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Abstract

This paper describes a method for automatically segmenting volumes by example using an analogy based
approach. This approach consists of two stages. In the first, design phase, a pair of volumes is presented,
where the first volume is the raw MRI or CT data, and the second volume represents the segmented version
of the first, this combined pair makes up the learning data. In the second, an application phase, the learned
segmentation is applied to some new volume in order to create an “analogous” or learned segmented result.

We show that this technique proves to be an accurate way to automatically segment a volume. High quality
segmentations can be accomplished, even when given fairly small sample or sub-sample sizes. By down-
sampling or sub-sampling the training data we are able to accomplish these learned segmentations in a
reasonable time frame with around nintey-five percent accurracy.

We believe that a tool that can learn how to segment volumes by example will provide the medical commu-
nity with another valuable means of managing medical data. Such a utility would surely have applications
in visualization, medical examinations, and virtual surgeries.

Keywords. volumetric, analogy, segmentation, classification, medical imaging, magnetic resonance imaging
(MRI).
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Figure 1: A volume analogy. New “analogous” volume B′ relates to B in the same way that A′ relates to A.
Here A, A′, B are all inputs to the algorithm and B′ is the output.

1 Introduction

Analogy is a reasoning process that people use quite often to solve problems, provide explanations and
make predictions. This paper explores the use of analogies as a means of automatically segmenting complex
medical volumetric data. In particular, we attempt to solve the following problem:

Problem “Volume Analogy” Given a pair of volumes A and A′ (the raw MRI/CT data and the segmented
volumes, respectively), along with some additional unsegmented raw MRI/CT data volume B, synthesize a
new segmented volume B′ such that:

A : A′ :: B : B′

Essentially we want to find an “analogous” volume B′ such that it relates to B in the same way as A′ relates
to A. We describe an approach that produces results with a high level of accuracy. This approach is depicted
in (Figure 1).

Due to the shear sizes of such volumes (typically on the order of 27× 28× 28 ≈ 8.4 million voxels), it is
favorable to have semi or fully automated techniques to segment such data. It is not practical for a human
reviewer to manually segment every voxel in a volume due to the vast size. Thus, it is desirable to have
a method of accurately and automatically segmenting volumetric data, given some well know segmented
training pairs.

This paper starts out with a brief introduction of the analogy based framework in which new segmented vol-
umes are constructed. This is followed by a brief summary of existing synthesis and segmentation techniques
and then discusses how parts of each of these two disciplines are pulled together for the learned volume
segmentation framework. Data structures and algorithms that are at the heart of the analogy framework are
discussed. Following these details are the promising statistical and rendered results of the output of this al-
gorithm. Lastly this paper discusses some of the future opportunities for this framework. Optimizations and
tuning of the existing algorithm are outlined, as well as possible future extensions and applications of this
framework.

2 Related Work

Our approach pulls fundamentals from work in both image generation and volume segmentation. The fol-
lowing is a survey of some of the closest related work.
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Image generation builds off of many distinct areas including machine learning, texture synthesis, and image
based rendering.

It has been a goal since the creation of artificial intelligence to build computer systems that are capable
of reasoning and solving problems by way of analogies. Some of the first successful attempts at analogy
based techniques were Winston’s work on reasoning by analogy [17] and Evans’ work on geometric analogy
intelligence [6]. More recently this notion of machine learning has been applied to various areas of computer
graphics including style machines [2] and video texture [14].

Texture synthesis deals with the generation of new images that mimic the texture of a given sample image.
Since its introduction almost a decade ago [8], much work and refinement has gone into this area. Several
nearest neighbor approaches [3] and [5] have provided high-quality synthesized images. Neighborhoods of
pixels consisting of multi-scale representations on the images [16] have also proven to generate high quality
images. Multi-scale neighborhoods have also proven to generate high quality images [1], where patches of
texture are expanded out of the target image space, rather than searching the sample texture in its entirety.

Segmentation of volumetric data is another area of active research. Traditional methods of segmenting data
involve either statistical analysis of the data, or rely on trained individuals to examine all of the voxels in
the volume and painstakingly segment and label each area accordingly. Early methods of segmenting data
[12], although relatively effective, have been replaced by more sophisticated means of segmenting voxels.
One such model [4] accounts for the fact that a given voxel may contain various materials and not just a
single matter. In [7] and [10] the authors use stochastic methods to generate transfer functions. This model
is fundamentally different than the previous two in that it tends to work back-wards through the rendering
pipeline by first analyzing and computing characteristics about the final rendered image.

