution could be.

Another important aspect of this work that could be altesgtié way in which the orientation
of the source image is decided. Instead of simply snappimgrat the corners of the microdisplay
projections and preserving aspect ratios, perhaps thesamage could be rotated and aligned
SO as to create a tighter fit with the microdisplays. This wawoid issues such as the low usage
of the source image, seen in Figure 4.7, and in doing so weellgl o avoid pixelated resulting

images, seen in Figure 4.11.

46

[1]

[2]
[3]

[4]

[5]

[6]

[7]

REFERENCES

I. E. Sutherland, “A head-mounted three dimensiongbldig” in Proc. Fall Joint Computer

Conference(Washington, DC, USA), pp. 757-764, Thompson Books, 1968.
H. Rheingold,Virtual Reality, ch. 5, pp. 104—128. Simon & Schuster, 1992.

R. Messing and F. H. Durgin, “Distance perception andwiseial horizon in head-mounted

displays,”ACM Trans. Appl. Perceptvol. 2, pp. 234-250, July 2005.

C. Ware, K. Arthur, and K. S. Booth, “Fish tank virtual tég” in CHI '93: Proceedings of
the INTERACT '93 and CHI '93 conference on Human factors imgoting systemgNew
York, NY, USA), pp. 37-42, ACM, 1993.

C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Surrotsmtleen projection-based virtual
reality: the design and implementation of the CAVE,StGGRAPH '93: Proceedings of the
20th annual conference on Computer graphics and interadi@ehniques(New York, NY,

USA), pp. 135-142, ACM, 1993.

D. J. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka &nA. DeFanti, “The varrier au-

tostereoscopic virtual reality displayXCM Trans. Graph.vol. 24, no. 3, pp. 894-903, 2005.

R. T. Azuma, “A survey of augmented realitfftesence: Teleoperators and Virtual Environ-

mentsvol. 6, pp. 355-385, 1997.

[8] J. 1. Thompson, “A three dimensional helmet mounted jamyrflight reference for paratroop-

[9]

ers,” Master’s thesis, Air Force Institute of Technolog§03.

M. Shapiro, “Comparing user experience in a panoramicOH¥. projection wall virtual

reality system,” tech. rep., Sensics, Inc., 2006.

a7

[10] Y. Boger, “The 2008 HMD survey: Are we there yet?,” teofp., Sensics, Inc., 2008.

[11] M. Olano and A. Lastra, “A shading language on graphiasdtvare: the PixelFlow shad-
ing system,” INSIGGRAPH '98: Proceedings of the 25th annual conference amgliter
graphics and interactive techniqugdlew York, NY, USA), pp. 159-168, ACM, 1998.

[12] K. Jo, K. Minamizawa, H. Nii, N. Kawakami, and S. TachA GPU-based real-time ren-
dering method for immersive stereoscopic displays SIGGRAPH '08: ACM SIGGRAPH
2008 posters(New York, NY, USA), pp. 1-1, ACM, 2008.

[13] D.Blythe, “The Direct3D 10 systemACM Trans. Graph.vol. 25, no. 3, pp. 724—734, 2006.

[14] D. P. Mitchell and A. N. Netravali, “Reconstruction &ls in computer-graphics,” i8IG-
GRAPH '88: Proceedings of the 15th annual conference on Coengraphics and interac-

tive techniqguegNew York, NY, USA), pp. 221-228, ACM, 1988.

[15] P. S. Heckbert, “Fundamentals of texture mapping arajenwvarping,” Master’s thesis, Uni-

versity of California, Berkeley, 1989.

[16] J. McCormack, R. Perry, K. I. Farkas, and N. P. Jouppelifie: fast elliptical lines for

anisotropic texture mapping,” BIGGRAPH '99: Proceedings of the 26th annual conference

on Computer graphics and interactive technigu®&gew York, NY, USA), pp. 243-250, ACM
Press/Addison-Wesley Publishing Co., 1999.

[17] A. Rege, “Shader model 3.0,” tech. rep., NVIDIA Devedo@echnology Group, 2004.
[18] R. Miles, “Microsoft XNA game studio 2.0: Learn programmg now!,” 2008.

[19] GPUReview.com, “ATi Radeon HD 3870 X2 video card — rese specifications, and pic-

tures.”

48

