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ABSTRACT

Title of Paper: Using Tiled Head-Mounted Displays with a Single Video Source

Brian Douglas Strege, Computer Science, 2008

Paper directed by: Dr. Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

Head-mounted displays (HMDs) are used to create a sense of immersion known as “virtual

reality” for various applications, such as flight simulation, data visualization, or simply entertain-

ment. Recently, some HMDs are using multiple screens “tiled” around each eye in order to give

the user a greater sense of peripheral vision by providing for a wider field of view. Currently, only

specialized applications that output individual video streams to each of these “microdisplays” can

be used with tiled HMDs. This paper describes a system extending their use to off-the-shelf 2D

and 3D applications. The system was developed using Graphics Processing Units (GPUs) as a

platform, and creates multiple video streams for each of themicrodisplays, all from a single source

video stream. This is performed in real-time, with frame rates high enough to run interactive

applications on a tiled HMD.
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Chapter 1

INTRODUCTION

The term “virtual reality” has entered the modern lexicon todescribe any system which pro-

vides a convincing sense of immersion in some alternate computer-generated world. Virtual Re-

ality (VR) systems find applications in a number of fields, where their uses range from real-world

simulations such as flight training, to completely artificial realities such as immersive video games.

For real-world simulations in particular, it is easy to see the value in training someone for a poten-

tially dangerous situation inside of a virtual world as opposed to reality which may put the user in

harm’s way.

1.1 Overview

For a virtual reality system to successfully immerse its user into a virtual world, a number of

the user’s physical senses must be affected. While various hardware systems exist to provide audio

and even tactile information, the centerpiece of any virtual reality system is its ability to provide

visual information. Many virtual reality systems today useHead-Mounted Displays, or HMDs,

to provide this visual information. The earliest computer-based HMD was a very large unwieldy

system comprised of two heavy CRTs placed on either side of the user’s head, having the video

reflected to their eyes via half-silvered mirrors, and was soheavy it had to be suspended from the

ceiling [1]. This device earned itself the nickname “Sword of Damocles” – presumably due to the
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intimidating appearance of its machinery suspended from the ceiling – and with it the HMD was

born [2].

As optical technologies progressed, HMDs were able to become lighter and less cumbersome,

as well as have much better resolution than they did in the days when only CRT displays were

available. Another aspect of HMD technology that has improved over time is their visible field

of view, allowing the system to provide the user some sense ofperipheral vision instead of only

very narrow “tunnel-vision,” as can be seen in Figure 1.1. However, as their field of view is

widened, HMDs tend to have a significant amount of geometric distortion around the periphery

of the display [3]. Some modern HMDs are combating this distortion while offering wider fields

of view by utilizing multiple small displays, or “microdisplays,” for each eye as opposed to the

usual single display per eye. Each microdisplay can then be tilted to its proper orientation and

“tiled” next to one another so as to create a contiguous visual area that curves around each of the

user’s eyes, allowing for much greater perceived peripheral vision without the distortion of a single

display.

1.2 Objective

Currently, each microdisplay in tiled HMDs must receive their own distinct video signal;

every application that wants to be used in tandem with the HMDmust be specialized so that it can

provide individual video sources for each microdisplay. Therefore, a potential user of a tiled HMD

would need to provide a large number of video sources in orderto be able to drive the display

device. This translates into the user needing much more hardware of their own: additional video

cards to provide the extra source outputs, and perhaps even racks of additional computer systems

in order to accommodate the additional video cards. All of this extra hardware greatly drives up

the overhead cost to be able to use a tiled HMD, and keeps theiruse out of reach for the average

computer user. The ability to use tiled HMDs with applications that provide only a single video
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FIG. 1.1. Example illustrating HMD field of view. The angleθ shown is the horizontal field of
view corresponding to the smaller viewable image result. AsHMD technology has progressed,
their field of view has increased to allow the user to see more at the periphery of their vision,
resulting in a much more immersive experience.

Existing
video

source Tiled HMD
...

GPU−based
hardware platform

Single video stream Multiple video streams

FIG. 1.2. Schematic of tiled HMD system using GPU-based hardware platform. The platform
would take a single video stream as an input, and output as many video streams as the tiled HMD
has microdisplays.
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source (or possibly a stereo source) is clearly desirable, as this would greatly reduce their overhead

cost of operation, increasing their potential user base. Allowing tiled HMDs to be driven by a

single video source would allow them to be used with any off-the-shelf application; everything

from video games to DVDs would then be compatible.

The research described in this paper creates a framework which expands the functionality of

tiled HMDs, so that they may be used with a single video source. Algorithms have been developed

using a modern Graphics Processing Unit, or GPU, as a platform. The use of a versatile platform

such as a GPU allows the finished product to be easily adapted into a useable piece of hardware.

This piece of hardware would sit between any existing video source and a tiled HMD, as shown in

Figure 1.2, so as to allow functionality with that existing source.
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Chapter 2

BACKGROUND AND RELATED WORK

There has been quite a bit of work done which is related to thisresearch, both in terms of

HMD research as well as general computer graphics research which will be useful to this system.

A description of the relevant previous work and background information is given in this section.

2.1 Virtual Reality

The first HMD was a large unwieldy piece of equipment nicknamed the Sword of Damocles

[1, 2]. This first HMD, like many other pieces of display equipment that followed it, was part of a

larger VR system. A sense of immersion was created by tracking the user’s head movements and

causing them to directly and immediately affect what was being displayed to their eyes, as if they

were “looking” around this 3D virtual world. An early discovery from this system is that having

accurate representation of stereo vision in an HMD greatly increases the realism of the virtual

world, as opposed to simply displaying the same image viewing from a single point in that world

to both of the user’s eyes.

It is worth noting that HMDs are not the only devices used to convey the visual data in VR

systems - certain applications are more suited to other types of displays. One such alternate visual

system is the relatively simple Fish Tank VR, where stereo images of a 3D scene are displayed on

a regular monitor, the user wears special stereo viewing glasses to have the correct halves of the
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stereo image shown only to the corresponding eye, and the user’s head is tracked to create a sense

of immersion by having movements affect what is actually being displayed [4]. Another system

design is known as the CAVE, a recursive acronym for CAVE Automatic Virtual Environment [5].