Lastly, this paper most strongly derives its work from the Image Analogies framework specified by [9]. The
Image Analogies framework is a technique for synthesizing or generating new images based on the concept
of an analogy. Hertzman et. al. used this analogy framework to perform many diverse tasks in areas such
as: traditional image filters, improved texture synthesis, super-resolution, texture transfer, artistic filters, and
texture-by-number.

The last area, texture-by-number, involved a training pair where the A image was a numbered representation
of the A′ image. This numbering scheme was used to represent the various features of the image. The example
images of terrain presented, involved coloring the B image green where vegetation was to be rendered in B′,
blue where water was to be synthesized, black for roadways, and so on. These numbers represented the
partitioned or segmented data. This partition data was used to synthesize various two-dimensional examples.

We expand upon the Image Analogies framework and tailor our model to segment volumetric data by learning
the relationship in a training pair and applying that knowledge to derive a new segmented volume. Essentially,
we will be attempting to figure out these numbers (the segmentation labels) from a volume, rather than using
the labels to generate an image.

3 Volume Analogy

Definitions and Data Structures

As input, our algorithm takes a set of three volumes, the unsegmented source raw MRI/CT data volume A,
the source segmented volume A′ and the unsegmented target raw MRI/CT data volume B. The framework
produces the segmented target volume B′ as its output as illustrated in Figure 1.

Our approach assumes that the two source volumes are registered, meaning that the raw MRI/CT data at any
given voxel at index p in A corresponds to the segmented data at the voxel located at index p in A′. This also
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holds true for the B and B′ pair. For clarity, index p will be used for source volumes A and A′, while index q
will specify a voxel in the target B and B′ pair.

Since this paper deals with segmentation of volumetric data, the A′ and B′ volumes both contain segmentation
labels. However with this model, the associated data in A′ and B′ is not limited to segmentation labels, but
rather can be any arbitrary data. Other possibilities for such data are discussed later in Section 6.

In summary, our algorithm maintains the following data structures. Raw MRI/CT data volumes consisting of
densities measurements of A(p) and B(q) are inputs. A segmented volume comprised of segmentation labels
of A′(p) are also input. Lastly, the segmented volume B′(q) is the output:

A(p) array p ∈ SourcePoint of Feature
A′(p) array p ∈ SourcePoint of Feature
B(q) array q ∈ TargetPoint of Feature
B′(q) array q ∈ TargetPoint of Feature

where SourcePoint and TargetPoint are three dimensional voxel locations in the source and target pairs,
respectively.

The Algorithm

Given this notation, the volume analogies algorithm is presented below. For every target voxel q in B′ that
is being computed, we take the corresponding voxel neighborhood centered about q in B and find the closest
matching voxel neighborhood centered about p in A. Once the closest matching neighborhood centered over
p is found in A, the corresponding segmentation label in A′[p] is assigned into B[q].

This algorithm can more precisely be described in the following pseudo-code:

VOLUME-ANALOGY(A, A′, B, B′)
1 for each q ∈ B
2 do p← FIND-BEST-MATCH(A, B, q)
3 B′[q]← A′[p]

The FIND-BEST-MATCH function takes two MRI/CT data volumes A and B, as well as the current q for
which the best match is to be found.

This function maintains several local variables. A temporary scalar variable di f f erencecurr is used to store the
current difference as returned by the CALC-DIFFERENCE function (outlined below). The scalar di f f erencebest
maintains the best difference seen thus far as returned by CALC-DIFFERENCE. Initially, this variable is set to
positive infinity and is continually refined. Also maintained is closestMatch which is the index corresponding
center of the best matching neighborhood.

Basically, this function searched through the entire volume A and calculates the difference between neigh-
boring voxels around A(p) and the voxels around B(q). If the current difference between these two sets of
neighboring voxels is better (less than) what has been seen thus far, then this current difference is recorded
as the new best difference, and the corresponding voxel is also recorded. Otherwise, there is already a better
match. In either case, processing continues with the next voxel in A.

More precise outline of this algorithm is as follows:

FIND-BEST-MATCH(A, B, q)
1 di f f erencebest ← ∞
2 for each p ∈ A
3 do di f f erencecurrent ← CALC-DIFFERENCE(A, B, p, q)
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Figure 2: A sample Gaussian filter kernel over one dimensional space.

