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ABSTRACT 
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Fingerprints are the most widely used biometric feature for human identification because 

of their accuracy and uniqueness. Traditional fingerprint acquisition techniques are 

contact based and result in poor quality images. The new generation of non-contact based 

scanners capture high resolution and detailed 3D fingerprint scans, which addresses many 

of the problems of traditional fingerprint acquisition techniques. The majority of existing 

fingerprint databases available today are 2D, so there is a need for backward 

compatibility for the 3D scans captured. In order to solve this interoperability issue, I 

present an algorithm to unwrap the 3D fingerprint to its 2D equivalent image to be used 

in an Automatic Fingerprint Identification System.  
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CHAPTER 1.  INTRODUCTION 

Security and forensics drive a need to uniquely identify people with speed and accuracy. 

Other identification techniques like PIN identification are not unique and change over 

time. Biometrics, innate physical characteristics of the person being identified, address 

these problems and are now widely used for identification. Fingerprints are the most 

popular and studied biometric feature, their stability and uniqueness make them 

extremely reliable and useful for security applications.  

1.1 Fingerprint as Biometric 

There are nine different biometric techniques that are widely used: face, fingerprint, hand 

geometry, hand vein, iris, retinal pattern, signature, voice-print and facial thermograms 

[1]. Each of these biometric identification techniques can be used as evidence of identity, 

but fingerprints are considered to be most reliable and are generally accepted by experts 

due to their uniqueness, permanence, performance and simplicity in acquisition [2]. 

1.2 Fingerprint Identification 

Extensive research is ongoing to create an Automatic Fingerprint Identification System in 

designing algorithms for effective and efficient fingerprint acquisition, feature extraction, 

fingerprint matching, and fingerprint classification. Ridge characteristics have been 

studied as a way to uniquely identify a fingerprint. The most prominent of local ridge 

characteristics are called minutiae points [3]. Minutiae are ridge endings and ridge 
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bifurcations that appear within fingerprints. A ridge ending is defined as a point where a 

ridge ends abruptly and a ridge bifurcation is defined as the point where a ridge forks or 

diverges into branch ridges. Figure 1.1 shows various minutiae features used to uniquely 

identify a fingerprint. 

 

Figure 1.1: Ridge minutiae [2] 

 1.3 Fingerprint Acquisition 

Various acquisition technologies are developed to acquire minutiae characteristics. They 

are broadly divided as Latent acquisition and Tenprint acquisition [2]. 

1.3.1 Latent acquisition  

Latent or mark acquisition is used to obtain fingerprints from accidental impression left 

behind by a person on a surface. In the acquisition process, the residue left behind is 
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carefully lifted up or photographed and then processed using special treatments and 

imaging. The latents exhibits small portion of a finger surface, consist of very few 

number of features, and are of poor quality due to smudginess, distortion, and poor 

deposition. As a result, the fingerprint surfaces captured are less clear and include large 

distorted information. The actual patterns of ridges and grooves of a finger are not 

correctly captured.  

1.3.2 Tenprint acquisition 

A tenprint can be captured by using either off-line or on-line method. The off-line 

method includes ink-on-paper to acquire the fingerprint impression. The on-line method 

fingerprints are electronically scanned using optical scanners.    

 Optical scanners uses multispectral imaging (MSI) and touchless imaging to 

capture the fingerprint and are able to scan both the surface and sub-surface of a 

fingerprint using different wavelengths of light. This technology results in fingerprint 

acquisition free of smearing, slippage, and skin distortion. It produces a complete 

representation (from “nail to nail” and “tip to bottom”) preserving the “ground truth” of a 

fingerprint. They also produce higher resolution images with better quality and finer 

details and hence are widely used as a fingerprint sensing technology [4]. 

1.4 Fingerprint Representation 

Once the minutiae features are acquired, it is important to be able to represent these 

salient and discriminatory features for fingerprint matching. The accuracy and efficiency 
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of fingerprint matching depends greatly on selection and extraction of features.   

 A large variety of features have been established based on the evidential value of 

fingerprints. The features are typically categorized into three levels - Level 1, Level 2, 

and Level 3. The higher the feature levels the finer the feature detail as shown in Figure 

1.2. To extract the fingerprint features pre-compiled algorithms are used to determine the 

strength of ridge-valleys of fingerprint. The extracted features are then compared for 

matching. The more features that are matched, the better the accuracy in fingerprint 

identification system. 

 

Figure 1.2: Fingerprint features used in fingerprint matching, categorized as Level 1 

(upper row), Level 2 (middle row) and Level 3 (lower row) features [2]. 

1.5 Different approaches to fingerprint matching 

Fingerprint Matching is a method of comparing two fingerprint images and finding the 

similarities between them. A large number of algorithms have been developed to achieve 
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matching and the choice of a matching algorithm depends on the representation of the 

fingerprint image and hence extracting the fingerprint features.  

1.5.1 Chain coded contour representations of fingerprint images  

The method focuses on extracting contours and global features of a fingerprint image. 

Initially, thinning was used for fingerprint image processing. But, thinning resulted in 

computationally expensive operation with less accuracy in representation. The Chain 

coded method addresses this problem and hence is also considered an efficient alternative 

for fingerprint image processing.        

