

APPROVAL SHEET

Title of Thesis: Real-time Soft Shadows on the GPU via Monte Carlo Sampling

Name of Candidate: Aaron Curtis
Master of Science, 2009

Thesis and Abstract Approved:

Dr. Marc Olano

Associate Professor

Department of Computer Science and
Electrical Engineering

Date Approved:

Curriculum Vitae

Name: Aaron Curtis

Permanent Address: 9200 Livery Lane, Apt B; Laurel, MD 20723
Degree and date to be conferred: Master of Science, May 2009
Date of Birth: October 14, 1980

Place of Birth: Baltimore, MD

Secondary Education: Hereford High School, Parkton, MD
Collegiate institutions attended:

University of Maryland Baltimore County, M.S. Computer &ute, 2009

University of Maryland Baltimore County, B.S. Computer Sue, 2006
Major: Computer Science

Minor: Mathematics

University of Maryland Baltimore County, B.S. Mechanicaldineering, 2002
Major: Mechanical Engineering

Professional publications:

Curtis, Aaron and Olano, Marc. 2009. Real-time Soft Shadowshe GPU via
Monte Carlo SamplingHigh Performance Graphicgsubmitted)
[Possible stuff about the High Performance Graphics pdpzgppear)

Professional positions held:

Teaching Assistant. CSEE Department, UMBC. (September 2QIune 2009).

Assistant Software Engineer. RWD Technologies. BaltimdA®. (December
2006 — August 2007).

Intern. RWD Technologies. Baltimore, MD. (September 20@%ugust 2006).

ABSTRACT

Title of Thesis: Real-time Soft Shadows on the GPU via Monte Carlo Sampling
Aaron Curtis, Master of Science, 2009

Thesis directed by: Dr. Marc Olano, Associate Professor
Department of Computer Science and
Electrical Engineering

Realistic shadows present a difficult problem in real-tieredering. While techniques
for rendering hard edged shadows from point light sourcesaell established, attempts
to incorporate soft shadows typically suffer from inacciga or poor performance.

Our algorithm makes use of recent advances in GPU randaomnzatperform Monte
Carlo sampling of points on an area light source. Rays ane titaeed to the sampled
points, using the shadow map as a discretized representdtoxcluders in the scene. The
accuracy of this method can be improved through the use dipteushadow maps, which
together are able to better approximate the scene geometry.

As with conventional shadow mapping, our method is perfarergirely on the GPU,
does not require any precomputation, and can handle fultyalyc scenes with arbitrary
geometric complexity. The quality of the generated shadswsmparable to that of offline
rendering algorithms such as ray tracing, while perfornreaemains real-time, on par with

existing techniques.

Real-time Soft Shadows on the GPU

via Monte Carlo Sampling

by
Aaron Curtis

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Master of Science
2009

(© Copyright Aaron Curtis 2009

TABLE OF CONTENTS

LISTOFFIGURES iv
LISTOFTABLES Vil
Chapter 1 INTRODUCTION 1
Chapter 2 RELATED WORK AND BACKGROUND MATERIAL 3
2.1 Realtime Soft Shadowing 3
2.2 Height Field Intersection 6
2.3 Reviewof ShadowMapping
2.4 GraphicsHardware
Chapter 3 APPROACH 12
3.1 MonteCarloSampling
3.2 Thelnadequacy of a Single DepthMap 18
3.3 Ray Tracing with Two Depth Layers 19
3.4 Additional Depth Layers 21
3.5 HierarchicalSearch 23
3.6 Penumbra Classification 25
3.7 Other Acceleration Techniques 26

16

Chapter 4 RESULTS 30

4.1 Limitations 31
4.2 Performance s 32
4.3 Impactofthe MD5Hash, 35
Chapter 5 CONCLUSION 40
5.1 Future Work e 40
Appendix A REDUCED MD5 HASH IMPLEMENTATION 42
REFERENCES 46

11

2.1

2.2

3.1

3.2

3.3

3.4

LIST OF FIGURES

Sample results for our shadowing technique. Scenesnerdered at 20

and 30 frames per second, using a 512x512 texel shadow mareenchys

perfragment.

The graphics pipeline. Vertex data streams in from thel @Rd is con-
verted to pixels on the screen in a series of stages. On ¢uraedware,

each of the programmable stages can access texture memtimy GirU.

The GeForce 8800 architecture. Source: Nvidia. Theexegeometry,

and fragment stages are handled by unified stream processars

An area light source and corresponding shadows. In ogoroaph, the
depth map is rendered from a projection point placed betiadénter of

thelight.

Progression from probabilistic shadowing to true sbhédows. Images
(b)—(d) show the effect of tracing multiple rays per fragtnehile (e) adds

a filtering pass to (d); (a) and (e) show the same scene.

Effects of different sampling patterns. Images weraleead using two

depth layers and hierarchical search, with nine rays pgnfemt.

Geometry reconstruction using two depth layers. Plessitcluders are
bounded between the near layer (red) and the far layer (dhis)possible
to use a third depth layer (not shown) to verify the existesfceccluders

inside the bounded volume.

10

15

3.5

3.6

3.7

3.8

3.9

4.1

4.2

Self Shadowing. A third depth layer (b) allows for cotreaftening of the
shadow cast by the dragon’s horn. Images were generategldisatys per

fragment; (a) uses hierarchical search while (b) usestibigary.

A four-level N-buffer. A texel at level stores the maximum luminosity
of the surrounding texels in a neighborhood of sk?eat level 0. The
texels highlighted in black have neighborhoods highlighitered, and were
calculated by taking the maximum of the four texels from thevppus

level, at the locations marked withred Xs.

Determination of the portion of the depth map contaimatgntial occlud-
ers. All possible rays from a point in the scene intersectaalat the
minimum occluder depth. The intersection region projeat® @ subset of

thedepthmap..

Classification of fragments. Green areas are potgnitigienumbra, while

full calculations are only performed in blueareas.

Ray shortening. Ray endpoints are modified based on thedisdor pos-

sible occluder depths, resulting in a smaller affectedaregif the depth

Shadowing of the dragon model. Labels show the searehayg number

of rays per fragment. Shadow map size is 512x512.

Shadowing of an elongated cube, a difficult case for maftyshadowing
algorithms. Labels show the search type and number of raysgmgnent.
Shadow map size is 512x512.o

24

27

37

4.3

4.4

Shadow map resolution scaling for hierarchical seaiiti deferred shad-
ing enabled. Labels show the number of rays per fragment &ichvecene

was used. s 39

Screen resolution scaling for hierarchical search détfierred shading en-

abled. Labels show the number of rays per fragment and wiietheswas

Vi

4.1

4.2

4.3

4.4

LIST OF TABLES

Performance scaling with shadow map resolution for thgah scene (Fig-

ure 4.1). Screen resolution is 1024x768. Values are in fsgmee second.

Performance scaling with shadow map resolution for thegated cube

scene (Figure 4.2). Screen resolution is 1024x768. Valum@arames

persecond. e

Performance scaling with screen resolution for the ahmagcene (Fig-

ure 4.1). Shadow map resolution is 512x512. Values are mdgper

second. s

Performance scaling with screen resolution for the sakae (Figure 4.2).

Shadow map resolution is 512x512. Values are in frames gense

Vil

33

34

Chapter 1

INTRODUCTION

Shadows are an essential component of computer-genensages, allowing for eas-
ier recognition of spatial relationships as well as offgraesthetic appeal and increased
realism. However, real-time rendering has until recenterb limited to hard shadows,
based on the assumption that light sources are single pdmt®ality, light sources oc-
cupy an area in space, leading to soft shadows with smoatsiti@ns between fully lit and
fully shadowed points. Rendering such regions of penundaraires the calculation of the
fraction of light received by each point in the scene.

Shadow mapping (Williams 1978) has become the de facto atdrfdr rendering
shadows in real-time applications, given its relative diaify and its ability to scale well
with increasing scene complexity. Additionally, it reqggrno precomputation and can
handle fully dynamic scenes as well as any type of rastdezggometry. We therefore
introduce a new technique that extends shadow mapping tidnarea light sources, while
preserving most of the algorithm’s advantages.

A recent class of soft shadow algorithms (Guennebaud, Baih Paulin 2006;
Schwarz & Stamminger 2007; Attgt al. 2006) has been developed based on the as-
sumption that the depth map employed in traditional shad@appimg can be used as a

discretized representation of all the potential occludiera scene. We make this same

2
assumption, and use the depth map to trace rays throughehe,dcom potentially shad-
owed points to points on the surface of an area light. To pipmsstimate the fraction
of illumination received by each point, we rely on recentathes in GPU randomization
(Tzeng & Wei 2008) to perform Monte Carlo sampling of pointstbe surface of the light,
then combine the results of several samples.

The use of a depth map as a representation of the scene ggmaretiead to innac-
curate shadows in the final rendering. The depth map, beimgalimensional array of
depth values, is unable to represent overlapping objedtsdistinguish between thin, pla-
nar objects and ones that extend deep into the scene. Wéotteesbow how our method
can make use of multiple depth maps to improve the shadovitgual

The primary benefit of our technique is the creation of phaliaccurate soft shad-
ows, resulting in images with a high visual quality. Figurgé 4hows some sample results.