This system is essentially a theater that a user walks into, where the virtual environment is projected

onto the surrounding walls. The user must still wear stereo glasses and a tracking device. More

recent CAVE-like systems have strived to eliminate the user-worn equipment altogether while still

providing stereo imagery and tracking, resulting in a less constrained experience for the user [6].

On a different side of this discussion, it is also worth noting that some HMDs are not intended

for VR; they are not attempting to create an immersive world for a user. Rather, these systems

are intended toaugmentreality by overlaying artificial computer-generated information on top of

the real world. Certain systems augment reality by capturing real-world images and rendering

them behind computer-generated information, using image capturing devices attached to a head

unit along with the displays for each eye. The captured real-world images are then merged with

the computer-generated ones, and displayed to the user. These systems are known as “video see-

through HMDs,” in contrast to “optical see-through HMDs,” which let the user directly see through

the screens into the real world. This method of augmented reality relies on optical combiners –

essentially half-silvered mirrors – for the displays, in order to allow the user to see through them

while remaining partially reflective to display the computer-generated imagery [7]. Systems such

as these have found use in creating Heads-Up Displays (HUDs)which relay pertinent information

to a user in real-time while not restricting their vision [8].

Also as mentioned earlier, the visible field of view of HMDs intended for use in immersive

VR applications has become much better over the years. Whilethe Sword of Damocles had only a

40 degree field of view, certain modern tiled HMDs have a significantly wider 150 degree field of

view [9]. A much greater sense of immersion is created by these tiled HMDs due to the increased

visual information at the user’s periphery. An academic audience of 1,381 people participated in a

recent survey about satisfactory HMD specifications, and the results indicated that a field of view
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that is at least 120 degrees would be adequate for most academic purposes [10].

2.2 Graphics Processing Units

GPU technology has also advanced greatly over the years. Of particular interest to this re-

search is use of the inherent programmability of modern GPUs, using a process calledshading.

Shading was first introduced a decade ago with the creation ofa proprietary system called Pix-

elFlow, which utilized its own specialized shading language and could run procedures written in

this language to render high-quality images in real-time [11]. The GPU platform is already being

used to help drive new types of VR devices, such as immersive stereoscopic displays, via these

programmable shaders [12]. All modern GPUs execute shadingprocedures, which are now writ-

ten in more standardized languages and with well-defined memory and instruction requirements to

which many different GPUs conform [13].

2.3 Resampling

The algorithms described in this paper map from the existingvideo source to the multiple

video streams needed for the tiled HMD. Whatever these mappings may be, it is immediately obvi-

ous that the resolutions of the tiles and the locations they are mapped to may not match. Converting

from one resolution to another is known asresampling,and the best technique to accomplish this

is calledfiltering; making each pixel of the microdisplay the weighted sum of theoriginal pixels,

according to some weighting scheme known as thefilter kernel.When we are discussing filtering,

we will specifically be talking abouttexture filteringwith oursource image– the visual data before

it is mapped to the microdisplays – as the texture.Bilinear filtering is a very common method

which samples the four texels nearest to the exact point on the texture to be mapped, and combines

them via weighted average based on their distance to that point. Another technique used in texture

filtering is mipmapping, where a texture is stored along with sequentially smaller copies of itself,
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halving its dimensions all the way down to a single pixel. Mipmaps are used to speed up rendering

and reduce image aliasing.Trilinear filtering is an extension of bilinear filtering which interpolates

between the two closest mipmap levels. Trilinear filtering is a very common filtering method, is

quite easy to implement, and is readily available in many development platforms.

In physics, if some physical property of an object is directionally dependent – i.e. results in

different values when measured along different axes – it is referred to as ananisotropicproperty.

There are many physical properties which can exhibit anisotropy, but a simple one to visualize is

the change in appearance of certain materials when viewed from different angles. For example,

a flat surface of brushed metal will appear darker or lighter based upon the viewing angle, even

though the lighting in the room has not changed. In terms of appearance, the brushed metal is an

anisotropic surface. In computer graphics, when a texture is being mapped at a steep glancing

angle to the viewer, visual artifacts can form; angle-dependent effects such as these are referred to

asanisotropic effects[14]. Trilinear filtering does not take into account any angle information from

the mapping – it is not ananisotropic filter– so it may not perform well during mappings involving

steep glancing angles. This may very well be the case with tiled HMDs, as the microdisplays

towards the periphery of the eye may be at quite steep angles so as to stretch around the full range

of the user’s vision. With that in mind, more robust filteringtechniques should be explored for use

with tiled HMDs.

One such filtering technique called Elliptical Weighted Average (EWA), is a very accurate

resampling technique for arbitrary mappings that may involve steep glancing angles [15]. EWA

works by treating each mapped pixel as an ellipse whose majorand minor axes are directly com-

puted based upon the angles of the mapping. It uses a Gaussianfilter, which is applied over the

entirety of this ellipse. However, despite its accuracy, EWA is quite an elaborate and costly algo-

rithm, and would be difficult to incorporate into a real-timesystem. Also, it would be quite difficult

to implement in such a way as to be executed on the GPU, e.g. inside of apixel shader. A system

called Feline (Fast Elliptical Lines) was developed to approximate EWA visually, while requiring
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much less computation [16]. Feline is built on top of an existing trilinear filtering engine, and

is a much simpler algorithm than EWA. Since trilinear filtering is inherently available in modern

GPUs, Feline would seem a good fit to be implemented inside of apixel shader.