 The first step is to threshold the fingerprint to a binary image. Then the average of 

the neighboring pixels are used to generate smooth chain codes without introducing 

spurious breaks in contours. The ridge flow field is estimated from a subset of selected 

chain codes. The original gray scale image is enhanced using a dynamically oriented 

filtering scheme together with the estimated direction field information. The enhanced 

fingerprint image hence forth can be used for all subsequent processing.  

 The orientation of the ridges and information on any structural imperfections such 

as breaks in ridges, spurious ridges and holes is given by the direction field estimated 

from chain code.  The standard deviation of the orientation distribution in a block is used 

to determine the quality of the ridges in that block. A point where a ridge makes a sharp 

left turn is a candidate for a ridge ending point. Similarly when at a sharp right turn, the 

turning location marks a bifurcation point. Once it has all the features in fingerprint, those 

are compared to match the fingerprints [5]. 
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1.5.2 Fingerprint matching algorithm based on error propogation  

The method adopts ridge information and Hough transformation to find pairs of matching 

minutiae. The initial correspondences are used to estimate the common region and 

alignment of two fingerprints. A matched set is computed based on the correspondence 

and its surrounding minutiae matched pairs.       

 The subsequent matching process is guided by the concept of error propogation: 

For relevant neighbor minutiae, the matching error of each unmatched minutiae is 

estimated. The method adopts flexible propagation scheme to avoid being misguided by 

mismatched minutiae pairs [6]. 

1.5.3 Filterbank-based fingerprint matching  

The method represents the fingerprint using a short, fixed length code called Finger 

Code.  It utilizes both the global flow of ridge and valley structures and the local ridge 

characteristics to generate a short fixed length code for the fingerprints while maintaining 

high recognition accuracy. The proposed scheme of feature extraction tessellates the 

region of interest of the given fingerprint image with respect to a reference point. During 

matching only the Euclidean codes are compared and hence matching is very fast. As the 

representation is in the form of code, it is easy to store even in a smartcard.  

 A feature vector called Finger Code is the collection of all the features (for every 

sector) in each filtered image. This feature captures both the global pattern of ridges and 

valleys and the local characteristics. A feature vector is composed of an ordered 
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enumeration of the features extracted from the (local) information contained in each sub 

image (sector) specified by the tessellation. Thus, the feature elements capture the local 

information and the ordered enumeration of the tessellation captures the invariant global 

relationships among the local patterns [7].  

1.5.4 Filter-based feature extraction  

The method establishes many frames of reference based upon several landmark structures 

in a fingerprint to obtain multiple representations. For each reference point on the image, 

a Gabor filter is applied around the reference point. Then a feature vector also called a 

Finger Code is defined by computing the average absolute deviation of individual sectors. 

Fingerprint matching is based on finding the Euclidean distance between the 

corresponding Finger Codes. The method offers robust matching performance. 

Translation is handled by a single reference point location during the feature extraction 

stage [7]. 

1.5.5 Minutiae based fingerprint matching method 

Minutiae based fingerprint matching method is considered the fastest, simplest and most 

robust method available. Minutiae are ridge endings and ridge bifurcations that appear 

within fingerprints. A ridge ending is defined as a point where a ridge ends abruptly and a 

ridge bifurcation is defined as the point where a ridge forks or diverges into branch 

ridges. A sample fingerprint with minutiae points marked is shown in Figure 1.3.  



8 

 

 

Figure 1.3: Minutiae points of sample fingerprint [8] 

A few issues need to be considered while using this method for fingerprint matching. 

First, the skin elasticity; two corresponding minutiae may not be in the same place in two 

sets. One must find some sort of common reference point for two set of fingerprints. 

Also, false minutiae points can be introduced during the minutiae extraction and true 

minutiae might not be introduced at all. The method also needs to address rotation of 

fingerprint images.          

 Though the method faces issues with the poor quality images where minutiae 

cannot be extracted well it is widely used technique for fingerprint matching due to its 

simplicity and efficiency.  We have incorporated this technique for fingerprint matching. 

Our thesis provides a method to unwrap the 3D fingerprint and convert into a 2D image 

which is then compared with the other fingerprint image using this technique [3]. 
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1.6 Thesis Contributions 

Offline and live scan techniques of fingerprint acquisition are contact based which has 

several disadvantages. These techniques lead to deformation of fingerprint features and 

have low capture area. They produce poor quality images and also have issues because of 

improper skin conditions and worn ridges. Also, the process is very slow, not user 

friendly and requires the supervision of a technician to capture the fingerprint images. To 

address these issues, there is an increase demand for non-contact based fingerprint 

acquisition technique. For example, Flashscan3D produces a device that generates 3D 

representation of a fingerprint. The scanners are high speed and very accurate in 

acquiring the fingerprint [2]. However, 3D touchless fingerprints need to be compatible 

with the legacy rolled images used in automated fingerprint identification systems 

(AFIS).           

 In this thesis, we have addressed the above challenges and developed an 

algorithm to achieve interoperability between 3D touchless and 2D legacy rolled 

fingerprints. The algorithm based on parametric unwrapping is developed to simulate a 

virtual rolling process to unfold 3D touchless fingerprints as 2D rolled images. Methods 

to evaluate and enhance the image quality of touchless fingerprints are also proposed. The 

resulting touchless fingerprints are “rolled-equivalent” and quite compatible with legacy 

rolled fingerprints. 
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CHAPTER 2.  BACKGROUND AND RELATED WORK 

2.1 3D Fingerprint Acquisition 

The most recent technology for fingerprint acquisition is 3-D live scan, uses more than 

one camera that surround the finger for acquisition of a 3-D fingerprint. This new 

technology addresses the problems with the touch-based technology, which were 

introduced due to the contact between a finger and the surface.    