4 if di f f erencecurrent < di f f erencebest
5 then di f f erencebest ← di f f erencecurrent
6 closestMatch← p
7 return closestMatch

Thus, the core of the algorithm lies in the CALC-DIFFERENCE function. This function takes two MRI/CT
data volumes A and B, as well as the current indices p and q for which the difference is to be calculated.

In order to find the closest match for any given neighborhood of voxels, the overall difference between any
two sets of voxels needs to be computed. A three dimensional filter kernel is applied to both neighborhoods
to weighting each surrounding voxel based on its distance and importance. For this paper, we chose to apply
a three dimensional Gaussian pyramid over both sets of voxels.

The overall difference is the difference between each corresponding set of voxels (in A and B) in each neigh-
borhood and scaled by the associated filter kernel weight. The summation of all of the weighted differences
under the kernel is returned as the overall difference between both neighborhoods of voxels.

Again, more precisely the pseudo-code would be as follows:

CALC-DIFFERENCE(A, B, p, q)
1 TotalDi f f ← 0
2 for each voxel ∈ neighborhood
3 do TotalDi f f ← TotalDi f f + |B−A|× f ilterKernel[voxel]
4 return TotalDi f f

Filter Kernel

A Gaussian filter kernel was used to weight the cells that are in the voxel neighborhood during difference
computations. A Gaussian kernel was chosen as it has proven to work well in other various other reconstruc-
tion works. A one-dimension version is shown in Figure 2. This kernel allows the cells that are closest to the
center to have the most weight in determining which voxel neighborhood is the closest match. As cells get
farther from the center, they hold less and less weight. In order to obtain a reasonable runtime, this kernel
was reduced to consider a given voxel and its immediate neighbors only.

A summary of the full algorithm is shown in Figure 3. It takes in two RAW MRI/CT data volumes A and
B, and a segmented version of A called A′. A newly segmented volume B′ is generated in scan line order,
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Figure 3: Here the neighborhood around B[q] most closely matches the neighborhood around A[p] and thus
A′[p] is recorded into B′[q] as the best match. In this diagram the Cerebral Cortex labeled information is
shown in red in the A′ and B′ set.

by looking at the best set of matching voxels centered about p in A for each q in B, and carrying over the
segmented data that is located in A′. In this example, the best matching set of voxels for the area around B(q)
is located at the highlighted voxels shown at A(p). The associated label at A′(p), in this case the cerebral
cortex, is then carried over into B(q).

4 Source Data sets

The datasets that are used in this paper are derived from the Stanford volume data archive [15]. To limit run
time, both datasets have been down-sampled from their original size.

The MRbrain dataset has been down-sampled from 109 slices of 256 × 256 pixels to 54 slices at 128 × 128
pixels. The segmented data used in the MRbrain set was courtesy of [13]. The CThead dataset has been
down-sampled from 113 slices of 256 × 256 pixels to 56 slices at 128 × 128 pixels.

The MRbrain dataset is segmented into four different categories:

• Cerebral Cortex

• Cerebellum

• Spinal Cord

• and “other” which is the catch-all for everything that is not part of the central nervous system.
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n % of original volume sampled % of correct voxels
2 12.500% 95.8116%
4 1.505% 94.8346%
8 0.1736% 94.1811%

Figure 4: MRbrain data results

An example of this segmentation can be seen in Figure 5A, where the various parts of the brain are rendered
in different colors, and any voxels labeled “other” are rendered transparent.

5 Results

There are several ways to measure the results of this analogy based segmentation technique. This paper will
present both quantitative results as well as figures of rendered synthesized segmented volumes.

5.1 MR Brain

Since both raw MRI data and the segmented data were available for the MRbrain set, this set provides a
means to check the algorithm.

A smaller sub-portion of the original MRbrain data set for both the MRI and segmented data is used as the
A and A′ volumes respectively. Then, using the original MRbrain dataset as the B volume, we attempt to
generate volume B′. Since the correct solution to B′ is already known (the original segmented data), it is
possible to determine how accurate of a reconstruction was accomplished.

The overall correctness can be computed by counting the number of matches where B′[q] = Oseg[q],and
dividing the the number of calls in the volume, where Oseg[q] is the original segmented version of the MRbrain
dataset.

Figure 4 shows the resulting percentage of voxels that were correctly reconstructed given the specified sub-
sample of the original MRI and segmentation volumes that made up A and A′. The percentage of the volume
sampled came from considering the Gaussian pyramid centered at every nth slice, at every nth row, at every
nth column. As the figure illustrates, fairly accurate reconstruction occurs even when sampling fairly small
sub-sections of the original MRbrain data.