Performance is comparable to existing state of the art éhgos.

FIG. 1.1. Sample results for our shadowing technique. Scenesnerdered at 20 and 30
frames per second, using a 512x512 texel shadow map andays@er fragment.

Chapter 2

RELATED WORK AND BACKGROUND MATERIAL

Simple and effective methods for handling area light sait@ae long existed in of-
fline rendering. We refer the reader to the survey by Woo €1880) for an exhaustive list.
Ray tracing in particular offers an elegant solution to slvageneration; Cook et al. (1984)
describe modifications to the basic raytracing algorithat tilow for “fuzzy” effects, of
which soft shadows are one of the simplest. Similarly, pedhihg as described by Ka-
jiya (1986) allows for soft shadowing by replacing ray trags branching ray tree with a
single probabilistically determined path. At its heartr awork relies on these same basic

concepts, stochastically tracing rays through the scedetermine light source visibility.

2.1 Real-time Soft Shadowing

A more recent survey (Hasenfragz al. 2003) catalogs many of the earliest attempts
to render soft shadows in real time, most of which build ugenttvo major real-time hard
shadowing techniques—shadow mapping (Williams 1978) dratlev volumes (Crow
1977). The latter was most notably extended with penumbdge® (Akenine-Moller &
Assarsson 2002), which add additional geometric prinsti@esilhouette edges in object
space. This yields relatively accurate shadows as longjastatilhouettes do not overlap.

Some work has been done to address the problem of overlapss{FBarthe, & Paulin

4
2006), but the method also inherits the general disadvaatafshadow volumes, most
importantly that it scales poorly with scene complexity.

Other methods fare better with respect to scene compléxitygre limited in the types
of scenes they can support, or eschew physical correctndasar of rough approxima-
tions. Several techniques concentrate only on extendingrmbrae out from a traditional
shadow map (Chan & Durand 2003; Wyman & Hansen 2003), whikegenumbrae extend
both inward and outward. Brabec and Seidel (2002) searcladoshmap and modulate
the illumination based on estimated occluder locationgerSmd Sillion (1998) convolve
images of occluders with the light to determine shadowing,tbis is only accurate for
planar objects and requires that occluders and receivedssjmnt. Still other researchers
(Agrawalaet al. 2000; Heidrich, Brabec, & Seidel 2000) rely on renderingyverany
depth maps from multiple points on the surface of a light amehlaining the results, the
overhead of which limits them to static scenes. Interestjng the same work Agrawala
et al. suggest tracing rays through depth maps to samplesiogince visibility, though they
do not present this as a real-time method. Our techniquenigasj but we do not render
multiple depth maps from the surface of the light, as propest from viewpoints so near
to each other can only provide minimal extra informationwhmccluders in the scene.

A more recent class of algorithms generates penumbrae byrguhe shadow map
using a variable-width filter, with the filter width deterneth by the average occluder depth
in the affected region. These algorithms differ primariythe filtering methods they em-
ploy, since conventional filtering cannot be applied to sivadnaps. Percentage closer
soft shadows (Fernando 2005) rely on percentage closemigtéPCF) (Reeves, Salesin,
& Cook 1987); Annen et al. (2008) rely on convolution shadoaps (CSMs) (Annert
al. 2007); and Lauritzen (2007) makes use of variance shadove ifgMs) (Donnelly
& Lauritzen 2006). All three can achieve aesthetically pleg shadows in most scenes,

although they are only physically accurate for planar adets, similarly to Soler and Sil-

5
lion’s (1998) work. These algorithms are also limited by fhet that accurately determin-
ing the average occluder depth can be computationally vepgresive, although Annen et
al. note that this can be more efficiently expressed as a adrvo. Furthermore, all of the
filtering techniques come with certain drawbacks, be it trability to support pre-filtering
in the case of PCF, light leaking in case of VSMs, or high mgnusie with CSMs.

Beginning with the work of Atty et al. (2006) and Guennebatal §2006) (developed
independently), another class of algorithms has been dgedlbased on the assumption
that a depth map can be used to represent occluders in the asenset of micro-patches.
The micro-patches are back-projected into world space aad onto the surface of an
area light in order to measure the fraction of light occlu@tdny point in the scene.
This allows for physically correct shadow calculations|@tg as the depth map is able to
adequately represent all the occluders in the scene. Pnsldan arise in the projection
process when either the patches overlap each other or gapbfiween them, leading
to over-darkening or light leaks. Guennebaud et al. expfieiddress gaps in their algo-
rithm at the expense of more severe over-darkening fromap®r Bitmask soft shadows
(Schwarz & Stamminger 2007) eliminate the problems withriayes, but come with in-
creased computational expense. Performance in genetabaikprojection is relatively
poor, however these methods can make use of mipmap-likéeaatien structures to elim-
inate large regions of potential occluders and achievetiea frame rates.

As with backprojection, we also treat the depth map as aetiged set of occluders,
but we choose to use this idea to cast rays through the depahnsizad. Ray casting in
this manner naturally does not suffer from gaps or overlajscan still benefit from the

same acceleration structures.

2.2 Height Field Intersection

Tracing rays through a depth map (or height field) is not a & and has recently
made appearances in numerous real-time rendering tegmaypiside the realm of shad-
owing, including relief mapping (Policarpo, Oliveira, & @ta 2005), refraction render-
ing (Wyman 2005), and caustics mapping (Shah & Konttiner7208mong others. A full
survey is outside the scope of this paper.

Accurately intersecting a height field is not without itidifilties. The typical method,
as described by Policarpo et al. (2005), uses linear seatbhsame fixed step size, fol-
lowed by binary search when the algorithm suspects the raytwssed a boundary. As
many authors have noted, the linear stage is prone to aiagien the scene contains fine
structures, due to undersampling of the depth map. Cainglatcompletely accurate inter-
section would require taking a sample each time the ray esogsdexel boundary, but this
is impractical with linear search because of the number wipsas that would be required.

In relief mapping, a secondary ray is cast from the intersegboint to determine
shadowing. The shadow ray uses linear search only, as fitlgéngxact intersection point
is unnecessary. In this respect, shadowing is a somewhgueapplication of height field
intersection; in most other domains, the goal is to find arcexaersection point. Conse-
guently, several intersection algorithms have been dpeelavith faster convergence, such
as the secant method used in interval mapping (Risser, ShBhajtanaik 2005) or Shah
and Konttiten’s (2007) method based on Newton-Raphsoatiters. These methods are
inappropriate for our purposes however, as they assumaihatersection always occurs
and that the depth values represent a continuous function.

Other authors suggest the use of pre-computed accelesdtiactures such as cone
step mapping (Dummer 2006) or relaxed cone step mappingcéPod & Oliveira 2007),

but we require that any such structure be possible to conmpue@l-time, since the shadow

7

map must be updated every frame. Pyramidal displacemers (@p Ki, & Lee 2006)
and Maximum mipmaps (Tevs, lhrke, & Seidel 2008) offer sutlapproach, and are both
very similar to the hierarchical shadow maps used by Gueaugtlet al. (2006). These
are constructed similarly to mipmaps, except that valuésarcoarser levels are based on
the maximum values in the finer levels, rather than the aeerbigbuffers (Décoret 2005)
and multi-scale shadow maps (Schwarz & Stamminger 2007¢sept another variant of
the same idea, allowing for better acceleration while basiognewhat more expensive to
generate. Although these can be thought of primarily aslexaten structures, they also
eliminate the aliasing problems associated with linearctea

As previously mentioned, our algorithm can use multipletdepaps to better approx-
imate the scene geometry. Several existing height fielddattion algorithms have been
adapted for use with multiple layers, for similar reasordidarpo and Oliveira (2006) ex-
tend relief mapping to four layers, while Chun et al. (2008gad pyramidal displacement

maps to two.

2.3 Review of Shadow Mapping

Since our method is based on shadow mapping, we presenf adwi@wv of the algo-
rithm. Shadow mapping operates in two passes; in the firsts¢bne is rendered from the
point of view of the light source. Instead of rendering calatlues to the screen, the first
pass stores the depth of each pixel in a buffernj@p). In the second pass, the scene is
rendered normally, from the point of view of the eye. Eaclepig classified as shadowed

or unshadowed based on the following procedure:
e Transform the pixel’'s 3D coordinates from eye-space irgbthspace.

e Look up the depth stored in the first pass, using the lightspaordinates.

8
¢ If the pixel's depth is greater than the stored depth, sorheratbject is occluding

the light’s view of it, so the pixel is shadowed.

2.4 Graphics Hardware

Real-time rendering effectively requires some form of & acceleration; there-
fore, we present a brief overview of modern graphics hardwap begin, any rendering
system requires some method of representing the objects displayed, and while there
are a number of ways to describe objects in three-dimenisspaae, real-time applications
predominantly rely on objects tessellated into meshes kices connected by triangles.
Triangle meshes make efficient use of memory and lead to tvedlasimple display im-
plementation involving matrix operations. Consequerghaphics hardware has evolved
largely around this approach, and modern systems are @péblandling meshes with
hundreds of thousands, or even millions of triangles.