Multi-view scanning 

 

Figure 2.1: Fingerprint acquisition using a set of cameras surrounding the finger [11] 

 

Figure 2.2: Fingerprint acquisition obtained by combining a single line-scan camera and 

two side mirrors [11] 
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Multi-view scans use views from several cameras (Figure 2.1), or views projected onto a 

single image plane using mirrors (Figure 2.2). For each acquired image from camera, a 

silhouette is obtained.  This silhouette is then combined to form a 3D shape for the finger 

also called as shape-from-silhouette technique. The drawback of this technique is even 

though the shape of fingerprint is captured, detailed ridge information is lost in the 

process. If this information is used for unwrapping, a lot of deformation is added which is 

difficult to control. The obtained prints are also affected by surface color, surface 

reflectance, and geometric factors.   

Structured light illumination scanning 

 The other finger scanning system is developed by Flashscan3D and the University 

of Kentucky which are based on Structured light illumination (SLI). The Flashscan 

device uses multi-pattern SLI (shown in Figure 2.3) and has the advantage of being low 

cost, having fast data acquisition and processing, and achieving high accuracy with dense 

surface reconstructions [10]. This system uses multiple, high-resolution, commodity 

digital cameras and utilizes SLI for acquiring 3-D scans of the fingers. These scanners 

enable to capture of entire 3D fingerprint (full nail-to-nail) and provides usable 

fingerprint area. I have used a Flashscan fingerprint dataset as the basis of this work, 

though the work could apply as well to other 3D fingerprint scanning technologies. 
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Figure 2.3: Non-contact 3-D fingerprint acquisition using SLI technique [12] 

2.2 Unwrapping 

Different methods have been studied to achieve interoperability between the 3D 

fingerprint scan and a 2D fingerprint image. Minutiae features need to be extracted. 

Shafaei and Yongchang’s method initially unwraps the 3D fingerprint to 2D and then 

extracts the minutiae features from the 2D fingerprint image [10, 12], but in these 

methods important ridge and valley features are lost due to deformation involved in 

converting 3D to 2D. Our method extracts ridges and valleys in the 3D fingerprint scan 

itself and then it is converted to 2D. Many of the important ridge and valley information 

is preserved even after converting to 2D.        

  In general, there are two main types of unwrapping methods, parametric 

and non-parametric. 

1. Parametric unwrapping  
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This method involves projecting 3D points onto a defined parametric model, for example, 

a cylinder or cone [11]. Once projected the 3D model is then unwrapped using simple 

transformations. The chosen parametric model needs to fit closely to the shape of a 3D 

shape that needs to unwrapped to avoid large distortions after the unwrap. 

2. Non-parametric unwrapping  

This method involves mapping 3D points onto 2D while preserving the relative distances 

or angular relations. This method is usually used for irregular shape models. As 

compared to the parametric approach, non-parametric methods are more computationally 

intensive [12]. 

2.2.1 Parametric Approach 

Cylinder Parametric Approach 

Human fingers vary in size and shape. The thumb is usually wider than the rest of the 

fingers. The middle finger is often more cylindrical than the thumb. But the fingers 

closely resemble a cylinder in shape. While applying the parametric approach on a 3D 

fingerprint this approach considers cylinder as a parametric model. Chen’s Cylinder 

based unwrapping method involves projecting 3D fingerprint points onto a cylinder and 

then flattening the cylinder to obtain the 2D fingerprint [11].     

 Mathematically, let the origin be positioned at the bottom of the finger, centered 

at the principal axis of the finger. Let T be a point on the surface of the 3D finger,  
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          T = (x, y, z) 
T           

(2.1) 

This 3D point is then projected (transformed) onto the cylindrical surface to obtain the 

corresponding 2D coordinates 

S = (Θ, z), where Θ = tan
-1

(x / y)        (2.2) 

 

Figure 2.4: Parametric unwrapping using a cylindrical model (top-down view) [11]. 

Point (x, y, z) on the 3D finger is projected to (Θ, z) on the 2D plane. A top-down view of 

the unwrapping model is shown in Figure 2.4, where the axis points outward from the 

origin. The method involves constructing a triangular mesh over the 3D points. Each 

vertex on the triangle is then projected onto a cylinder. The points in between vertices of 

the triangle are mapped using linear interpolation.     

 This approach of unwrapping has the advantage of being simple and 
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straightforward, but it does possess some disadvantages. It does not preserve the relative 

distance between the points on the finger surface. This can be illustrated in the Figure 2.5. 

 

Figure 2.5: Fingerprint unwrapping using the cylindrical model. Relative distances 

between points on the finger surface are not preserved after the unwrapping procedure 

[11] 

The surface distance d (A, B) between points A and B at the fingertip is much smaller 

than the distance d (C, D) between points C and D near the middle of the finger. 

However, since they both correspond to the same angle Θ, the unwrapped distances d (A′, 

B′) and (C′, D′) become equal. In general, each cross section of the finger, big or small, is 

projected into a fixed-length row in the projected 2D image. As a result, horizontal 

distortion is introduced as the fingerprint will be noticeably stretched, especially at the 
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fingertip.          