EWA and Feline both use ellipses to cover the swath of texturearea – in our case, source

image area – which is to be sampled. As the glancing angles getsteeper, the ellipses will get more

eccentric, and this will result in more area being sampled asseen in Figure 2.1. In contrast to EWA,

Feline does not apply a filter over the entire area of this ellipse. Instead, Feline samples the area

defined by these ellipses by using a certain number of “probes” along the length of the ellipse, as

seen in Figure 2.2. These probes in turn use trilinear filtering to determine their own results, which

are then combined by weighted average, using Gaussian weights. By using trilinear filtering to

sample the ellipse at only a few locations, Feline greatly cuts down on computation as compared

to the exhaustive EWA technique.

The location of the probes is determined by first calculatingthe major and minor radii of the

ellipse, and the number of probes used is determined by the ratio of the radii. To determine the

radii of each ellipse, as well as the eccentricity, Feline must be told the rates of change in texture

space with respect to screen space at each pixel. More specifically, using the conventionu, v to

represent coordinates in texture space, andx, y to represent coordinates in screen space, the partial

derivatives∂u/∂x, ∂u/∂y, ∂v/∂x and∂v/∂y must be known to Feline in order for it to execute.

The benefits of using Feline over simple trilinear filtering can be seen in Figures 2.3 and 2.4.

Using only trilinear, the text applied to the plane at a glancing angle appears quite blurry, while the

text filtered using Feline is clear.
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FIG. 2.1. Feline: example showing ellipses with different eccentricities over a texture map. Image
taken from “Feline: Fast Elliptical Lines for Anisotropic Texture Mapping,” by McCormack et al.

FIG. 2.2. Feline: example showing probes over an ellipse. Note that n is used to step through
the probes. Image taken from “Feline: Fast Elliptical Linesfor Anisotropic Texture Mapping,” by
McCormack et al.
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FIG. 2.3. Feline: using trilinear filtering alone produces blurry text. Image taken from “Feline:
Fast Elliptical Lines for Anisotropic Texture Mapping,” byMcCormack et al.

FIG. 2.4. Feline: using Feline produces clear text. Image takenfrom “Feline: Fast Elliptical Lines
for Anisotropic Texture Mapping,” by McCormack et al.
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Chapter 3

APPROACH

There are a number of technical challenges in mapping a single video source to the individual

microdisplays of a tiled HMD. For the duration of this paper,we will consider these problems with

just one eye, assuming in any implementation of the system there would be distinct video sources

for each eye – i.e. a stereo source.

3.1 Problem Description

Before we can begin describing the implementation details of our system, we must clearly

define the technical problems that we will encounter.

3.1.1 Pixel Map

The image from the original video source must comprise the entire field of view of the tiled

HMD, so that there can be image data displayed around the entire periphery of the user’s vision.

Due to the curvature of the microdisplays around each eye, there is not a one-to-one mapping of

pixels from the source image to the microdisplays. As can be seen in Figures 3.1 and 3.2, each pixel

in the microdisplays will correspond to a certain region of pixels in the rendered image, depending

on the physical position of the pixels in the microdisplays.

There is more than one way to create this mapping, as the orientation of the microdisplays

12



Source Image

Microdisplays Eye
Pixels

FIG. 3.1. Illustration of the mapping of pixels from the microdisplays to the source image, from
the top down. Note that at the periphery of the user’s vision asingle pixel of the microdisplay
corresponds to many more pixels of the source image than thatof the pixels near the center.

says nothing of where the source image actually lies. Where this source image is placed will greatly

affect the mapping, as it will determine exactly where the mapped regions of each microdisplay

will reside. Also, the dimensions of the source image must besized so as to allow the microdisplay

mappings to cover a large portion of this original image. If the microdisplays only covered a small

portion of the source image, much of the original data would not be seen by the user, and the

immersive effect of the peripheral tiles may be lost. Finally, the mapping should be able to account

for potential lens distortion of the microdisplays themselves. Treating each microdisplay as a plane

will not necessarily be an accurate representation of the physical hardware being used.

3.1.2 Image Resampling

Another consideration is the fact that the source image can be any arbitrary resolution, as well

as aspect ratio. As stated earlier, the pixels of the microdisplays will not directly correspond to

the pixels of the source image, meaning that some form of resampling will have to be performed

during the execution of the mapping on the GPU. Trilinear filtering was tested, as well as a pixel

shader-based implementation of the Feline algorithm.
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MicrodisplaysSource Image

FIG. 3.2. Illustration of the mapping of pixels from the microdisplays to the source image, from
the eye’s perspective. Note that at the periphery the covered regions “fan out” and become non-
rectangular in terms of the original pixels.

3.2 Implementation

In order to develop an implementation of our mapping system,a number of things must first

be defined. First and foremost, the size and orientation of each individual microdisplay must be

precisely defined, as well as the location of the eye. Next, the size and orientation of the source

image must be chosen, preferably in such a way to make the microdisplays all map inside of it – i.e.

have nothing map out-of-bounds. Once this is complete, the microdisplays can be projected onto

the source image, and the pixel map calculations can be made.Each pixel of each microdisplay will

be projected onto the source image, and its mapped location will be stored. Finally, once all of the

pixel maps have been created, the microdisplays can receiveinputs from a single source image by

simply using the mappings. All of these steps, in addition toother elements of our implementation,

are described in detail in this section.
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3.2.1 Description of Microdisplays

The first step that must be taken in any implementation of pixel maps is to mathematically

define exactly where in space a microdisplay lies. For now, wewill consider each microdisplay

to be a finite flat plane. The easiest method of defining where inthe world each microdisplay lies

is to simply keep track of its four corner points. In order to do this, we will require the exact

width and height of each microdisplay – including any anomalies due to the manufacturing of

the hardware. Since a height and width by itself means nothing in a world of infinite space, we

will use the convention established by the HMD chosen for useon this project (discussed later in

Chapter 4), namely that each microdisplay is at a distance of1 from the eye. This assumes that all

microdisplays have a common focal point – namely, the eye – and for the sake of simplicity, we

will use this focal point as the origin of our world. Lastly, we will also require the rotational angles

of each microdisplay about each axis (i.e. the pitch, roll, and yaw), again to exact manufacturing

specifications. Knowledge of the distance between each eye would be required for stereo vision,

but since we are dealing with distinct sources for each eye this will not be needed.