Figure 2.1 shows a traditional graphics pipeline, compadeskveral stages. In the
initial (vertex) stage, vertex data is streamed in from nma@mory, and may include spatial
coordinates, normal vectors, texture coordinates, cotorsther application-specific infor-
mation. Next, in the geometry stage, triangles are assehitden the vertex data. The
following stage, rasterization, converts the trianglesrirthree-dimensional objects into
pixels on the screen. The fragment stage then determinasotbeof each pixel (pixels
in this stage are referred to as fragments, since they doetdully represent what will
appear on the screen; for example, some may be discared dwertapping geometry).
In most cases, the calculations for fragment color are barseadterpolated data from the
vertex stage. The final stage, display, applies blendingpaaahti-aliasing to the fragments
and stores them in memory for display on the screen. It is@dssible for the final stage

to output to a buffer instead, as is the case with the first pesisadow mapping.

A

Vertex GPU

Memory

A 4 A

Geometry |«

A 4

Rasterization

A 4

Fragment |«

Y

Display

Y

FiG. 2.1. The graphics pipeline. Vertex data streams in fronfTaR& and is converted to
pixels on the screen in a series of stages. On current haedeach of the programmable
stages can access texture memory on the GPU.

10

] !—i'
Input Assemblear Setup | Rstr / ZCull
Vix Thread |ssue Geom Thread Issus Pixel Thread Issue

e
o
o
(]
]
o
=]
=
[
k=)
o
£

"—l
E- E-E- M-M- E-
___ ___

FIG. 2.2. The GeForce 8800 architecture. Source: Nvidia. Thexegeometry, and
fragment stages are handled by unified stream processors.

This model achieves good performance through massivelglesal. For example, in
the vertex stage, no vertex depends on any other, so eachenmagdessed independently;
the same is true for triangles in the geometry stage and &atgnn the fragment stage.

Traditional graphics processing units (GPUs) contain isé\vBscrete hardware units
with fixed functionality for each stage. However, more ré€&@RUs contain programmable
stream processotfat are capable of performing the processing for diffes¢ages. While
some fixed functionality remains, current hardware exptsesertex, geometry, and frag-
ment stages to programmers. Figure 2.2 shows a block diagfahe Nvidia GeForce
8800 architecture (NVIDIA 2006), which is the hardware wedifor testing. Each green
block represents a processor; clusters of processors lageided to process sets of ver-
tices, triangles, or fragments as necessary. Other vensiach as ATI, offer comparable
hardware.

Our shadowing technique operates primarily in the fragnséage; consequently we

have implemented it as a fragment program gbadej for the GPU. While early pro-

11
grammable GPUs required that programs be written in asserséleral high-level lan-
guages currently exist that allow access to GPU hardwaith, tive two primary options
being Microsoft's HLSL (part of DirectX) or GLSL, which is pieof the OpenGL standard.
The features of the two differ only very slightly, but we halesen GLSL because of its
portability.

The stream processors are in many ways similar to tradit©R&s, so the high level
shading languages were modeled on the C family of languaggs@pport most of the
familiar control structures. Key differences include aufson four-component vector data
types, a lack of support for pointers, and specialized usitons for accessing texture
memory. Support for integer data types has only recentlpinecavailable, and we make

use of it in our implementation.

Chapter 3

APPROACH

We begin with a description of the algorithm in its simplesth, using a single depth
map, which is created in the same manner as in conventioaalosh mapping, i.e. by
rendering the scene from the point of view of the light sounee storing depths. However,
it is important to note that with an area light, the projectmint must be moved back a
sufficient distance such that the entire light fits within thew frustum. This distance,
light depth, is given by Equation 3.1, whef&ht size is the length of one side of a square
light. We restrict the discussion to square lights for sigipl's sake, though the algorithm

is easily adaptable to rectangular or circular lights ad.wel

light size

light depth= 2 o (fov/2)

(3.1)

Figure 3.1 illustrates the way we set up the light sourcengleith the corresponding
idealized umbra and penumbra regions resulting from a siogtluder. In the region
labeledumbrg any ray drawn from the receiving surface to a point on thietlggpurce will
intersect the occluder; likewise, in the region labdldty lit, no such rays can intersect the
occluder, and in thepenumbrarays may or may not intersect the occluder.

We then run a second rendering pass from the point of view efegre. For each

fragment, we trace a ray from a randomly chosen point on thfaseiof the light to the

12

13

depth map
projection point T

light depth

area light l
source

occluder

receiving
surface

umbra penumbra fully lit

FiG. 3.1. An area light source and corresponding shadows. lagproach, the depth
map is rendered from a projection point placed behind théecerf the light.

fragment (or the reverse direction works just as well), ttngathe depth map as though
it were de-projected into world space to form a set of mictohaders that the ray might
intersect. If at any point, the ray passes behind one of tiés®-patches (that is, the ray is
farther from the light), then the fragment is considereddsiaged. An implicit assumption

is that the patches represent the front surfaces of soliectbpxtending further into the
scene; hence any ray that passes behind one of the microegatuist strike an object.

In practice, the ray tracing is accomplished by projectimgriay onto the depth map
and sampling points along it linearly, or using hierarchgsarch methods which we de-
scribe in Section 3.5. Placing the projection point behhreldarea light as described previ-
ously ensures that every point along the ray projects to at poithe interior of the depth
map; that is, the depth comparison is valid at every point.

Like conventional shadow mapping, our method can suffenffshadow acne” when

rays are cast to unshadowed surfaces, since the ray enslpairé depths exactly equal to

14
those stored in the depth map. To prevent these artifactshaeen the rays by a small
bias value. A closely related problem occurs when the sertipth varies within the
area covered by a single depth map texel—some surface pdalhitsevitably have depths
greater than those stored in the depth map, much more sasifitfece is at an oblique angle
to the light. Our implementation uses an adaptive biasingéda, given by Equation 3.2,
in which z is the fragment depth (proportional to the depth texel siagarld space)w is
the depth map size in texelg,is the surface normal, arids the direction of the light. As
a practical matter; - [must be limited to some small, non-zero value.

bias — V2 % 2z % tcm(fOV/Q) (3.2)

w* (N -1)

In the images that result from our method, points are eithiér lit or fully shadowed,
but with the probability of being shadowed based on the iflvacdf the light source that
is occluded. We use a combination of techniques to convertiito an image in which
points may be partially shadowed; the first is simply to casitiple rays for each fragment
and average the results. Casting multiple rays quickly imesocomputationally expensive,
so we also perform a Gaussian blur of the shadows in screer.sgagure 3.2 shows
the progression from an unblurred, single-ray image to mal fiesult. Note that as the
number of rays per fragment is increased, the images begpgmach a soft shadow in
appearance, finally reaching the desired result in thernaagjeé when the filter is added.

To perform the filtering, it is necessary to render the futlg¢ene and the shadow val-
ues into separate buffers, perform the blur on the shadowia/{i passes using a separable
filter), and then recombine the two buffers into a final imafeonventional Gaussian fil-
ter would cause unacceptable artifacts by blurring shagmnsss object boundaries in the
scene; therefore, in the second pass we also render dep#s\valeye space and introduce

adepth sensitivélter, in which the contribution of each sample is invergaigportional to

15

(a) penumbra from a large area light

(b) 1 ray (c) 4 rays (d) 9rays (e) filtered

FIG. 3.2. Progression from probabilistic shadowing to true sbadows. Images (b)—(d)
show the effect of tracing multiple rays per fragment whag ddds a filtering pass to (d);
(a) and (e) show the same scene.

the difference between its depth and that of the central kafplus 1 to prevent division by
zero). A robust implementation would also include normaisstvity to prevent shadows
from blurring across sharp object edges, but such artifaets generally not visible in our

test scenes.

16

3.1 Monte Carlo Sampling

To obtain sample points on the surface of the light, we regsime form of pseudo-
random number generator. However, traditional random raurgbnerators are unsuited
to the massively parallel architecture of the GPU, sincg tgerate sequentially; that is,
each call to a traditional generator updates some intetaia that is used to create the next
random number. Hence each returned value depends on theys@ne, beginning with
some initial seed. This means that generatingandom numbers must take(n) time,
regardless of any parallelism available in the hardware.

To avoid this problem, we make use of an idea introduced byng zed Wei (2008),
which is that random numbers can be generated in paralled @scryptographic hash. We
use the screen coordinates of each fragment as the inpu¢ teay and because crypto-
graphic hashes have the property that minor changes taipeir (such as moving by one
pixel on the screen) produce dramatic changes in the outpaityalues generated in our
algorithm are effectively random. Additionally, each hasin be computed independently,
allowing for good performance on the GPU. The specific haahle use is a variant of
MD5; the standard MD5 performs 64 “rounds” on its input, ehalur version is reduced
to 16, allowing for an efficient implementation using a snaatiount of shader code. For
reference, our implementation is included in Appendix A. &perimented with versions
using even fewer rounds, but these resulted in visible peti@ our output.