 The distance between two feature points needs to be preserved and is very 

important for matching two fingerprint images. As the cylinder parametric approach 

involves considerable stretch this distance is not maintained. 

Fit Sphere Approach 

Wang’s method introduces a fit-sphere algorithm that uses a sphere as a parametric 

model [12]. The method fits a sphere on 3D point cloud fingerprint data points by 

mapping 3D points on fingerprint to 3D points on sphere. The distortion caused by 

unwrapping is minimized by controlling the local distance between neighboring points 

which is achieved by creating non-linear maps. 

2.2.2 Non-parametric Approach 

Due to the stretch involved in parametric approach research has been done on 

unwrapping fingerprint using non-parametric method. Non-parametric approach aims at 

unwrapping the fingerprint locally and preserving the geodesic distance between two 

points on 3D surface [11]. 

Equidistant Unwrapping 

Chen has proposed a non-parametric unwrapping method called ‘equidistant unwrapping’ 

which involves dividing the 3D fingerprint into multiple thin parallel slices, orthogonal to 
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principal axis of the finger as shown in Figure 2.6 [11]. Each slice is then unfolded 

without stretching. Each slice is kept thin to ensure smooth unwrapping of the fingerprint.  

 

Figure 2.6: The 3D representation of finger. Vertices of the triangular mesh are naturally 

divided into slices [11]. 

In the non-parametric approach both inter-point surface distances and scale are preserved 

to a maximum degree.  

Unwrapping using Springs Algorithm 

Fatehpuria et al. proposed a ‘Springs Algorithm’ to unwrap the 3D fingerprint to 2D [13]. 

The algorithm allocates a certain mass to each the point of 3D fingerprint. It assumes a 

virtual spring between a point and its neighbors on the 3D surface. When unwrapping is 

added, the algorithm computes the displacement of neighboring points by minimizing the 

spring energy and bringing springs to their relaxed length by compressing or stretching 



18 

 

them. The algorithm follows an iterative approach and at each iteration the displacement 

of points is computed over all the 3D fingerprint points. Hence the algorithm is 

computationally intensive compared to other methods. 

2.3 Comparison with our approach  

The parametric and non-parametric approaches studied and developed to unwrap a 3D 

fingerprint face some challenges. Cylindrical, fit sphere or other parametric unwrapping 

methods have a problem of adding distortion to the unwrapped image. The image is 

stretched and the relative distance between extracted fingerprint features is also not 

maintained which is very important for fingerprint matching using a minutiae based 

method. Non-parametric methods are based on iteration and are computationally 

intensive which inculcate a performance problem in real-time applications. Our approach 

combines the simplicity and efficiency of the parametric approach and, at the same time, 

reduces the deformation added to an unwrapped fingerprint by not considering a defined 

model, example, cylinder or sphere.        

 Our approach computes a convex hull over the 3D fingerprint and uses it as a 

parametric model and applies texture unwrapping to unwrap the 3D fingerprint. We have 

used texture unwrapping via multi-dimensional scaling technique proposed by Zigelman 

to preserve the relative distance between extracted features [14]. As the parametric 

approaches which are focused on preserving angles to avoid deformation while 

unwrapping, our approach incorporates the Multi-Dimensional Scaling algorithm and 

preserves the geodesic distance between fingerprint features. The output image obtained 
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has minimal stretch deformation and hence obtains higher accuracy in matching over 

other proposed algorithms. 
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CHAPTER 3.  UNWRAPPING ALGORITHM 

Our unwrapping algorithm is divided into six major steps (shown in Figure 3.1). The first 

step is fingerprint data acquisition where we scan the finger to get a point cloud dataset. 

From second step we start processing the point cloud dataset to extract fingerprint 

features and eventually unwrap the 3D fingerprint while preserving the features extracted. 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Unwrapping Algorithm 

 

3.1 Fingerprint Data Acquisition 

Fingerprints acquired using traditional acquisition methods face many drawbacks due to 

direct contact between sensor and skin: The fingerprint image is distorted due to 

Fingerprint data acquisition 

Normal Estimation 

Curvature Estimation 

Convex Hull Construction 

Texture Unwrapping 

Feature Extraction 
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illumination, environmental factors and skin conditions, partial and degraded images due 

to uneven finger pressure on the scanner.      

 The multi-camera touchless scanners provide a 3D representation of the 

fingerprint. Due to the lack of contact between sensor and skin, the fingerprint image 

captured is of good quality and is less deformed. This scanner uses the shape-from-

silhouette technique, due to which important ridge information is not captured.   

 We have addressed this problem by using data from FlashScan3D LLC. The 

scanners use multiple, high-resolution, commodity digital cameras and utilize structured 

light illumination (SLI) as the means of acquiring 3-D scans of the fingers. SLI are low 

cost and allows fast data acquisition and processing.   

3.2 Normal Estimation 

The 3D point cloud dataset obtained from the scanner consists of uneven surfaces 

consisting of ridges and valleys. To determine the orientation of the 3D surface we need 

to find the surface normal at each point. Given a set of point samples on the real surface, 

the surface normal is given by a vector perpendicular to the surface in that point. There 

are two possibilities to compute this vector: 

1. Create a mesh over the 3D point cloud dataset using the surface meshing 

techniques, and compute the surface normal from the mesh. 