When using a large volume as the training pair, this algorithm can be fairly slow. For the down-sampled
datasets, where n = 2, it takes approximately eight hours to generate a new segmented volume. However, if
you increase n, the algorithm speeds up dramatically. It takes about one and a half hours when n = 4 and only
about fifteen minutes when n = 8. It is worthy to note that these speedups are not directly proportional to the
quality. A forty fold increase in speed only results in about a one and a half percent drop in accuracy. These
runtimes were obtained on a 600MHz Intel Pentium III.

The original segmented MRbrain data, as well as the resulting volumes for each of the aforementioned analo-
gies is shown rendered in Figure 5. The original MRbrain segmented data is shown in Figure 5A, and Figures
5B-D are the rendered images from n = 2 down to n = 8. In these figures, the cerebral cortex is rendered red,
the cerebellum is rendered green and the spinal cord is rendered blue.

In these rendered images, the areas of the brain are still relatively segmented and colored appropriately even
as the portion of the original volume greatly decreases to under one percent. Take note of the artifacts around
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Figure 5: A) The original segmented data, B-D) are rendered images from the MRbrain analogies in descend-
ing sub-sample size.

Original Labels
Cortex Cerebellum Spinal Cord Other

Labels Cortex 43,135 2,092 1,243 12,847
Computed Cerebellum 2,541 2,805 138 2,547

by Spinal Cord 946 151 653 727
Analogy Other 10,886 2,374 564 801,087

Figure 6: Matrix showing detailed analysis of learned segmentation labels (taken from learned segmented
volume where n = 2).

the rest of the skull and facial tissue. There are a number of cells that have been mistakenly categorized as
parts of the central nervous system. We believe that these false identifications can be further reduced or even
eliminated with a larger filter kernel (as discussed in Section 6 ).

Figure 6 shows, in more detail, the results of a learned volume segmentation. The columns represent the
actual data taken from the original MRbrain segmentation, and the rows in each column represent the number
of occurrences that particular tissue was classified with the associated label. The bold-faced entries on the
diagonal represent the number of voxels with correctly learned segmentation labels. For example, the first
column would read: for the voxels that make up the Cortex, 43,125 of them were correctly classified as
Cortex, with 2,541 incorrectly marked as Cerebellum, 946 incorrectly marked as Spinal Cord, and 10,886
incorrectly marked as Other. The percentage of correct voxels presented in Figure 4 is actually calculated by
taking the sum of these bold face entries and dividing by the number of voxels in the volume.

These findings support what is seen in the rendered volumes (Figure 5). For the Cerebral Cortex, the numbers
indicate that most of the Cortex tissue has been correctly identified. However, there is also a significant
portion of the Cerebral Cortex that was classified as Other. The lighter colored red Cortex is consistent with
portions being segmented as air, and thus subtracting from the brightness. The Cerebellum was also mostly
correct, however, significant portions were mistakenly classified as Cortex and Other. This is consistent with
the lighter green Cerebellum caused by the additional air, as well as a hint of red from the incorrect Cortex
labellings. The Spinal Cord was the least correctly guessed of the four classifications. The high amount of
incorrect Cortex and Other guesses, serves to both lighten the blue from the Brain Stem, and also adds more
red into the region. Finally, the Other category was the most correctly generated label. A small portion of the
Other category was incorrectly labeled as Cortex, which explains the additional red at the bottom of the head.

There are two observations that we would like to make regarding this data and the rendered volumes. First,
we believe that part of the high level of inaccuracy for the Brain Stem is caused by poor sampling. The
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Figure 7: Illustration of symmetry and two voxel neighborhoods with example data labels.

Brain Stem is the smallest tissue in the original volume, and sampling one out of every eight voxels only
considers a very small sub-section. Second, regarding the portion of Other that was incorrectly classified as
Cortex, we believe that this is partially due to inconsistencies in the volume. Looking closely at Figure 5, all
of the renderings have a slightly lighter color (especially noticeable on the black background) on the lower
third of the image. At this point in the volume, the average MRI/CT data becomes slightly more dense. The
amount of redness below this line significantly increases, as a result of the incorrect Cortex labeling due to
the inconsistency.

Consider now that the segmentation data provided as the learning pair is not distributed evenly across the
entire volume as in the left portion of the head that is given in A and A′ as shown in Figure 1. The human
brain automatically sees that the volume represented in the source pair is the other half of the head that is the
target volume B. However, this requires special consideration when generating new volumes.