It is unlikely that our reduced MD5 would be remain suitalde éryptographic ap-
plications; we merely claim that it is good enough for ourpgmses. However, we have
verified the effectiveness of the hash using the DIEHARD @dgtia 1995) test suite,
which is the de facto standard for testing random numberrgéms. The suite consists
of 15 tests, each of which outputs a varying number of p-&(lBAgostino & Stephens

1986), which should be between 0.01 and 0.99 for a succassf(ivhether a test passes or

17
not is actually somewhat ambiguous, with the only sure faiheing when all p-values are
exactly zero or one, but we use the previously given rangedasistentency with Tzeng
and Wei (2008)). The reduced MD5 hash passes 11 of the 15um8ststhe linear sequence
1,2,...,n as input. For the full MD5 hash, Tzeng and Wei (2008) claim abaj 15 tests
passed, though we are only able to reproduce 12 with ceytdimtcomparison, the stan-
dard C rand() function passes only six. Tzeng and Wei (2088 la much more thorough
analysis, and we refer the reader to their work for more mgttion.

Our initial implementation generated a purely random sanopkr the entire surface
of the light for each ray, but this resulted in somewhat graimages, with the randomness
being visible in the output even after applying the Gaussiter. Consequently, we have
moved to a jittered grid pattern when using tracing multiales; e.g., for four rays, the
endpoint of each ray is chosen randomly from within one cedl 8x2 grid overlaid onto
the light. Figure 3.3 shows the difference between the twthous. Note the slightly

noisier quality of the shadows in the image produced via pamdom sampling.

(a) pure random sampling (b) jittered grid sampling

FiG. 3.3. Effects of different sampling patterns. Images werglered using two depth
layers and hierarchical search, with nine rays per fragment

We have found that for scenes with small lights and/or ligdptangles that produce

18
narrow penumbrae, a 2x2 grid produces visually acceptaslelts, while a 3x3 grid is
sufficient in most other scenarios. Furthermore, scends higthly detailed textures hide
the majority of sampling artifacts, meaning a smaller grigynbe used in such cases as

well.

3.2 The Inadequacy of a Single Depth Map

The use of a single depth map causes several problems, agla siap does not
provide enough information to adequately reconstruct¢kes geometry. The most readily
apparent effect of this is that only outer penumbrae areilplesdf a fragment would be
shadowed using conventional shadow mapping, it will am@g/shadowed by our method
using a single depth map; that is, any ray cast to the fragmeist pass behind a micro-
occluder at its endpoint. Furthermore, an outer penumleated this way often does
not appear as a plausible shadow, because the probabilgypofnt being shadowed is
discontinuous, being 1.0 everywhere in the interior and tean 0.5 in the penumbra. The
filtering stage is only able to hide the discontinuity forwemall penumbrae.

Another problem is that severe aliasing occurs if the raginigais performed via linear
search. While this may seem obvious, most applicationsyheaght field intersection
are able to refine linear samples once a boundary crossingtestdd, using e.g. binary
search. In single-layer shadowing, no such boundary ergssiists (or rather, it is the end
result that we are searching for), so no refinement is passMhile hierarchical search
methods solve the aliasing problem, linear search becorabke\vf a second depth layer is

introduced, and may be desirable due to its ease of implexient

19
3.3 Ray Tracing with Two Depth Layers

Adding a second depth map can elegantly solve the problestsided above, and we
consider it the minimum for achieving quality results. Sirnlee primary drawback of a sin-
gle depth map is that it does not approximate occluder geymedil enough, the second
map should be rendered from a point of view that provides tbstmdditional information
about the scene. A logical choice, then, would be to rendpthdefrom a point of view
directly opposite the light, facing in the reverse direwtid his would capture the surfaces
farthest from the light, and would allow us to measure thessf objects in the scene in
addition to their positions. Hence we refer to the resulbagdr depth layer, and the orig-
inal one asear. Figure 3.4 illustrates how occluding geometry can be rstranted using
multiple depth layers. Both the far and near depth layensceffely form hulls around
occluders, with the intersection of the two hulls being tbeonstructed geometry. Stated
another way, the intersection of the hulls is the closest@pmation to the actual geom-
etry that can be made using only the information containetiendepth maps. Note that
information about the geometry may still be lost in the tagdr reconstruction, partic-
ularly for scenes with high depth complexity, in which gapaynexist between multiple
occluders, for example. We return to this problem in Seci@gn

Since placing the viewpoint opposite the light would regqurior calculation of the
extent of the scene, in our implementation we obtain a simélsult by rendering the sec-
ond depth map from the same point of view as the first, but wdhtfface culling enabled
and the z-buffer depth test reversed, thus capturing thedqataces of the deepest objects
in the scene. Since we are only interested in occluders, etinad requires that “pure re-
ceivers” (such as the ground plane in our sample images)ybeved from the scene when
rendering depths, so as not to interfere with obtainingrmftion about occluder geometry.

Note that although we require classification of non-ocalsdtiie remaining objects may

20

projection point

far depth layer

bounded volume

near depth layer

FIG. 3.4. Geometry reconstruction using two depth layers. iBlessccluders are bounded
between the near layer (red) and the far layer (blue). It ssitxde to use a third depth layer
(not shown) to verify the existence of occluders inside therualed volume.

still act as receivers, meaning that unlike other methods ke geometry classification,
we retain support for self-shadowing.

We treat the two depth layers consistent with the assumpli@inthey represent the
boundaries of solid objects, so that when tracing rays, srsaction occurs when a ray
passes anywhere between the two layers. If linear searded a useful idea is that any
point along the ray, not between the two layers, may be dafaseeither in front of or
behind any potential occluders. Transitions between tliestates can then be treated as
candidates for refinement using binary search, eliminatimgh (though not all) of the
aliasing that exists when using a single layer. There is @veat, however; because we
generate the layers by first clearing the depths in the ngarta 1 and those in the far layer
to 0, there can exist situations when a point is both in fréthe near layer and behind the

far layer. We class these points separately, and refine #relsen any transition® an “in

21
front of” state orfrom a “behind” state. In cases when the the binary refinement dokes

detect an intersection, the algorithm returns to linearcteat the farther point.

3.4 Additional Depth Layers

We treat the entire volume between the two depth layers agloeicupied by a solid
object. In reality, objects in the scene are likely to havikdworegions and concavities that
cannot be represented by the depth layers. The visual effdoese details on the primary
receiving surfaces in the scene is minor in most cases, eyt#n have a noticeable impact
when occluders exhibit significant self-shadowing, as shimwFigure 3.5. With two depth
layers, rays cast to points inside the bounded volume withgs result in shadows, limiting
self-shadowing to outer penumbrae as was described psdyitar single depth layers.
The shadow cast by the dragon’s horn in Figure 3.5(a) is dtrelspioints being inside the

volume bounded by the two depth layers.

(a) two depth layers (b) three depth layers

Fic. 3.5. Self Shadowing. A third depth layer (b) allows for emtr softening of the
shadow cast by the dragon’s horn. Images were generategl 4isays per fragment; (a)
uses hierarchical search while (b) uses linear/binary.

An option for gaining more information about occluder getnyés to use depth peel-

22
ing to generate additional depth layers parallel to thetexjgwo. However, on current
graphics hardware this would require another rendering fiaseach layer, so we do not
consider it practical. Instead, we note that we can make tidepihs rendered from the
point of view of the eye, since they must be generated eviptiegardless of whether or
not we use them for shadowing. To do so, we reformulate owrittgn as an application

of deferred shading, which executes according to Algorithm

e Render the unshadowed scene from the eye point, storing colo rs
and depths in separate buffers.

e Render the near and far depth layers from the point of view of
the light.

e Run a shader over the eye-space depth buffer:

— Recover the world space coordinates of each fragment based o n
the depth and texture coordinates.

— Trace shadow rays using all three available depth maps.
— Write shadow values to an output buffer.

e Filter the shadow buffer.
e Combine the shadow buffer with the color buffer.

Algorithm 1: Our shadowing technique formulated using deferred shazhdghree depth
maps.

With the linear search model that we have described up topihiist, it is a simple
matter to make use of the eye-space depth map; any time aegoijoit along the ray
would be inside the volume bounded by the near and far depéndainstead of declaring
an intersection, test if the point is visible from the eye dedlare an intersection only if it
is not. In Figure 3.5(b), this process results in a softedetecast by the dragon’s horn.

Coincidentally, we observe a significant performance iaseewhen using deferred

shading, since no ray tracing is wasted on fragments thatater be z-culled.

23

3.5 Hierarchical Search

Until this point we have focused our discussion on lineadby search as the method
for tracing rays, since it is the simplest approach to imgem However, it does come
with significant drawbacks. The linear stage suffers frorasahg and the performance is
highly inconsistent, dropping off severely when the binagfnement stage does not find
an intersection on the first try. As an alternative, we havgl@mented ray tracing using a
hierarchical data structure that replaces the near anefghdayers. This both eliminates
aliasing and provides better performance.