2. Obtain the surface normal directly from the point cloud dataset using a least 

square plane fitting estimation algorithm. 
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In computer graphics, 3D objects are usually represented by triangular meshes which 

involve heavy processing for generation of mesh. We used a least square fitting 

estimation algorithm instead for normal estimation which reduces the time and storage 

complexity. The normal can then be computed by analysis of eigenvectors and 

eigenvalues of a covariance matrix created from the approximate nearest neighbors of a 

query point.  

Approximate Nearest Neighbors 

For each point , in 3D space, we compute its k nearest neighbors by orthogonal 

decomposition of the space. The nearest neighbors are efficiently searched in huge point 

cloud dataset by constructing a k-d tree data structure [24]. Euclidean distance is used as 

the distance metric.         

 The Euclidean distance dist (p, q) between two points’ p and q is defined as 

  

    (3.1)  

  

Once the k-d tree is constructed over the dataset, we can find the exact k nearest 

neighbors for a point by searching for k closer points to the search point, but this process 

is time consuming. So, for further optimization, we set an upper bound on the number of 

points to be examined in the tree to get an approximate nearest neighbors. The advantage 

is that the search is stopped when k points are obtained in the upper bound. The 
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neighbors obtained may not be the exact nearest neighbors but they are near enough for 

effective covariance matrix computation and result in improved speed and memory 

saving. The approach provides a linear preprocessing time while taking a storage space 

which is moderately larger than the underlying dataset [20, 24].  

Covariance Matrix 

For each point , a covariance matrix  is then computed as: 

 

    (3.2)    

where k is the number of point neighbors considered in the neighborhood of .  

represents the 3D centroid of the nearest neighbors,  is the 
th

 eigenvalue of the 

covariance matrix, and  the 
th

 eigenvector. The eigenvalue corresponding to the 

smallest eigenvalue of the covariance matrix provides the normal at the point.  

 The value of k is decided based on the density of the point cloud data. The 

number should be large enough to correctly define a surface and small enough to exclude 

any noise. In general, the number of neighbors should result in a region larger than the 

noise scale but smaller than the ridge or valley scale. We can evaluate a particular choice 

for k by looking at the variance in the dot product between nearby normals. If k is too 

small, this measure will be dominated by surface noise. At the appropriate k we capture 

the smooth surface of each ridge or valley, leading to a low variance. When k is just a 

little too large, it beats with the ridge/valley undulation, so increases again. At very large 
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k, the variance will drop again as we capture the total surface orientation of the finger. To 

understand the normal variation with values of k we computed values of normal variation 

for different values of k and plotted a graph (Figure. 3.2). 

 

Figure 3.2: Normal Variation for different values of k. 

From the graph we see that the variation of normal with k neighbors in the range of six to 

twelve is minimal. As the number of nearest neighbors used to compute normal increases, 

noise points are included in normal estimation, and from the graph, we observe that the 

normal variation increases gradually. If the number of nearest neighbors chosen is very 

small, we don’t have enough points to define correct normal, and normal variation also 

increases as shown in graph. Based on the point cloud density of our input dataset and 

from the graph results we found nine neighbors ideal for our computation. This 
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evaluation would need to be repeated for scans with different point density, but will 

remain valid for all scans using the same technology and point density.  

Normal Orientation 

The normals estimated using the least square fitting algorithm do not consider the 

orientation of each surface. To orient all the normals, we choose a viewpoint  below 

the nail of the fingerprint. All the normals are oriented away from the viewpoint by 

satisfying the following condition:  

    (3.3)  

3.3 Curvature Estimation 

The curvature of a surface is a fundamental descriptor for shape analysis. To extract the 

ridges and valleys of 3D fingerprint surface we estimate curvatures at each of the points 

to find if a point is part of ridge or a valley. Our approach of the curvature estimation 

avoids mesh reconstruction and just uses neighbor points and normals to estimate a 

curvature. Principal curvatures and principal directions are estimated through the least 

square fitting of all normal curvatures related to k neighbor points.   

 Principal component analysis of the covariance matrix created from the nearest 

neighbors of a query point gives us three vectors with smallest vector in the direction of 

normal and two vectors tangent to the surface. This marks the local reference axis for a 

surface.  
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Biquadratic fit over the surface is given by the polynomial: 

        z = f(x, y) = ax
2 
+ bxy + cy

2                                                
(3.4) 

where coordinates (x, y) are measured in tangent directions and z is measured along the 

normal direction, a, b and c are the coefficients of the polynomial. We find the 

biquadratic fit for each of the k neighboring points and use a least square method to 

compute the three coefficients.       

The Weingarten matrix can then be constructed as: 

                    W =            (3.5) 

 

This matrix has real eigenvalues, k1 and k2 (principal curvatures) and eigenvectors v1 and 

v2 (principal directions). 

The mean curvature H is then computed as 

    (3.6)  

and Gaussian curvature K is computed as 

    (3.7) 
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3.4 Ridge Estimation 

Once we have the mean and Gaussian curvature of the surface at a point p, we can 

determine the surface types. Figure 3.2 shows the different surface types based on the 

sign on H and K. 