For example, Figure 7 illustrates a cross section of this problem. Assume that everything on the left side of
the symmetry axis is given as a source volume A and everything on the right side is given as the target volume
B′. So let us consider the case where the voxel neighborhood on the right side around q is being matched,
and CALC-DIFFERENCE is being called to compare the neighborhoods around A(p) and B(q).

If this symmetry is not considered, then the difference will be computed as,

|brainb−aira|× c1 + |skullb− skulla|× c2 + |airb−braina|× c3,

where cn is the appropriate scalar constant. In this case, the first and third differences will be rather high
since both of these are taking the difference between two different materials (brain and air). This results in
a high difference between these 2 neighborhoods. Whereas, if this symmetry is considered when examining
the neighborhood in A around p, the neighborhood can be mirrored to mimic the missing right side of the
head. Thus the difference will be more closely calculated as,

|brainb−braina|× c1 + |skullb− skulla|× c2 + |airb−aira|× c3,

again where cn is the appropriate scalar constant. The result of this second computation will yield a much
closer match, as all of the individual differences are between like materials. Obviously, this assumption is not
appropriate for all data, such as the human midsection where the organ structure is asymmetric, however, it
can improve synthesis of symmetric organs such as the head and extremities.

Since the human body is symmetrical, for the most part, this fact can be exploited to our advantage. If we
further take into account this fact, we essentially obtain extra data out of the A and A′ data sets, by also
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Figure 8: An example rendering where the known symmetry of the data is also considered.

taking the mirror of these datasets about the major axis. A composited image of such a generated volume is
illustrated in Figure 8.

5.2 CT Head

One of our original goals was to automatically segment the CThead dataset from the example learned from
the MRbrain dataset, which had been manually segmented by hand. Attempts to segment the CThead dataset
were not met with the same success as the MRbrain dataset. We attribute this lack of success to the failure to
produce a high-quality A’ for the learning set. We performed three various methods of running the CThead
data through our analogies model:

Initial dataset. The initial segmentation attempt for the CThead dataset failed completely with no apparent
connection between head or brain structure. Since these volumes were acquired from different recording
devices, the range of data for the two volumes was not consistent. Since the difference between similar cells
could be very high and the difference between distinct cells could be low, the resulting segmented data was
not correct.

Simple scaled dataset. The next step was to scale the B CT data into the same range as the A MRI data. This
also produced poor results. Objects in the volume such as metal rods, fillings, etc. introduce outliers that
throw off the analogy and could skew the entire set of results.

Statistically adjusted dataset. Finally, falling back on the statistics, it makes the most sense to look at the
histograms that represent the distribution of voxels over the range of possible values. Overall, if considering
data of the same nature, it makes sense that these histograms should look as similar as possible. However,
when examining the quantity and distributions of the peaks in both the MRbrain and the CThead histograms,
there seemed to be many more inconsistencies between the two human heads than expected.

Scaling, shifting and attempts at various other techniques to best align the data all failed to produce segmented
volumes that were believable. Without well aligned data we observed that the volume analogy failed to
produce reasonably segmented volumes. We believe that such a task, if possible, is well beyond the scope of
this paper. Another possible cause of this disproportionate data could be due to the partially removed skull
in one of the datasets. Since a substantial portion of the skull is gone, this has the effect of replacing bone
with air in one of the volumes. This is definitely a contributing factor in the large difference between the two
histograms.

9



5.3 Challenges and Considerations

Here we will outline some of the challenges and special considerations that arose during the creation of our
volume analogies framework.

As mentioned, the lack of properly aligned and distributed volumes proved to be a hurdle that we were
unable to easily overcome. We suspect that volumes coming off of the same capture device would have less
of a problem with the alignment and distribution of data.

In order to bring the runtimes down to a reasonable level, the Gaussian kernel had to be significantly scaled
back. We had initially tried a kernel that considered at least a 5× 5× 5 neighborhood area. This results
in 125 voxels, each of which would have to have its difference computed to its corresponding voxel in the
comparison dataset. This amount of computation for each cell in our volume datasets did not allow for
reasonable runtimes, thus this was scaled back to only consider immediate neighbors.

In order to allow the analogy to run in an acceptable amount of time, a multi-scaled refinement to segment
the data was also set aside. In the current implementation, only the finest level is being generated.