Our data structure is most directly based on the N-buffec(ét 2005), although we
make some modifications to it in the same manner as Schwar&tmiminger (2007).
To briefly explain, the N-buffer is a texture stack contagning,(w) + 1 levels for square
textures of widthw. A texel at leveln stores the maximum value of the surrounding texels
in a neighborhood of sizg" at level 0. We use the ternfi;ie andcoarseto refer to levels
with smaller and larger neighborhoods, since the strudbeses some resemblance to a
mipmap. In Décoret’s (2005) original formulation, texglere located at the lower-left
corner of their neighborhoods; we move them approximatelthé center, which allows
the buffer to provide more information near texture edgesstdad of storing a simple
maximum, we use multi-channel textures to store the mininaemith of the near depth
layer ™) and the maximum depth of the far layef/{:*). We also store the maximum
depth of the near layer(}’*), though this is not directly used in ray tracing and will be
explained in the next section. Each level in the N-buffer barefficiently constructed by
running a shader that finds the min or max of four samples fitoerprevious level, with
level 0 being copies of the original depth maps. Figure Bu8titates this process.

We use Algorithm 2 to trace rays through the N-buffer. Sineetrace rays from the

light to the fragment, the primary interaction is witff".. We use the ternsteppingto

ear*

24

X X
X X
X X
X X
(a) Level0 (b) Level 1 (c) Level 2 (d) Level 3

FiG. 3.6. A four-level N-buffer. A texel at level stores the maximum luminosity of the
surrounding texels in a neighborhood of s¥eat level 0. The texels highlighted in black
have neighborhoods highlighted in red, and were calculayedking the maximum of the

four texels from the previous level, at the locations mankéd red Xs.

refer to the portion of the ray that has been searched; bagray start point is at stepping 0

and the end point is at stepping 1. For readability, termtaaks are described separately.
Ascending in the N-buffer is optional, but we have found gfus, since otherwise the

algorithm can in rare cases spend many iterations steppiagexel at a time at the finest

level. Terminal cases are as follows:

e If the ray passes betweef]". and:7%* at level O of the N-buffer, an intersection

ear far

has occurred.

¢ If at any point the stepping advances beyond the endpoitisofay, no intersection

can occur.

A few difficulties arise in the implementation of this algtim, which may not be
apparent at first. The ray stepping is not aligned to texehbaties in the N-buffer, so
when calculating neighborhood sizes the actual width use® + 1, plus some fractional
value to align to the nearest texel boundary. Also, becausdepth maps are created using
perspective projections, the stepping has different \&ailni@vorld space and texture space,

so frequent conversion is required. These two facts, aloitiyg tve overall structure of

25
the algorithm, lead to much more complicated shader codévelto linear/binary search.

Even so, the faster convergence of hierarchical searatispdticeably better performance.

3.6 Penumbra Classification

Since we typically cast several rays for each shaded fragrtiegre can be signifi-
cant overhead even if every ray is traced quickly. It is theeadvantageous to classify
fragments as fully shadowed, fully lit, or potentially inmembra, since in the former two
cases we can avoid casting any rays at all. We employ a methuldrsto Guennebaud
et al. (2006), in which we find the minimum and maximum occtudepth in the near
depth layer £ andz"*) that can be encountered by any possible ray. We then gfassif

according to the fragment depth,

e If 2 < 2™ then nothing can occlude the fragment and it is fully lit.

near?

o If z > 2" then every possible ray will hit an occluder, so the fragmeriully

near’?

shadowed.

Note that the second condition becomes invalid when usireetbepth maps, since rays
are allowed to travdbetweeroccluders. In this case we only test the first condition.
Values forz"" and 2™ can easily be obtained from the coarsest level of the N-

buffer; however, these values cover the entire scene amtttenot lead to useful clas-
sification. Instead, we use the valuezjf" as the initial step in an iterative refinement
scheme (again, similarly to Guennebaud et al. (2006)). €gen of the depth map that
might be sampled by any possible rays can be calculated asmfgr triangles, as shown

in Figure 3.7, or according to Equation 3:3is the distance from the light to the projection

point andsize is a fraction of the depth map width.

26

projection point

depth map search area

area light source

minimum occluder depth

occluders D D
maximum occluder depth l:l D

surface point

FIG. 3.7. Determination of the portion of the depth map contajrmnotential occluders. All
possible rays from a point in the scene intersect a planesainihimum occluder depth.
The intersection region projects onto a subset of the depih m

(2 = Znear)

Zmin (2 —n)

near

size= (3.3)

We use the computed region to find a less conservative valug'fhfby sampling a
finer level of the N-buffer. Two iterations are generallyfguént to produce a tight bound

around penumbrae in the scene. Figure 3.8 shows the refthis method.

3.7 Other Acceleration Techniques

When casting rays, it is possible in many cases to immegtiatatsify a ray as inter-
secting or non-intersecting and thus avoid having to perfexpensive calculations for it.

Figure 3.8 shows these cases in green, and we identify tbee@asos in which they occur:

¢ If the surface normal faces opposite the ray (i.e. their dodlpct is negative), the ray

27

FiG. 3.8. Classification of fragments. Green areas are potigritigpenumbra, while full
calculations are only performed in blue areas.

is considered intersecting and results in a shadow. Withl sime lights, performing
this test on a per fragment basis rather than per ray may peoaicceptable results,

since all possible rays would have similar directions.

¢ If the endpoint of a ray is inside a solid object, the ray muagtisect an occluder.
While rays are neveactuallycreated with endpoints inside objects, this test is useful
when using two depth layers, as it catches instances of epiself-shadowing early,
using only a single texture fetch at the finest level of theUffdy. Due to biasing,
this test also applies to back-facing surfaces and is udetu first test cannot be

applied (e.g. with deferred shading, we might want to aveitlering normals).

e Lastly, we perform the fragment classification discussewipusly, but using a re-
gion in the depth map that contains the projection of theenumray, rather than that
of all possible rays. This region is potentially much snralfeelding a more accurate

determination of whether or not the ray can intersect aruoies|

The last scenario can be made more useful by shortening yeethaus making their pro-

jections smaller. We shorten the rays by advancing theipeinds up toz7,:*, and their

28
start points down ta”" , as determined in the fragment classification step. Thisge®
is shown in Figure 3.9. For rays that require full intersattcalculations, ray shortening
produces faster convergence to a solution, since thergjgortiint in the N-buffer is moved

towards the finer levels.

projection point

shortened ray projection

/ AN

new ray start point

cosee 2| @0

= [

new ray end point

surface point

FiG. 3.9. Ray shortening. Ray endpoints are modified based dootineds for possible
occluder depths, resulting in a smaller affected regiomefdepth map.

29

Determine an initial level in the N-buffer such that a
neighborhood is able to contain the entire texture-space
projection of the ray.

Find z™" for the neighborhood containing the ray.

near
Set the initial stepping to the point where the ray intersect
the plane at zmin,
Descend one level in the N-buffer and place the neighborhood

texture space such that it contains the intersection point a
as much of the forward portion of the ray as possible.

Repeat the following until terminal cases are reached:

— Find 2™ and Zfe In the current neighborhood.

near

— If, in the current neighborhood, a portion of the ray passes
between 27 and za"

near
x Find the point where the ray intersects the plane at
x If the intersection point is farther along the ray than the

current stepping, advance the stepping to the intersection
point.

x Descend one level in the N-buffer, and adjust the current
neighborhood to contain the forward portion of the ray.
— Otherwise, the current portion of the ray does not intersect
anything, so:
x Advance the ray stepping a distance equal to the current
neighborhood size.

x Ascend one level in the N-buffer, and adjust the current
neighborhood to contain the forward portion of the ray.

in
nd

man
near*

Algorithm 2: Hierarchical search using an N-buffer

Chapter 4

RESULTS

We have implemented two versions of our algorithm, one ubiregar/binary search
and three depth layers, and one using hierarchical seatbhwo layers. By default, both
use deferred shading, although we also present performmamabers for the hierarchical
search version with deferred shading disabled. Also, wihiéelinear/binary search im-
plementation does not use the N-buffer directly for rayitrgcit does make use of all
the associated acceleration techniques. We consider thaffBi- (or an equivalent data
structure) essential to our technique. Figure 1.1 showssample renderings using our
method, and Figures 4.1 and 4.2 show some additional caskdexturing disabled to
better show any artifacts. The reference images in bothsoaeee generated by averag-
ing 4096 point lights (about 40 seconds per frame). Note thadshadows cast against
against the far wall by the dragon in Figure 1.1(a), or cagherfloor by the Buddha statue
in Figure 1.1(b). Both cases correctly show relatively phaontact shadows where the
objects touch the floor. Though some minor discrepanciesigidighted in Figures 4.1
and 4.2, our results (particularly Figures 4.1(b) and 4)2¢loe largely indistinguishable
from the reference images, especially when compared aghmsesults for conventional
shadow mapping. Also note the darkening of the shadow tiréeneath the elongated
cube in Figures 4.2(a) and 4.2(b); this is a difficult caseoftver shadowing algorithms,

30

31
since the shadow is a result of the object’s extent perpatatito the light, which cannot

be determined with a single shadow map.