 

Figure 3.3: Eight basic invariant surface types based on Mean and Gaussian curvature. 
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For the values of H < 0 the surface is more convex and for H > 0 the surface is more 

concave [15, 16]. The convex surfaces on the 3D fingerprint surface are identified as 

ridges and concave surfaces are identified as valleys. Minutiae features of the fingerprint 

surface are defined by its ridges. We therefore extract just the ridges of the 3D fingerprint 

surface based on the sign of the mean curvature. Figure 3.3 shows the result obtained 

after extracting ridges and valleys after curvature estimation. Figure 3.4 shows the side 

views of extracted ridges and valleys. 

 

Figure 3.4: Extracted ridges and valleys of 3D finger shape after curvature estimation 

(ridges are shown in blue and valleys are shown in red) 
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Figure 3.5: Side views of 3D finger shape showing extracted ridges and valleys (ridges 

are in blue and valleys in red) 

3.5 Convex Hull Construction 

The cylinder based parametric approach or fit sphere based approach stretch the 

unwrapped output of the 3D fingerprint. These approaches do not preserve the relative 

distance between the minutiae features required for matching algorithms. To preserve the 

distance between the ridges, it is important to minimize distortion. The convex hull gives 

an overall estimate of the 3D finger shape. Using this estimate we apply texture 

unwrapping to unwrap the 3D fingerprint. The convex hull is the convex model which 

best fits the 3D fingerprint surface.         

  The convex hull of a set of points is the smallest convex set that contains 

the points [19]. The convex hull of X can be characterized as the set of all of the convex 

combinations of finite subsets of points from X: that is, the set of points of the form 

               (3.8)  
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where n is an arbitrary natural number, the numbers tj are non-negative and sum to 1, and 

the points xj are in X [18].       

 Different algorithms are available for creating a convex hull. The Quickhull 

algorithm is the ideal choice for 3D fingerprint convex hull creation. The Quickhull 

algorithm for creating a convex hull consumes less space, includes non-extreme points 

and is comparatively faster than other algorithms for creating a convex hull [19]. Figure 

3.5 shows the convex hull obtained after applying the Quickhull algorithm to 3D 

fingerprint. 

 

Figure 3.6: Convex hull of 3D fingerprint 
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3.6 Texture Unwrapping 

The convex hull provides the estimate of 3D fingerprint surface and also the connectivity 

between the extracted ridges. The next step is unwrapping the mesh obtained by the 

convex hull. Various parameterization techniques are proposed for unwrapping a mesh 

with minimal distortion. Based on the distortion they preserve these algorithms are 

mainly classified as: 

1. Angle preserving  

2. Area preserving  

3. Distance preserving  

Angle preserving and area preserving mesh parameterization techniques minimize 

angular and area distortion respectively but result in heavy distortion in distance. But, 

minutiae based 2D fingerprint matching algorithms depends on minutiae distance for 

matching fingerprints. So, we have incorporated a distance preserving mesh 

parameterization technique to preserve relative distance between minutiae features. 

 Zigelman proposed a distance preserving technique for unwrapping a 3D model 

[14]. The technique uses a fast marching method and multidimensional scaling for texture 

mapping. MDS (multi-dimensional scaling) is a set of mathematical techniques which 

allow finding Geometric structure of the 3D surface. MDS computes geodesic distances 

between every two points on the surface which is later used for flattening the 3D surface. 

For efficiency, fast marching method is used to find the geodesic distance. The algorithm 
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then aims to preserve these computed geodesic distances while flattening the 3D surface. 

The geodesic distance M between vertices of the mesh is computed as: 

    (3.9) 

The implementation of the algorithm is explained in greater detail in Zigelman [14]. 

Using the algorithm, we obtain an unwrapped 2D fingerprint with minimal stretch. The 

extracted ridges are mapped to the 2D surface to get the 2D map. Figure 3.6 shows the 

unwrapped fingerprint obtained by texture unwrapping. We observe that the algorithm 

successfully minimizes the distance distortion with more accuracy in distance between 

extracted features. 

 2dist ( , )
n n

M


 i jx x
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Figure 3.7: Unwrapped 2D fingerprint obtained after applying texture unwrapping 

technique (extracted ridges are shown in black) 
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CHAPTER 4.  RESULTS 

We applied our approach to a single scanned 3D fingerprint data obtained from 

FlashScan3D. The data consisted of approximately 220,000 points. Figure 4.1 shows the 

3D fingerprint shape and the unwrapped image obtained after applying the unwrapping 

algorithm. 

                  

Figure 4.1 a) 3D fingerprint b) unwrapped 2D fingerprint (ridges in black) 

As we are using a sample dataset, we do not have the corresponding 2D legacy 

fingerprint, and consequently are not able to make direct 3D to legacy print comparisons. 

Instead, we evaluate our algorithm results through comparison to the simpler 3D 

cylindrical unwrapping algorithm and by analyzing the stretch introduced in distances 

between minutiae.          

 The algorithm aims at reducing the distortion involved in the unwrapping process 

while preserving the relative distance between minutiae points. The stretch involved 
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during the unwrapping process can be computed by the difference between 3D fingerprint 

data points and the corresponding 2D points of the unwrapped fingerprint surface. We 

compute a color map showing the stretch.  

    

Figure 4.2 Color map showing the stretch involved after unwrap to 2D 

From the color map shown in Figure 4.2, we observe that the color gradually changes 

from lighter to dark from center towards the end. This signifies that the stretch involved 

at the center of the fingerprint surface is minimal and slowly increases towards the sides. 