In the implementation, defining a microdisplay first starts by creating and storing the four

corner points of a given microdisplay, without rotation. Ifa given microdisplay,m, has a width of

w and a height ofh, the corner points of the non-rotated version ofm, denotedn, would be defined

in space as follows:
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where a subscript ofTL denotes atop leftcorner point, and so on. Note that thez coordinate

of all of the corner points is -1 as opposed to 1. This maintains the distance of 1 from the origin, but

makes some of the math a bit simpler later on. Now the microdisplay must be rotated to its proper
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orientation. In order to do this, we simply must rotate each corner point with the same sequence of

rotation matricies. If the angles of rotation for the microdisplaym areθr, θp andθw, for roll, pitch

and yaw, respectively, then the rotation matricies are as follows:

Rr =


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To rotate the corner points, the rotation matricies are simply multiplied with the non-rotated

points. Using the top left corner ofm as an example:

mTL = RrRpRwnTL

These calculations are performed on each microdisplay to store all of the proper corner point

locations. A visual representation of the data computed up to this point on a three-microdisplay

example can be seen in Figure 3.3, where each microdisplay isshown as a plane with a different

color, and the world’s axes are shown with the origin defined as the location of the user’s eye. This

particular example set of microdisplays will be used frequently for the duration of this paper.

3.2.2 Location of Source Image

The next step in the process is to determine where the source image lies in world space. Like

the microdisplays, the source image can be thought of as a plane. However, the only information

available about the source image is its resolution, and since that is not related to the resolutions of
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the microdisplays, the only information that can be gathered from this is the source image’s aspect

ratio. The location of the source image will ultimately decide where the pixels get mapped, so the

method used to determine this will have a profound effect on the resulting images.

We align the source image with the axes, so that the normal coming from the center of the

source image goes directly through the eye. This will keep the image directly in front of the eye

– much as the microdisplays were before they were rotated – ina logical relationship with the

parameters of the world surrounding it. However, unlike themicrodisplays, the source image’s

distance from the eye will not be 1. Instead, it will be chosento be the closest it can be to the

eye without cutting through any of the microdisplay planes.As can be seen in Figure 3.4, the mi-

crodisplays at the sides “stick through” the microdisplay in the center, so the source image in this

case would come as close to the eye as possible without intersecting a microdisplay plane. There-

fore, thez-coordinate of the source image plane,sz will be the minimum tranformedz-coordinate

(since we are dealing with negative values) in all of the microdisplay planes. To determine this,

we can simply check all of the corner points of the microdisplays, and setsz to be the minimum

z-coordinate found.

Now thatsz has been determined, the height and width of the source imagein world space

must be calculated. Letsx andsy denotehalf of the height and width of the source image, respec-

tively – half so that the corner points of the source image canbe defined as follows:
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The method used to calculatesx andsy will be to make the source image as small as possible,

while having no mapped pixels from the microdisplays fall out-of-bounds of the source image, and

also while maintaining its aspect ratio. This will be accomplished by determining the polygons that
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FIG. 3.3. View of the three microdisplay planes in world space. The microdisplays are shown as
different colors to distinguish them from one another. Thex axis is red,y green andz blue. The
eye is positioned at the origin, looking straight down thez axis in the negative direction; towards
the microdisplays.

FIG. 3.4. View of the three microdisplay planes from above. Notethat the microdisplay planes cut
into each other; this is an overlap which will result in a seamless image when viewed with the actual
hardware. The source image will be placed as close to the eye as possible without intersecting any
of the microdisplay planes.

18



each microdisplay will map to when projected onto the sourceimage, and then “fitting” the source

image to these projections. Since thez value of the source image is already known, determining

the projections of the microdisplay planes is rather simple. Again, this can be done on the basis

of performing calculations only on the corner points of the microdisplays. Each corner point will

have a ray cast through it, originating at the eye (the origin), as seen in Figure 3.5. The resulting

projected point will be the point on that ray which has az value equal tosz. The basic parametric

equation for a line between two pointsa andb in 3-d space is as follows:

l(t) = ta + (1 − t)b

However, since we are always casting our rays from the origin, let b be zero. Therefore, a ray

cast through any corner point of any microdisplay,m, will be defined by the following extremely

simple formula:

r(t) = tm

This can be used to determine thex andy values of the projected point, denotedp, when the

z value issz:

r(t) = tm = p

⇒ tmz = pz = sz

⇒ t = sz

mz

⇒ px = sz

mz
mx, py = sz

mz
my

Once this is done for every corner point, we will have determined the corner points of the

projections of all of the microdisplays onto the source image. As seen in Figure 3.6, this has

projected the microdisplays onto the source image plane – since we have not yet determined the
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FIG. 3.5. View of raycasting through the corners of the three microdisplay planes. Since the
HMD has a large field of view, these rays “fan out” quite a bit. Therefore, the farther away the
source image is placed, the larger it must be to prevent any microdisplay pixels from being mapped
out-of-bounds.

FIG. 3.6. View of the projections of the three microdisplay planes. The microdisplay image areas
have been essentially “flattened” onto a plane that is some distancesz from the eye.
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FIG. 3.7. View of the source image shown with the projections of the three microdisplay planes.
The source image, shown in grey, has been made as small as possible while still fully containing
all of the microdisplay projections, as well as maintainingits original aspect ratio. This image
most clearly shows the mapping results as a whole, since the regions of the source image that the
microdisplays map to can be easily seen along with the sourceimage itself.