4.1 Limitations

Being based on ray tracing, our method has the potentiav® hysically accurate
shadows. However, there are a few cases where discrepanaiesppear. We require
that the depth maps be able to adequately represent ocgedaretry, and while this is
most often the case, artifacts can arise in the form of oaek-delf shadowing for com-
plex occluders. Figure 3.5 specifically shows this effelthaaugh the hierarchical results
in Figures 4.1(a) and 4.1(b) also contain a moderate exanfijgleCompare the blue high-
lighted areas to those in Figures 4.1(c) and 4.1(d); in thenéo, the umbrae are slightly
overextended.

Other artifacts are related to our post-filtering processcenes with especially wide
penumbrae, our method can produce uneven looking shada@® dundersampling of the
light source visibility, in which case the filtering is ingigfent. The highlighted region of
Figure 4.2(a) demonstrates this effect. The opposite cas@ccur as well, in which the
filtering process excessively blurs fine details in the shadithe shadow of the dragon’s
hornin Figures 4.1(a), 4.1(b), and 4.1(c) (highlighteddd)ris a good example; the shadow
in the reference image (Figure 4.1(d)) is thinner and darkeomparison.

All of these problems can be dealt with by simply adding maptt layers or casting
more rays (which would reduce the need for post-filtering)thrBcome at a cost in perfor-
mance, and while we have found that casting four or nine ragydragment represents a
good balance between visual quality and computationalresget is conceivable that with

future hardware this balance might shift upwards.

32

4.2 Performance

Performance results were obtained on an Nvidia 8800 GTS KB82P with driver
version 180.11, running on Ubuntu Linux 8.10. Our implenagioh uses OpenGL 2.1
with shaders written in GLSL. We tested two scenes, the dragpown in Figure 4.1 and
the elongated cube shown in 4.2. The dragon model contal®Q0 triangles, while the
cube shows the effects of reduced depth complexity and disinates any bottlenecks
due to triangle count.

Tables 4.1 and 4.2 show frame rates at various shadow malptiess, for the two
scenes we tested. Figure 4.3 summarizes the results gadlpltiar the hierarchical search
implementation with deferred shading, which is the bessieerby a large margin. The
hierarchical / deferred shading frame rates are well withérange that should be consid-
ered real-time, particularly with a shadow map resolutibBX®x512 or less. We consider
512x512 to be the ideal resolution for our algorithm on cotrfeardware; performance does
not improve dramatically at lower resolutions when renugnielatively complex scenes
such as the dragon, while at much lower resolutions tempadiesing becomes a problem.
Note that the shadow map resolution is limited to 1024x10&# laelow due to memory
constraints on the N-buffer.

Tables 4.3 and 4.4 show results at various screen resadytwith Figure 4.4 sum-
marizing the hierarchical / deferred shading results gcagbly. The performance drop-off
with increasing resolution should be expected, since theescresolution directly affects
the number of rays that must be traced. However, frame rataain usable at all resolu-
tions tested, up to 1280x1024.

Of the two search methods, linear/binary search is mordtsent geometric com-
plexity, due to the fact that as more detail appears in théhdapers, the algorithm attempts

binary refinement more often. Hierarchical search is alsnesghat sensitive to geomet-

33

Search Type| Rays Defer.red Shadow Map Resolution
Shading || 256x256| 512x512| 1024x1024
2x2 yes 46 40 28
hierarchical 33 37 34 21
2X2 no 30 26 18
3x3 18 16 12
linear/binary 2x2 yes 25 18 15
3x3 12 11 10

Table 4.1. Performance scaling with shadow map resolutiothke dragon scene
(Figure 4.1). Screen resolution is 1024x768. Values areaimés per second.

Search Type| Rays Deferred Shadow Map Resolution
Shading || 256x256| 512x512| 1024x1024]
2x2 yes 70 50 35
hierarchical 3x3 60 45 31
2x2 no 66 47 34
3x3 50 44 30
linear/binary 2x2 yes 36 32 23
3x3 25 22 17

Table 4.2. Performance scaling with shadow map resolutiothe elongated cube scene
(Figure 4.2). Screen resolution is 1024x768. Values areaimés per second.

ric complexity, since increased detail causes it to spencenterations stepping through

the finer levels of the N-buffer. Although not reflected in thenbers, performance with

linear/binary search is very inconsistent; we believedrghical search should be the pre-
ferred implementation, even ignoring average frame ra&sshould be expected, deferred
shading is more beneficial in complex scenes, nearly dogitiie frame rate in a few cases.
The benefits of deferred shading vastly outweigh the cosha@dalitional rendering pass

in screen-space, so it should be preferred in any implertientas well.

The results show that hierarchical search is more sensaigdepth map resolution,

34

Search Type| Rays Deferred Screen Resolution
Shading | 800x600| 1024x768| 1280x1024

2x2 yes 45 20 32

hierarchical | 40 34 22
2x2 no 33 26 19
3x3 20 16 1

linear/binary 2x2 yes 27 18 14
3x3 17 11 g

Table 4.3. Performance scaling with screen resolutionferdragon scene (Figure 4.1).
Shadow map resolution is 512x512. Values are in frames pgense

Search Type| Rays Deferred Screen Resolution
Shading || 800x600] 1024x768| 1280x1024

2x2 yes 74 50 41

hierarchical | =X 61 45 34
2X2 no 70 47 a1
3x3 49 44 35

|inear/binary 2X2 yes 41 32 23
3x3 31 22 15

Table 4.4. Performance scaling with screen resolutionfercube scene (Figure 4.2).
Shadow map resolution is 512x512. Values are in frames pense

but a reason for this is that we used a fixed step size for tleadiportion of linear/binary

search; that is, hierarchical search becomes more acairaigher depth map resolutions
while our implemention of linear/binary search does notthBoethods are affected by time
required to construct the N-buffer, which is likely the lesj component of depth map res-
olution sensitivity. Caching is also a factor; while our MerCarlo sampling causes com-
pletely random texture access, the ray shortening proeedescribed previously should
keep the accesses within a small neighborhood of each titlhisrpreventing at least some

cache misses. This effect is reduced with increased texizee

35

Generally speaking, our performance numbers are on parouittent methods for
rendering physically plausible soft shadows, e.g. bagkptimn (Guennebaud, Barthe, &
Paulin 2006) or bitmask (Schwarz & Stamminger 2007) softistaéng (the former being
slightly faster than our method, and the latter slightlywstg). This is not surprising, since
we use many of the same acceleration techniques. Howewbrobthe aforementioned
methods treat occluders as sets of planar patches or qa#as;, than solid volumes as in
our approach; hence neither method is able to make good tise aflditional information
provided by multiple depth maps. Furthermore, both mus sgdecial measures to prevent
problems with overlaps or gaps between micro-occluderghencase of backprojection,

this leads to unavoidable over-darkening. Ray tracingraijuavoids such problems.

4.3 Impact of the MD5 Hash

Our reliance on the reduced MD5 hash for random number gemeliatroduces an
unknown factor into our algorithm’s performance, sinceiftetls from the usual practice
of using a handful of carefully selected fixed sample posgito represent a jittered grid.
However, in our testing the hash did not incur a significantqgenance penalty. Removing
it from the code entirely resulted in a frame rate increas@-8fframes per second at
most (less than 10%), and 0 in many cases. While the hash ulasge a relatively large
amount of computation, even for the reduced 16-round versiar implementation does
not involve any looping or branching, and requires few reges Consequently it maps
well to the capabilities of GPU hardware.

In comparison, it is very unlikely that using pre-generasedhple positions would
offer better quality, since even if the samples were crelayedhigh-quality random number
generator, it is unlikely to be noticeably better than MD® (wfer to the DIEHARD results

described in Section 3.1). Furthermore, a very large numiistinct sample points would

36
be required. It is also worth noting that using fixed sampl@fsaloes not map as well to
GPU hardware, since the process must involve a memory lodkupent hardware favors
pure computation over memory access, and the gap betwedwdhs likely to widen in

the future.

37

(a) hierarchical, 2x2 (b) hierarchical, 3x3
(c) linear/binary, 3x3 (d) reference image

(e) conventional shadow mapping

FiG. 4.1. Shadowing of the dragon model. Labels show the segpehand number of
rays per fragment. Shadow map size is 512x512.

38

(a) hierarchical, 2x2 (b) hierarchical, 3x3
(c) reference image (d) conventional shadow mapping

FIG. 4.2. Shadowing of an elongated cube, a difficult case forynsaft shadowing algo-
rithms. Labels show the search type and number of rays pgmiat. Shadow map size is
512x512.