The distortion around the central region of the fingerprint is less and hence the relative 

distance between minutiae points is preserved. From the color map we can deduce that 

our algorithm preserves relative distance and lessens the distortion in  the unwrapping 

process.  
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Figure 4.3 a) Original 3D fingerprint surface b) unwrapped 2D using cylindrical 

unwrapping (ridges in black) c) unwrapped 2D using our approach (ridges in black) 

To compare our results, we computed a cylindrical unwrap of the 3D fingerprint surface. 

From the Figure 4.3, we can observe that the fingerprint is considerably stretched in the 

cylindrical unwrapping distorting the minutiae distance. We obtain a color map shown in 

Figure 4.4 showing the stretch difference between cylindrical and our approach. 

                              

Figure 4.4: Color map showing the stretch difference between cylindrical approach and 

our approach 
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The lighter color signifies less stretch and dark signifies more stretch. From the color 

map, we observe that the 3D fingerprint while unwrapping is greatly stretched towards 

the end. Even in the mid region the unwrapping adds some stretch which distorts the 

relative distance between minutiae. From the results we observe that our approach 

preserves the stretch involved in the 3D fingerprint unwrapping to a great scale compared 

to the cylindrical approach.         

 To effectively compute the distance distortion, we extracted a few minutiae points 

as shown in Figure 4.5 and plotted a table and graph showing the stretch involved during 

unwrapping using the cylindrical and our approach.  

 

Figure 4.5: Sample minutiae and distances considered for comparison 
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Distances 3D Cylindrical Our approach 

d1 4.5476 7.3189 5.2744 

d2 3.4293 4.0333 3.8916 

d3 1.9526 2.1757 1.8947 

d4 2.3347 3.0401 2.4000 

 

Table 4.1 Distance between minutiae points (measured in Euclidean) in original 3D 

surface, unwrapped surface with cylindrical approach and our approach 

 

Figure 4.6: Stretch between minutiae points (measured in Euclidean) after unwrapping 

the fingerprint surface using cylindrical approach and our approach. 
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In the 2D fingerprint acquisition process, the center region tightly touches the sensor and 

so has no or very little distortion, whereas due to elasticity of the skin and application of 

force while pressing the finger, the finger surface is stretched towards the sides and 

corners [9]. From Table 4.1 and Figure 4.6, we observe that the minutiae distance d3 and 

d4 which signifies the stretch at the center of the fingerprint surface is significantly less 

with minimal distortion, whereas these distances are stretched in the cylindrical approach. 

The distance d1 is significantly larger in cylindrical approach compared to our approach, 

which imply that the cylindrical approach has large stretch towards the corners and sides. 

Our approach has preserved this stretch to a larger scale and hence is less error prone 

during the fingerprint matching process. From the results obtained, we observe that our 

algorithm is successful in preserving the relative distance between minutiae and hence is 

very effective for unwrapping a 3D fingerprint surface to its 2D equivalent.  

 The relative error E in unwrapped distance can then be computed as: 

              (4.1) 

where Pm is the measured unwrapped distance and Pt is the true 3D fingerprint distance. 

The relative error also signifies the amount of overall stretch involved during the 

unwrapping process. For the four minutiae distances considered in Figure 4.5 the relative 

error computed is 8.72% for unwrapping 3D fingerprint using our method and 30.04% 

using cylindrical unwrapping method. To have a better estimate of the relative error, we 

plotted a grid as shown in Figure 4.7, to extract 2209 points of the fingerprint surface. 
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Figure 4.7: Grid created over fingerprint surface to extract fingerprint points  

The relative error obtained over these 2209 points is 11.55% using our approach and is 

29.89% using cylindrical approach. Comparing the relative error values, we can identify 

that our algorithm have less relative error compared to cylindrical approach  

 The algorithm takes 8.2743 sec over Intel Core 2 Duo 2.13 GHz processor to 

compute the 2D unwrapped image from the 3D scan obtained. The algorithm is part of 

initial processing of the fingerprint. Once we have the 2D unwrapped fingerprint, the real 

time 2D fingerprint matching algorithms will be responsible for identification.  

 



41 

 

CHAPTER 5.  CONCLUSION AND FUTURE WORK 

In this paper, we have proposed a parametric algorithm based on curvature analysis of the 

3D surface to unwrap the 3D fingerprint. We initially extract the ridges and valleys of the 

3D fingerprint using the curvature analysis and then convert the 3D surface to the 2D 

unrolled surface.         

 We compute principal curvatures from the 3D point cloud dataset to identify the 

ridges and valleys of the fingerprint. Once features are identified we used the parametric 

approach to unwrap the fingerprint. This approach projects a 3D fingerprint to the 

parametric model and then unwraps the model. A convex hull is used as a parametric 

model and is created on the 3D fingerprint surface to get the best fit plane for texture 

unwrapping. Results shows that the unwrapped 2D image obtained has minimal distortion 

and preserves relative distance between minutiae points which is important for the 

fingerprint matching algorithms.        

  In our future work we want to compare our results with actual 2D scans of 

the same person to validate the accuracy of the method. We also want to utilize other 

methods of curvature analysis of 3D surface to obtain even more accurate results.  