FIG. 3.8. View of the source image shown with the three microdisplay planes. This illustrates how
large the source image must be in comparison to the original microdisplay planes, so as to prevent
any out-of-bounds mapping.
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boundaries of the source image, it is not shown. Now that the corner points have been found,sx

is chosen to be the largestx absolute value of these projected points, and likewise withsy. The

source image has now been fitted to the projections, and the final step is to increase eithersx or sy,

depending on the specific configuration, so as to maintain theaspect ratio of the source image. The

source image concept can be seen in Figure 3.7, which shows the source image plane fitted to the

microdisplay projections. Notice that the source image hasbeen made as small as possible in the

horizontal direction, while still containing all of the microdisplay projections (the vertical direction

is not tightly fit, in order to maintain the original aspect ratio). Figure 3.8 shows the source image

plane along with the original microdisplay planes, which illustrates how large the source image

must be to prevent any out-of-bounds pixel mapping from the microdisplays.

3.2.3 Pixel Map Generation

Now that the coordinates of the microdisplays and source image have been determined, work

can begin on computing the pixel map. What is required is an exaustive computation of the ex-

act sub-pixel location in the source image corresponding toevery pixel of each microdisplay. In

other words, rays will be cast from the eye through the centerof each microdisplay pixel, and the

resulting pixel in the source image that it hit will be recorded.

In the previous section, it was seen that given a point – microdisplay corner points, at the time

– it is very easy to calculate the location on the source imagewhich a ray cast through that point

will hit. Therefore, the last part that remains is finding theexact center point of each microdisplay

pixel in world space, since they are the points that the rays will be cast through. Figure 3.9 shows

a microdisplay,m, in world space, as well as denoting some relevant vectors tothe pixel map. The

corner points are initially known, all other vectors and points are unknown.
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FIG. 3.9. A microdisplay plane in world space.~H is the vector frommTL to mTR, and~V is the
vector frommTL to mBL. The pointf is the exact center point of the first pixel in the microdisplay,
~h is an increment vector that will move one pixel over horizontally, and~v is an increment vector
that will move one pixel down vertically.

To calculate the unknown variables, we will start with the vectors leading along the edges of

the microdisplay, from corner point to corner point:

~H = mTR − mTL

~V = mBL − mTL
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Now the increment vectors~h and~v must be computed. Letmh andmv denote the horizontal

and vertical resolutions of the microdisplaym. The increment vectors are as follows:

~h =
~H

mh

~v =
~V

mv

Finally, the center of the first pixel,f , must be computed. This point will serve as the starting

position for the iteration through all of the other pixels:

f = mTL +
~h

2
+

~v

2

Now that all of the unknown variables have been computed, calculating the entire pixel map

is simply an exercise in looping through the center point of each pixel by adding the increment

vectors tof , and ray casting through those points onto the source image.Once the point on the

source image is determined, it must be converted out of worldcoordinates to the actual pixel value

based upon the source image’s resolution.

3.2.4 Height Map

All of the computations that have been performed so far to create the pixel maps are im-

plemented as preprocessing on the CPU; this map only needs tobe created once, and must be

completed before operations can be carried out on the GPU. Aswas seen in Figure 3.9, these maps

are created by starting with the corner pixel and simply incrementing along through each pixel in

order to create a full mapping. These mappings could have more easily been computed with a

matrix multiplication-based planar transformation on theCPU, or their creation could have been

avoided altogether by doing planar transformations on-the-fly on the GPU - in fact, matrix multi-

plications are faster than texture lookups. However, that solution would be much less versatile for

the finished product because it does not allow for treating each microdisplay as anything other than
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FIG. 3.10. The “bulge” height map function.

a plane. With the incrementing method, a height map can be easily applied to each pixel, based on

some function of its position on the microdisplay. An example height map function called “bulge”

is shown in Figure 3.10, whose equationh(x, y) is as follows:

h(x, y) = b ·

(

−x2 + xmh

1
4
mh

2
+

−y2 + ymv

1
4
mv

2
− 1

)

where(x, y) is the current pixel position, andb is the maximum height of the bulge. Note that

all negative values are clamped to zero.

An example of the effect of using this height map can be seen inFigures 3.11, 3.12 and 3.13.

First, we have a colored grid used as a sample source image, which will be frequently used for the

duration of this paper as a source image example. Next, we have the grid source image mapped

to the microdisplays, using the three-microdisplay example. Note that discontinuities of the grid

lines between the three resulting images are caused by the overlap of the projections, as well as the
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FIG. 3.11. A sample grid source image.

manufacturing anomalies of the microdisplays themselves.The projections overlap a bit because

of the optics used to tile the microdisplays around each eye;when the HMD is actually used,

the resulting image appears seamless. Finally, the last image is a mapping to the microdisplays

using the “bulge” height map function. Notice the distortion produced by the application of the

height map; more sophisticated height map functions could be applied to compensate for any

potential distortion caused by the optics of the microdisplays themselves. Issues such as barrel

distortion may be remedied by including a height map to the microdisplay information. Also, real-

world visual issues such as an astigmatism could potentially be simulated by including the proper

distortions.

3.2.5 GPU Computations

Now that the computation of the pixel maps has been completed, we can actually perform

the mappings on the GPU to generate the multiple video streams that we want from our system.

The generation of the pixel maps is implemented as preprocessing on the CPU; the map itself is

passed to the GPU by being packed into two 32-bit RGBA textures: one for the integer values of
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FIG. 3.12. The grid image, mapped to the microdisplays. The three resulting images from each
microdisplay are shown side-by-side.

FIG. 3.13. The grid image, mapped to the microdisplays using the“bulge” height map function
with a b of 0.15.
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the mapping, the other for the sub-pixel floating point values. Both textures use 16 bits for their

x coordinates and 16 bits for theiry coordinates. Using 16 bits each was chosen both for floating

point accuracy, as well as for allowing high resolution source images to be indexed properly. Each

microdisplay has its own individual pair of these two textures, each with dimensions equal to the

resolution of the microdisplay. Also being passed to the GPUis the existing or “original” video

source, as shown back in Figure 1.2.