39

Shadow Map Resolution Scaling

—4&— 2x2 sampling, dragon —@— 3x3 sampling, dragon
—— 2x2 sampling, cube —m—— 3x3 sampling, cube

80

70 A

I
AI—

20

Frame Rate (Hz)

256x256 512x512 1024x1024
Shadow Map Resolution

FiG. 4.3. Shadow map resolution scaling for hierarchical $eaith deferred shading
enabled. Labels show the number of rays per fragment anchvgloene was used.

Screen Resolution Scaling

—&@— 2x2 sampling, dragon —@— 3x3 sampling, dragon
—— 2x2 sampling, cube —— 3x3 sampling, cube

80
" \

60 N

50

\
40 \:\\
) Q\ii

Frame Rate (Hz)

800X600 1024x768 1280x1024
Screen Resolution

FIG. 4.4. Screen resolution scaling for hierarchical searc¢h deferred shading enabled.
Labels show the number of rays per fragment and which sceaeised.

Chapter 5

CONCLUSION

We have demonstrated physically accurate soft shadowiregpirtime, via stochastic
ray tracing of depth maps. We believe that ray tracing intttegner offers a higher visual
quality than current state of the art real-time shadowing@ihms, and we have found
that it can be accomplished with similar levels of perforeceon current graphics hard-
ware. Furthermore, since our work is based on conventidrz®v mapping, it should be
possible to implement it within existing software framewar

Our technique relies on depth maps to approximate occluel@mgtry, and we con-
sider two depth maps the minimum to achieve a good recotigtnyevhich is necessary for
high quality shadows. Additional depth maps are benefibiat returns diminish rapidly
beyond the second or third. We also consider the use of arbiécal data structure es-
sential for accelerating the algorithm; while such a stieeeis directly useful for tracing

individual rays, we also use it to eliminate a large numbeags entirely.

5.1 Future Work

Textured light sources are possible with our method. Prelny work indicates that
visually accurate results can be obtained by allowing eagto sample a low frequency

texture on the surface of the light and return a luminosituearather than a simple binary

40

41
shadowed or lit determination. Going farther, it should begible for each ray to return
an RGB value corresponding to the received luminosity oh eator channel. This would
make our technique useful for environment mapping, for gdam

There also exists the possibility of making alterationshi® N-buffer; one direction
could be to make use of the fact that the neighborhood sizeadt level need not be
powers of two. Some investigation would be needed to detexnfian optimal formula
exists for the neighborhoods, but at the very least, it shdel possible to decrease the
number of necessary levels by using e.g. powers of threes Waiuld reduce the memory
requirement, which is the N-buffer’'s main drawback. We\waltbat for practical purposes,
others may want to implement our technique using more cdiowgad image pyramids, and
it remains to be seen how much of an impact on performancevithitéd have.

We also expect that other performance improvements to tfaidim are possible.
Of note is the fact that our depth maps were all created usngpective projection, while
orthogonal projection should in theory work just as well fbe purpose of ray tracing.
This would simplify the shader code a great deal by elimigathe need to convert the
ray stepping between texture and world space. However, @ mtaresting possibility is
that multiple lights may be able to share a single orthodgmaibjected shadow map; one
could imagine a framework in which a few axis-aligned deptipmare generated for an

arbitrary number of lights throughout the scene.

Appendix A

REDUCED MD5 HASH IMPLEMENTATION

The following is our implementation of the reduced 16-roB5 hash in GLSL.
Screen coordinates are used for the seed value. Followigrggland Wei's (2008) example,

we allow the use of a key value to further scramble the seed.

uvecd md5Srand(uvec4 seed, unsigned int key)
{
unsigned int dOO
unsigned int dO1
unsigned int d02
unsigned int d03

seed.x "~ key;
seedy ~ key;
seed.z ~ key;
seed.w " key;

/I Values commented out as they do not
/[actually affect the calculation

/lunsigned int d04 = 0x80000000u;
/lunsigned int d05 = Ou;
/lunsigned int d06 = Ou;
/lunsigned int d07 = Ou;
/lunsigned int d08 = Ou;
/lunsigned int d09 = Ou;
/lunsigned int d10 = Ou;
/lunsigned int d11 = Ou;
/lunsigned int d12 = Ou;
/lunsigned int d13 = Ou;
/lunsigned int d14 = Ou;
/lunsigned int d15 = 0x80u;

42

43

uvecd digest = uvec4(0x01234567u, Ox89ABCDEFu,
OXxFEDCBA98u, 0x76543210u);

uvecd tD = digest;

unsigned int Ft;

unsigned int rot_temp;

Ft = (tD.x & tDy) | ((tD.x) & tD.2);

/[The number on the next line is sin(1) * 2°32.
/I Likewise, the constants in the other blocks are
/I sin(2), sin(3), etc.

rot_temp = tD.x + Ft + dOO + OxD76AA478u;

tD.x = tD.y + (rot_temp << 7u) + (rot_temp >> 25u);
tD = tD.yzwyx;

digest += tD;

Ft = (tD.x & tDy) | ((tD.x) & tD.2);

rot temp = tD.x + Ft + dO1 + OXE8C7B757u;

tD.x = tD.y + (rot_temp << 12u) + (rot_temp >> 20u);
tD = tD.yzwx;

digest += tD;

Ft = (tD.x & tDy) | ((tD.x) & tD.2);

rot temp = tD.x + Ft + d02 + 0x242070DBu;

tD.x = tD.y + (rot_temp << 17u) + (rot_temp >> 15u);
tD = tD.yzwx;

digest += tD;

Ft = tD.x & tDy) | ((tD.x) & tD.2);

rot_temp = tD.x + Ft + dO3 + OxC1BDCEEFu;

tD.x = tD.y + (rot_temp << 22u) + (rot_temp >> 10u);
tD = tD.yzwyx;

digest += tD;

T T /

Ft = (tD.z & tD.x) | ((tD.z) & tD.y);

rot_temp = tD.x + Ft + dO1 + OxF61E2562u;

tD.x = tD.y + (rot_temp << 5u) + (rot_temp >> 27u);
tD = tD.yzwx;

digest += tD;

Ft = (tD.z & tD.x) | ((tD.z) & tD.y);

rot_temp = tD.x + Ft / * + d06 =/ + 0xC040B341y;
tD.x = tD.y + (rot_temp << 9u) + (rot_temp >> 23u);
tD = tD.yzwyx;

digest += tD;

Ft = (tD.z & tD.x) | ((tD.z) & tD.y);

rot_temp = tD.x + Ft / * + d11 */ + Ox265E5A52u;
tD.x = tD.y + (rot_temp << 14u) + (rot_temp >> 18u);
tD = tD.yzwx;

digest += tD;

Ft = (tD.z & tD.x) | ((tD.z) & tD.y);

rot temp = tD.x + Ft + dOO + OXE9B6C7ABLU;

tD.x = tD.y + (rot_temp << 20u) + (rot_temp >> 12u);
tD = tD.yzwx;

digest += tD;

T T

Ft = tD.x ~ tDy ~ tD.z;

rot_temp = tD.x + Ft / * + d05 =/ + OxFFFA3942u;
tD.x = tD.y + (rot_temp << 4u) + (rot_temp >> 28u);
tD = tD.yzwyx;

digest += tD;

Ft = tD.x ~ tDy ~ tD.z;

rot temp = tD.x + Ft / * + d08 */ + Ox8771F681uy;
tD.x = tD.y + (rot_temp << 11lu) + (rot_temp >> 21u);
tD = tD.yzwx;

digest += tD;

Ft = tD.x ~ tD.y ~ tD.z;

rot temp = tD.x + Ft / * + dll =/ + 0x6D9D6122u;
tD.x = tD.y + (rot_temp << 16u) + (rot_temp >> 16u);
tD = tD.yzwx;

digest += tD;

Ft = tD.x ~ tDy ~ tD.z;

rot_temp = tD.x + Ft / * + d14 =/ + OxFDE5380Cu;
tD.x = tD.y + (rot_temp << 23u) + (rot_temp >> 9u);
tD = tD.yzwyx;

digest += tD;

44

T T

Ft = tDy ~ (tD.x | ("tD.2));

rot_temp = tD.x + Ft + dO0 + 0xF4292244y;

tD.x = tD.y + (rot_temp << 6u) + (rot_temp >> 26u);
tD = tD.yzwyx;

digest += tD;

Ft = tDy ~ (tD.x | ("tD.2));

rot_temp = tD.x + Ft / * + d07 =/ + Ox432AFF98u;
tD.x = tD.y + (rot_temp << 10u) + (rot_temp >> 22u);
tD = tD.yzwyx;

digest += tD;

Ft = tDy ~ (tD.x | ('tD.2));

rot_temp = tD.x + Ft / * + d14 =/ + OxAB9423A7uy;

tD.x = tD.y + (rot_temp << 15u) + (rot_temp >> 17u);
tD = tD.yzwx;
digest += tD;

Ft = tD.y ~ (tD.x | (tD.2));

rot_temp = tD.x + Ft / * + d05 */ + OXFC93A039u;

tD.x = tD.y + (rot_temp << 21u) + (rot_temp >> 11u);
tD = tD.yzwx;
digest += tD;

return digest;

45

REFERENCES

[1] Agrawala, M.; Ramamoorthi, R.; Heirich, A.; and Moll, L2000. Efficient image-
based methods for rendering soft shadowsSIBGRAPH '00: Proceedings of the 27th
annual conference on Computer graphics and interactivartegies 375-384. New

York, NY, USA: ACM Press/Addison-Wesley Publishing Co.