6 Discussion and Future Work

In this paper, we have discussed a framework for segmenting a volume by example using an analogy. We
have shown that this method proves that analogy based segmentation of volumetric data is possible. The
results presented for this model are reasonable, and are even more promising, in that future refinement and
tuning of this approach may yield even better constructed segmentations, or even other applications.

There is still much work that needs to be done, both in improving the approach described here, as well as
experimenting and investigating other approaches to synthesizing volumetric data. Here is a brief list of some
of the areas of future work that we wish to pursue:

Speeding up the algorithm. The performance of this algorithm is fairly slow. The time analysis of the current
implementation is best described as the product of the training pair A, A′ size and the target pair B, B′ size.
Using the current implementation of this algorithm on these down-sampled volumes takes a number of hours
to generate the segmented data. Introducing an algorithm such as an approximate-nearest-neighbor search
(ANN) could reduce half of the problem, (searching through A for the best match) down to a logarithmic
order and would surely result in a significant speedup. Another technique to speedup the match finding is to
use a Fast Fourier Transform (FFT) based method. Recent work by [11] shows speedups of around 120 fold
for finding matches in a 150× 100× 30 video sequence, reducing the match finding time from 10 minutes
down to 5 seconds. Finding the best match for a particular cell in a three dimensional volume and finding
the best match for a given pixel in a video is a very similar problem. We anticipate that such gains would be
reproducible for our problem.

Tuning and improving the algorithm. Since the algorithm was working on a rather large dataset, several
desirable features had to be removed or cut back in order to complete this project in a timely matter. For
example, the Gaussian kernel that was used in the difference computations had to be scaled back from its
original size and complexity. We believe that this is one of the reasons that outliers are seen in the rendered
images. Such a scaled back kernel filter results in false guesses that cause these outliers to be segmented
incorrectly. A larger filter size would in fact be able to better capture the larger scale structure, and cut
back such inconsistencies. We also believe that successful integration of a multi-scaled approach would help
capture the high level structure as well.

Generation of other forms of data. This paper presented an approach for analogous based segmentation of
volumetric data where the contents of A′ were essentially labels that represented the segmented data from A.
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Another logical choice to segmentation labels would be a color model. It would be fairly straight-forward
to adapt this algorithm to work for an RGB[A] color scheme. The Visible Human Project at the National
Institute of Health makes available very high resolution MRI/CT and RGB data for both male and female
cadavers. This RGB data was obtained using destructive techniques (slicing and photographing the cadaver)
and thus could not be replicated for a living patient. However, non destructive data gathering such as MRI
or CT could be used with such an approach to visualize the inside of a patient, and could be of use for
applications such as surgical visualization.

Generation of higher order data sets. Generating volumetric data was a logical expansion upon previous
ideas of image synthesis and generation. By taking the dimensionality a step further to four dimensions, some
other applications present themselves. Datasets that study fluid dynamics such as turbine air flow or the flow
of liquid through objects could be used to create new analogies. For example, suppose for a given stationary
object (A), there exists data about how some fluid flows around this object A′. Then, given another object
(B), would it be possible to take the A and A′ pair and construct what the flow of some fluid would look like
(B′) over this new object? There has also been recent work done in animation of the aforementioned Visible
Human datasets, where again there is a stationary object, in this case the MRI data (A). Then, given the three
dimensional stream that is the animated data (A′) and a new MRI model (B), would it be possible to generate
a new animation stream (B′) for the new model?

Automatic abnormality detection. In this current approach where the best match is found for a given voxel
neighborhood and then synthesized, the strength of the match is not used. In other words, even though the
score is temporarily recorded while finding the best match, the result of that score does not propagate to
the output volume, and is never seen by the end-user. This data could be used beneficially. What if, rather
than simply throwing away the strength of the match, this information was recorded as just that, the strength
of the match. In other words, how sure is the algorithm that this particular data shows up in the original
set? We propose that an acceptable maximum difference could be set such that any data that does not meet
a minimum match score is flagged, perhaps for human review. Consider the following analogy: Assume
that the algorithm is given MRI or CT data of normal healthy tissue (A) and the segmented version of that
volume (A′), where all of the data is accounted for (labeled as normal healthy tissue). Then, imagine that the
algorithm is given another volume (B), where the tissue contains abnormalities, such as tumorous material.
When the algorithm encounters the tumorous material it will struggle to find a string match in the learning
pair. This area could then perhaps be segmented into another label dedicated for suspicious tissue that should
be examined more closely by a medical professional. We envision such a derivation that is capable of such a
procedure.
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