For each frame, as dictated by the frame rate of the original source, the GPU will receive

the original frame as a texture. Then, for each microdisplay, the GPU will receive the textures

containing their pixel maps. One microdisplay at a time, theGPU performs the lookups into

the original source frame texture based on the locations indicated in the pixel map textures, and

renders the output to a texture. These lookups have been implemented in a pixel shader, exploiting

the inherent parallelism of the GPU to keep up with the frame rate of the original source, thereby

acheiving real-time results. All of the output textures from the GPU can then be sent to the HMD in

whatever configuration is necessary to properly match them to their corresponding microdisplays.

3.2.6 Resampling

The final piece of the implementation is the resampling beingperformed on the GPU. Simply

looking up a pixel color based solely on the pixel maps would make the finished image look

quite rough, since the resolutions of the microdisplays andthe mapped area will not match up. A

result resembling a poorly scaled image wouldn’t help the realism factor for any VR application.

Trilinear filtering is a very common filtering method, and is easy to implement – in fact, it is

intrinsic to HLSL, the shading language used by XNA. However, trilinear filtering does not perform

particularly well during texture mapping where the surfaceis at a steep angle away from the user.

Since this may be somewhat akin to what will happen to the mapped pixels toward the periphery

of the user’s vision, a more robust filtering technique should be examined for this research. An

existing system called Feline appears to be a suitable algorithm to both provide high-quality results
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at steep angles as well as be simple enough to implement within a pixel shader. Note that the

algorithm of Feline requires some branching, which in turn makes any attempt to implement it

inside of a pixel shader require Shader Model 3.0 or higher, as previous versions do not support

dynamic flow control [17].

To implement Feline, the partial derivatives indicating rates of change between texture space

(original image pixels) and screen space (microdisplay pixels) must be calculated for each mi-

crodisplay pixel. This information must be passed to the GPUin order for Feline to be able to

run properly in a pixel shader. As with the pixel maps, these partial derivatives can be calculated

during the preprocessing phase of execution, packed into a texture, and passed to the GPU. They

use the conventionu, v to represent coordinates in texture space, andx, y to represent coordinates

in screen space, so we will use that convention in regards to Feline as well. During the same

preprocessing loop as determines the pixel map, rays will now be cast through thecornersof the

microdisplay pixels as well, not just the centers. From this, we can determine their locations on

the source image, and in turn the partial derivatives∂u/∂x, ∂u/∂y, ∂v/∂x and∂v/∂y.

Figure 3.14 shows a single pixel mapped from a microdisplay to the source image. The corner

points are known due to ray casting during preprocessing. Also,∂x and∂y are both equal to 1,

since the change in pixels in screen space in both directionsis a single pixel. Computing the partial

derivatives is now just a matter of averaging:

∂u
∂x

= (TRx−TLx)+(BRx−BLx)
2

∂u
∂y

= (BLx−TLx)+(BRx−TRx)
2

∂v
∂x

= (TRy−TLy)+(BRy−BLy)
2

∂v
∂y

= (BLy−TLy)+(BRy−TRy)
2

Once these partial derivatives have been computed during preprocessing for every pixel of

every microdisplay, they are packed into a single 32-bit RGBA texture. Much like the pixel map,
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BL
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FIG. 3.14. A microdisplay pixel mapped to the source image.TL, TR, BL andBR are all two-
element column vectors containing their source image coordinates for the top left, top right, bottom
left and bottom right points of the mapped pixel, respectively.

there is one of these textures for each microdisplay – exceptthat each derivative uses only eight

bits. This texture is passed to the GPU along with the pixel map textures, and is then used for

resampling in the pixel shader implementation of Feline.
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Chapter 4

RESULTS AND ANALYSIS

A working implementation of our system was created based upon the algorithms defined in

the previous chapter. We have performed a series of tests using this implementation, and we present

the results as well as a complete analysis in this chapter.

4.1 Test Platform

A single platform was used throughout the development, implementation and testing of our

system, and it is described below. While a specific type of tiled HMD was used throughout the

work on this paper, this research is general enough to apply to any tiled HMD.

4.1.1 HMD

The tiled HMD used for the development of this system was the piSightTM from the Baltimore-

based company Sensics, Inc. They offer a range of models withvarious fields of view going up to

180 degrees, as well as having models with many different numbers of microdisplays per eye, with

each microdisplay having a resolution of 800×600. All of our microdisplay description require-

ments mentioned in Chapter 3, such as the exact sizes of each tile, are provided in a configuration

file unique to each individual HMD. Actual testing was done with a model using six microdisplays

per eye. A picture of the piSightTM can be seen in Figure 4.1. The array of tiles for each eye are
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FIG. 4.1. Image of the piSightTM tiled HMD. Image used with permission from Sensics, Inc.

both kept behind a larger U-shaped black cover, to minimize ambient light seen by the user. The

remaining pieces of the HMD are for structural support, to keep the entire unit firmly on the user’s

head while also providing a platform to mount tracking devices and cable guides.

4.1.2 GPU

Development and testing took place on a desktop with an ATI Radeon HD 3870 X2. While

this video card supports the very latest DirectX 10.1 and Shader Model 4.0 features, they are

not actually needed; a GPU that meets only the specificationsfor DirectX 9 and Shader Model

3.0 would have been perfectly adequate for the implementation of the algorithms in this paper.

Regardless, the improved performance of the latest graphics hardware does allow the test bed to

drive more tiles per HMD.

4.1.3 Software Environment

All implementation was done in Microsoft’s XNA Game Studio 2.0, which is a set of tools

geared towards game developers that provides easy interfacing with human input devices and
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graphics hardware [18]. This platform was chosen to simplify the development of the system,

as it has many built-in functions useful for the manipulation of graphics primitives. XNA makes it

easy to send data to and from the GPU, as well as to create and use custom shaders. The majority

of the code for this research was written in the C# XNA coding environment, with the exception

of the shader code which was written in HLSL.

4.2 Test Application

In addition to implementing all of the algorithms describedin the previous chapter, a small test

application was also developed in order to see the mapped images while interacting with a scene

in real-time. Because this framework was developed to be runon a single system, all of the source

images will be generated on the same GPU as all of the mappingswill be performed. This can take

processing power away from the GPU, so any rendered scenes are generally kept relatively simple.