 

 

 



42 

 

REFERENCES 

[1] D. Sarat, J. Anil, Fingerprint Based Recognition, Technometrics, Volume 49, 

Number 3, August 2007, pp.  262-276. 

[2] Y. Chen, Extended Feature Set and Touchless Imaging for Fingerprint Matching, 

Dissertation, PhD, Michigan State University, 2009. pp. 27-29. 

[3] H. Lin, W. Yifei, and J. Anil, Fingerprint image enhancement: Algorithm and 

Performance Algorithm. IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 20, no. 8, May 1998. pp. 777–789. 

[4] R. Rowe, S. Corcoran, K. Nixon, and R. Ostrom, Multispectral Imaging for 

Biometrics. In Proc. SPIE Conference on Spectral Imaging: Instrumentation, 

Applications, and Analysis, volume 5694, March 2005, pp. 90–99. 

[5] Z. Shi and V. Govindaraju, A Chaincode Based Scheme for Fingerprint Feature 

Extraction. Pattern Recog. Lett. 27, 2006, pp. 462-468. 

[6] Y. Hao, T. Tieniu, W. Yunhong, Fingerprint Matching Based on Error Propagation, 

International Conference on Image Processing, Sep. 2002, pp. 273-276. 

[7] J. Anil, S. Prabhakar, L. Hong, and S. Pankanti, FingerCode: A Filterbank for 

Fingerprint Representation and Matching, Proc. IEEE Conf. on Computer Vision 

and Pattern Recognition, vol. 2, 1999, pp. 187-193. 

[8] L. Xiping, T. Jie and W. Yan, A Minutia Matching Algorithm in Fingerprint 

Verification, vol 4, 2000, pp. 833-836. 

[9] K. Rohr, M. Fornefett, and H. S. Stiehl, Approximating Thin-Plate Splines for 

Elastic Registration: Integration of Landmark Errors and Orientation Attributes. In 

Proceedings of the 16th International Conference on Information Processing in 

Medical Imaging, vol 1613, 1999, pp. 252-265. 



43 

 

[10] S. Shafaei, T. Inanc, and L. G. Hassebrook, A New Approach to Unwrap a 3D 

Fingerprint to a 2D Rolled Equivalent Fingerprint, IEEE Int. Conf. Biometrics 

Theory, Application and Systems,  2009. 

[11] Y. Chen, G. Parziale, E. Diaz-Santana, and J. Anil, 3D Touchless Fngerprints: 

Compatibility with Legacy Rolled Images, Biometr. Consort. Conf. Biometr. 

Symp., 2006, pp. 1–6. 

[12] Yongchang Wang, Daniel L. Lau and Laurence G. Hassebrook. Fit-sphere 

Unwrapping and Performance Analysis of 3D Fingerprints, Applied Optics, Vol. 

49, Issue 4, Feb. 2010, pp. 592-600, 

[13] A. Fatehpuria, D. L. Lau and L. G. Hassebrook, Acquiring a 2-D Rolled Equivalent 

Fingerprint Image from a Non-Contact 3-D Finger Scan, Biometric Technology for 

Human Identification, Orlando, Florida, vol. 6202, 2006, pp. 62020C-1 to 62020C-

8. 

[14] G. Zigelman, R. Kimmel, and N. Kiryati, Texture Mapping Using Surface 

Flattening via Multi-dimensional Scaling. IEEE Transactions on Visualization and 

Computer Graphics 9, no. 2, 2002, pp. 198-207. 

[15] B. O’Neill. Elementary Differential Geometry. Academic Press, Inc., 1966. 

[16] A. Pressley. Elementary Differential Geometry. Springer-Verlag London, 2001. 

[17] Y. Ohtake, Y. Belyaev and S. Seidel, Ridge-valley Lines on Meshes via Implicit 

Surface Ftting, ACM Transactions on Graphics 23, Aug 2004, pp. 609–612. 

[18] A. Andrew, Another Efficient Algorithm for Convex Hulls in Two 

Dimensions, Information Processing Letters, 9, 1979, pp. 216-219. 

[19] Barber, C.B., D.P.Dobkin, and H.T.Huhdanpaa, The Quickhull Algorithm for 

Convex Hulls, ACM Transactions on Mathematical Software, 22, 1996, pp. 469-

483. 



44 

 

[20] P. Yianilos, Data Structures and Algorithms for Nearest Neighbor Search in 

General Metric Spaces, in Fourth ACM-SIAM Symposium on Discrete Algorithms, 

1993, pp. 311-321. 

[21] D. Boyanapally, Merging of Fingerprint Scans Obtained from Multiple Cameras in 

3D Fingerprint Scanner System, Master Thesis, University of Kentucky, Feb. 2008. 

[22] Y. Wang, L. G. Hassebrook, and D. L. Lau, Data Acquisition and Processing of 3D 

Fingerprints. IEEE Transactions on Information Forensics and Security, 5(4), 2010, 

pp. 750–760. 

[23] C. B. Atkins, J. P. Allebach, and C. A. Bouman, Halftone Postprocessing for 

Improved Rendition of Highlights and Shadows, J. Elec. Imaging 9, 2000, pp. 151–

158. 

[24] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, Fast Approximate 

Nearest-Neighbor Search with k-Nearest Neighbor Graph, 2011, pp. 1312-1317. 

 

 

 

 

 

 

 



45 

 

 