[2] Akenine-Moller, T., and Assarsson, U. 2002. Approxtmaoft shadows on arbitrary
surfaces using penumbra wedgesEBRW '02: Proceedings of the 13th Eurographics
workshop on Renderin@97-306. Aire-la-Ville, Switzerland, Switzerland: Egraph-

ics Association.

[3] Annen, T.; Mertens, T.; Bekaert, P.; Seidel, H.-P.; arali, J. 2007. Convolution
shadow maps. In Kautz, J., and Pattanaik, S., &sndering Techniques 2007: Eu-
rographics Symposium on Renderinglume 18 ofEurographics / ACM SIGGRAPH

Symposium Proceedingsl-60. Grenoble, France: Eurographics.

[4] Annen, T.; Dong, Z.; Mertens, T.; Bekaert, P.; SeidekR4.and Kautz, J. 2008. Real-
time, all-frequency shadows in dynamic scenesSIGGRAPH '08: ACM SIGGRAPH
2008 papers1-8. New York, NY, USA: ACM.

[5] Atty, L.; Holzschuch, N.; Lapierre, M.; Hasenfratz, M.; Hansen, C.; and Sillion,
F. 2006. Soft shadow maps: Efficient sampling of light sowisgility. Computer
Graphics Forun5(4):725-741.

[6] Brabec, S., and peter Seidel, H. 2002. Single samplesbaitiows using depth maps.
In In Graphics Interface219-228.

46

47
[7] Chan, E., and Durand, F. 2003. Rendering fake soft shadeith smoothies. In
EGRW ’'03: Proceedings of the 14th Eurographics workshop endering 208—218.

Aire-la-Ville, Switzerland, Switzerland: Eurographicsgociation.

[8] Chun, Y.; Oh, K.; and Kim, H. 2008. Multi-layer pyramiddisplacement mapping.
In VRCAI '08: Proceedings of The 7th ACM SIGGRAPH Internati@®anference on
Virtual-Reality Continuum and Its Applications in Indugti—2. New York, NY, USA:
ACM.

[9] Cook, R. L.; Porter, T.; and Carpenter, L. 1984. Disttdmiray tracing.SIGGRAPH
Comput. Graph18(3):137-145.

[10] Crow, F. C. 1977. Shadow algorithms for computer graphiln SIGGRAPH '77:
Proceedings of the 4th annual conference on Computer geapdmd interactive tech-

niques 242—-248. New York, NY, USA: ACM.

[11] D’Agostino, R. B., and Stephens, M. A., eds. 19&8&odness-of-fit techniquelNew
York, NY, USA: Marcel Dekker, Inc.

[12] Décoret, X. 2005. N-buffers for efficient depth map gu€omputer Graphics Forum
24(3):393-400.

[13] Donnelly, W., and Lauritzen, A. 2006. Variance shadoaps InI3D '06: Pro-
ceedings of the 2006 symposium on Interactive 3D graphidgames161-165. New
York, NY, USA: ACM.

[14] Dummer, J. 2006. Cone step mapping: An iterative ragiitéeld intersection al-
gorithm. Available online at http://www.lonesock.ne#8IConeStepMapping.pdf [Ac-
cessed: 1 May 2009].

48
[15] Fernando, R. 2005. Percentage-closer soft shadowsSIGGRAPH '05: ACM
SIGGRAPH 2005 Sketche85. New York, NY, USA: ACM.

[16] Forest, V.; Barthe, L.; and Paulin, M. 2006. Realistidtshadows by penumbra-
wedges blending. I6H '06: Proceedings of the 21st ACM SIGGRAPH/EUROGRAPH-
ICS symposium on Graphics hardwaB9-46. New York, NY, USA: ACM.

[17] Guennebaud, G.; Barthe, L.; and Paulin, M. 2006. Rieatsoft shadow mapping
by backprojection. Ifcurographics Symposium on Rendering (EGSR), Nicosia uSypr
26/06/2006-28/06/20Q0@27-234. http://lwww.eg.org/: Eurographics.

[18] Hasenfratz, J.-M.; Lapierre, M.; Holzschuch, N.; anlli&, F. 2003. A survey of
real-time soft shadows algorithm&omputer Graphics Forur@2(4):753—-774.

[19] Heidrich, W.; Brabec, S.; and Seidel, H.-P. 2000. Sb&dow maps for linear lights.
In Proceedings of the Eurographics Workshop on Renderingniigehs 2000269—-280.
London, UK: Springer-Verlag.

[20] Kajiya, J. T. 1986. The rendering equation. SIIGGRAPH '86: Proceedings of
the 13th annual conference on Computer graphics and interatechniquesl43—-150.

New York, NY, USA: ACM.

[21] Lauritzen, A. 2007. Summed-area variance shadow miapgsguyen, H., ed.GPU
Gems 3Addison-Wesley Professional. 157-182.

[22] Marsaglia, G. 1995. The Marsaglia random number CDR@8uiding the diehard
battery of tests of randomness. Available online at htipvid.stat.fsu.edu/pub/diehard/

[Accessed: 1 May 2009].

[23] NVIDIA. 2006. Nvidia geforce 8800 GPU architecture oview. Technical Brief.

49
[24] Oh, K.; Ki, H.; and Lee, C.-H. 2006. Pyramidal displacarhmapping: a GPU based
artifacts-free ray tracing through an image pyramid.VRST ’'06: Proceedings of the
ACM symposium on Virtual reality software and technologfy—82. New York, NY,
USA: ACM.

[25] Policarpo, F., and Oliveira, M. M. 2006. Relief mappioignon-height-field surface
details. InI3D '06: Proceedings of the 2006 symposium on Interactiveg&iphics and
games55-62. New York, NY, USA: ACM.

[26] Policarpo, F., and Oliveira, M. M. 2007. Relaxed corgpging for relief mapping.
In Nguyen, H., ed.GPU Gems 3Addison-Wesley Professional. 409-428.

[27] Policarpo, F.; Oliveira, M. M.; and Comba, J. a. L. D. 20®Real-time relief mapping
on arbitrary polygonal surfaces. 18D ’'05: Proceedings of the 2005 symposium on

Interactive 3D graphics and gamek55-162. New York, NY, USA: ACM.

[28] Reeves, W. T.; Salesin, D. H.; and Cook, R. L. 1987. Rendentialiased shadows
with depth maps. I'BIGGRAPH '87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniqua83—291. New York, NY, USA: ACM.

[29] Risser, E.; Shah, M.; and Pattanaik, S. 2005. Intervappmng. Technical report,

University of Central Florida.

[30] Schwarz, M., and Stamminger, M. 2007. Bitmask soft siwesl Computer Graphics
Forum26(3):515-524.

[31] Shah, M. A., and Konttinen, J. 2007. Caustics mapping: ilvage-space tech-
nique for real-time caustic$EEE Transactions on Visualization and Computer Graph-

ics 13(2):272-280.

50
[32] Soler, C., and Sillion, F. X. 1998. Fast calculation oftshadow textures using con-
volution. InSIGGRAPH '98: Proceedings of the 25th annual conference amgiter

graphics and interactive techniqued21-332. New York, NY, USA: ACM.

[33] Tevs, A.; Ihrke, I.; and Seidel, H.-P. 2008. Maximum migps for fast, accurate, and
scalable dynamic height field renderingI&D '08: Proceedings of the 2008 symposium
on Interactive 3D graphics and games883—-190. New York, NY, USA: ACM.

[34] Tzeng, S., and Wei, L.-Y. 2008. Parallel white noisegation on a GPU via cryp-
tographic hash. 813D '08: Proceedings of the 2008 symposium on Interactbe 3
graphics and game§9-87. New York, NY, USA: ACM.

[35] Williams, L. 1978. Casting curved shadows on curvedamgs. InSIGGRAPH
'"78: Proceedings of the 5th annual conference on Computaplgics and interactive

techniques270-274. New York, NY, USA: ACM.

[36] Woo, A.; Poulin, P.; and Fournier, A. 1990. A survey ofdbw algorithms.|[EEE
Comput. Graph. ApplL0(6):13-32.

[37] Wyman, C., and Hansen, C. 2003. Penumbra maps: appatxisoft shadows in
real-time. INEGRW '03: Proceedings of the 14th Eurographics workshopemdgring

202-207. Aire-la-Ville, Switzerland, Switzerland: Euraghics Association.

[38] Wyman, C. 2005. Interactive image-space refractiomneérby geometry. In
GRAPHITE '05: Proceedings of the 3rd international confere on Computer graphics
and interactive techniques in Australasia and South Eaist, 205-211. New York, NY,
USA: ACM.