This test platform can perform the mappings on its own rendered scene, a still image, or video

clips. Figure 4.2 shows a simple example office scene in the test application. The user is free to fly

around the environment via mouse and keyboard input. The scene mapped to three microdisplays

is shown in Figure 4.3, where the original office image has themicrodisplay mappings applied,

and the three resulting images are displayed side-by-side.Note that this mapping occurs in the test

application in real-time; the user is still free to fly aroundthe environment.

Another feature of the application, available only when rendering scenes (i.e. not displaying

still images or video clips), is to actually render the sceneas many times as there are microdisplays,

with each camera pointed at the proper angle for each microdisplay so as to “look through” it to see

what it would be displaying. This mode can be used in comparison with the mapping technique,

to show what the mapped scene “should” look like. This will beseen in the discussion of image

quality in Section 4.6.

33



FIG. 4.2. Office scene rendered in test application.

FIG. 4.3. Office scene rendered in test application, with microdisplay mapping applied.
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FIG. 4.4. Car scene rendered in test application.

4.3 Performance

Performance testing was done while rendering an even simpler scene, so as to have as minimal

a performance hit on the GPU as possible; this scene is shown in Figure 4.4. XNA clamps per-

formances to no higher than 60 Frames Per Second (FPS), and itis generally desirable to achieve

60 FPS for real-time applications. The more 800×600 microdisplays that the application has to

drive, the slower the performance will be due to the increased number of texture lookups. The test

bed, an ATI Radeon HD 3870 X2, has a Texture Fill Rate of 26,400MTexels
sec

[19]. The theoretical

maximum number of microdisplays,n, to run at 60 FPS can be found as follows:

60FPS =
t

mh × mv × 8a × n

wheret is the texture fill rate,mh × mv is the total pixels per microdisplay, anda is the

number of texture accesses needed by the mapping. Note thata is always multiplied by 8 since

XNA inherently uses trilinear filtering. When only trilinear filtering is used,a = 3, since there are
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texture accesses to the source image, the integer mapping texture, and the floating point mapping

texture. When Feline is used,a ≥ 4, since there is an additional required texture access to the

derivatives texture, as well as how ever many additional probe accesses are needed by the Feline

algorithm. That puts the theoretical maximum panels drivenat 60 FPS as follows:

nt ≈ 38.19

nf ≤ 28.65

wherent is for trilinear only, andnf is for Feline. Actual performance tests are listed in the

following table:

Number of Microdisplays FPS w/ Trilinear FPS w/ Feline

3 60 60

6 60 60

12 60 60

18 60 60

24 60 30

30 60 30

36 12 10

48 7 5

These results are not far off from the expected results, withthe trilinear implementation not

suffering a performance hit until 36 microdisplays (expected about 38.19), and Feline not suffer-

ing a performance hit until 24 microdisplays (expected somewhat less than 28.65). It does appear

that the performance of trilinear “drops off” faster than the performance of Feline; trilinear goes

straight from 60 to 12 FPS when the number of microdisplays isincreased by only 20%, while

Feline doesn’t achieve similarly bad performance until thenumber of microdisplays is doubled.

This discrepancy is difficult to explain, but could be due to anumber of reasons. Trilinear filtering
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is built into XNA as well as the GPU, so there may be a large amount of unseen optimization hap-

pening with trilinear that is not present with Feline. This could cause Feline to show performance

decay more uniformly, and at a slower pace relative to the increase in microdisplays. Another

possible cause is the way in which texture cache affects performance; since Feline requires more

texture accesses, there is more opportunity for cache utilization.

4.4 Memory Usage

Another aspect of the GPU utilization is the question of how much memory the different

filtering methods are consuming. Each mapping texture has a number of pixels equal ton×mh ×

mv – essentially the panel resolutions times the amount of panels – and the individual maps are

packed into these textures so as to leave them as contiguous rectangles. For example, the mapping

textures for a set of three microdisplays at 800×600 each could have a resolution of 800×1800.

When the number of microdisplays gets large, so too do these textures! DirectX 10 hardware

allows for texture sizes up to a maximum of 8192×8192, therefore setting a very high limit of 130

microdisplays at 800×600 each – packed 10×13 into an 8000×7800 texture.
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The basic trilinear filtering method described earlier requires two of these mapping textures

to be loaded onto the GPU. The Feline implementation requires one extra: the derivatives texture.

The memory usage for various numbers of 800×600 microdisplays utilizing either trilinear or

Feline is as follows:

Number of Microdisplays Mapping Texture Size Trilinear Feline

3 800×1800 10.99 MB 16.48 MB

6 1600×1800 21.97 MB 32.96 MB

12 2400×2400 43.95 MB 65.92 MB

24 2400×4800 87.89 MB 131.84 MB

48 4800×4800 175.78 MB 263.67 MB

130 8000×7800 476.07 MB 714.11 MB

While most modern GPUs have the ability to store all but the largest of these memory re-

quirements, consideration must be taken that the effectivememory of the GPU will be reduced

by storing these large maps in texture memory; it will limit the memory available to the GPU to

render other things, such as the source image itself if everything is being run on a single platform.

4.5 Feline Utilization

The Feline algorithm was implemented in a pixel shader to potentially perform the resampling

for the microdisplays. If a particular point on a microdisplay is at a steep enough angle in reference

to the viewer’s eye, Feline will be used for the filtering – otherwise it reverts to a basic trilinear

filtering scheme.

Figure 4.5 shows an image that was fed directly into the test application as the source image,

using the three-microdisplay example used throughout Chapter 3 with a 4:3 grid source image

aspect ratio. The application was modified to draw red pixelseverywhere the Feline algorithm

does not revert to trilinear filtering, which can be seen in Figure 4.6. This figure shows that the
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vast majority of the image uses simple trilinear filtering, whereas it is only using the more complex

portions of the algorithm at its very left edge. Feline’s usage only towards the edges was expected,

as the edges are angled away from the user more so than the center of the picture.

The three-microdisplay configuration used is a fairly conservative example, however. Some

other configuration files have microdisplays very close to the edges of the user’s periphery, re-

sulting in much more stretched panel projections. An example of this can be seen in Figure 4.7,

which shows a 12-microdisplay configuration where the panels towards the periphery stretch out

a great deal in terms of their corresponding source image area. Figure 4.8 indicates where the

Feline algorithm does not revert to trilinear on the 12-microdisplay configuration, and yet just as

with the three-microdisplay configuration, Feline is used only at the extreme left edge. A close-up

comparison of the bottom left corner where Feline is used is shown in Figure 4.9.

As can be seen in Figure 4.9, Feline does make the resulting image a bit clearer when it

actually comes into usage. However, this improvement is only noticable when the source image

has very clearly defined edges, such as the shown grid image ortext. In other scenes, or especially

video clips, this improvement is barely noticable; and again, it is only used in small portions at the

extreme periphery of the mappings. Given the performance hit taken by using Feline, in addition to

its very small usage area for even tiled HMDs with very wide fields of view, it appears that Feline is

quite unnecessary for the purposes of this system. Simple trilinear filtering runs much faster, saves

memory, and the microdisplay panels are never at such a steepangle so as to noticeably effect the

results.

4.6 Image Quality

The test application allows for the rendered scene to eitherdetermine the microdisplay images

via the mapping method described in this paper, or by simply directly rendering them. This is

useful for image quality comparisons, as it allows us to see what the mapping result “should”
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FIG. 4.5. Grid picture used as source image.

FIG. 4.6. Microdisplay results using grid picture as source image. The red region on the left is
where trilinear filtering would not be used.
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FIG. 4.7. Example 12-microdisplay configuration, with panels towards the left edge very
stretched out over the user’s periphery.

FIG. 4.8. 12-microdisplay results using grid picture as sourceimage. The red region on the left is
where trilinear filtering would not be used.
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FIG. 4.9. Comparison of basic trilinear filtering to usage of theFeline algorithm. The image on
the left uses Feline, whereas the image on the right uses basic trilinear filtering.

be producing. Figure 4.10 shows two side-by-side images, the image on the left being a directly

rendered version of the corresponding mapped image on the right. This uses the three-microdisplay

example from earlier, and the results are quite similar to the rendered version. Since the directly

rendered image and the mapped image look so much alike, the mapping algorithm is working very

well; it is producing results based upon a source image that look as if they have been rendered

directly from scene information. This success in mapping a rendered scene shows that the system

would also work well in mapping any other video source, sinceno scene information was used to

produce the results – only the source image was used.

Figure 4.11 also shows two side-by-side images, except the mapped version here looks signif-

icantly pixelated and less visually pleasing. This uses the12-microdisplay example from earlier,

and the disparity in quality as compared to the three-microdisplay example stems from the fact

that certain microdisplays only have a small amount of data available for their mapping. As can

be seen in Figure 4.7, the microdisplays near the center onlymap to a very small area within the

source image. Contrast this with the three-microdisplay example seen in Figure 3.7, where all of

the microdisplays map to a relatively large section of the source image. When a microdisplay maps
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to a smaller area, there are fewer source image pixels in thatspace; therefore the microdisplay is

getting filled with less data. Since the resolution of each microdisplay panel does not change, this

smaller amount of data must be scaled up a great deal, producing pixelated results. This problem

could be mitigated by simply increasing the resolution of the source image, but doing so would

slow down the overall performance of the system.
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FIG. 4.10. Image quality comparison of the three-microdisplaymapping example. The image
on the left is directly rendered, whereas the image on the right has been created via mapping an
original source image.

FIG. 4.11. Image quality comparison of the 12-microdisplay mapping example. The image on the
left is directly rendered, whereas the image on the right hasbeen created via mapping an original
source image.
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Chapter 5

CONCLUSION

We have presented a system enabling tiled HMDs for use with existing video sources, which

allows them to be used with off-the-shelf applications as opposed to requiring separate video

sources for each tile. The GPU was used as a platform to handlethe required processing to convert

a single video source into many to drive a tiled HMD. Algorithms for execution on the GPU as

well as preprocessing on the CPU were described and implemented, and their performance was

analyzed. The resampling technique Feline was implemented, and shown not to be advantageous

to the system described in this paper. The implementation ofthis system performed at frame rates

high enough for interactive applications.

5.1 Contributions

The development of this system has shown that driving a tiledHMD without having individual

video signals for each tile is possible, and can be done usingcurrent GPU technology at interactive

frame rates. This research has identified the inputs required to describe the physical properties of a

tiled HMD – such as each tile’s exact height and width – allowing a system to map a single video

signal to its tiles. The choice of the source image’s location in world space has been recognized as

a large variable in any mapping implementation, and a basic method to place the source image has

been described. The research described in this paper is a foundation for the usage of tiled HMDs
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with a single video source, and could be adapted into a standalone hardware platform allowing a

consumer to very easily use a tiled HMD with any off-the-shelf application.

5.2 Future Work

This work has many things that could be done to expand its functionality in the future. The

first – and most obvious – way that this research could be extended in the future would be to

incorporate stereo vision into the system. This would greatly expand the overall field of view of

the system, and could potentially make much greater use of the Feline algorithm, implemented in

this research. Also, since this research is geared towards VR devices, it would be useful to perform

a user study with various real-world usage situations to determine what “looks good” to an average

user. For example, since the source image can be of any resolution, it would be interesting to see

what the minimum tolerable source resolution could be.

Another important aspect of this work that could be altered is the way in which the orientation

of the source image is decided. Instead of simply snapping around the corners of the microdisplay

projections and preserving aspect ratios, perhaps the source image could be rotated and aligned

so as to create a tighter fit with the microdisplays. This would avoid issues such as the low usage

of the source image, seen in Figure 4.7, and in doing so would help to avoid pixelated resulting

images, seen in Figure 4.11.
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