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Medical image visualization often relies on 3D volume rendering. To enable 

interaction with 3D rendering of medical scans, improvements in the performance of 

Volume Rendering Algorithms need significant attention. Real-time visualization of 

3D image data set is one of the key tasks of Augmented Reality Systems required by 

many medical imaging applications. Over past five years the development of the 

Graphics Processing Unit (GPU) has proved beneficial when it comes to Real Time 

Volume Rendering. We propose a GPU based volume rendering system for medical 

images using adaptive integration to improve performance. Our system is able to read 

and render DICOM images, implementing adaptive integration techniques that 

increase frame rate for volume rendering with the same quality of output images.  
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Chapter 1: Introduction 

The healthcare industry has always been a motivation for research in computer 

graphics. The increasing demands on clinicians have led to the real-time visualization of 2D 

and 3D image data. The inputs to the volume visualization technique are the images acquired 

from CAT, MR or PET scan, the sizes of which tend to be fairly large. It is a difficult task to 

achieve interactive frame rates with the highest accuracy. The computational complexity of 

the CPU based volume rendering algorithms has led to the use of new technologies involving 

Graphics Processing Units (GPUs). GPUs have hundreds to thousands of parallel processors. 

During graphics rendering, these processors execute programs; the program is executed once 

per vertex (called a vertex shader), or once per pixel (called a fragment shader). Modern 

graphics cards include a GPU capable of executing small vertex and fragment shader 

programs. The use of these shader programs can harness the power of the GPU for real-time 

rendering. In this chapter we explore the process of volume rendering, along with its 

applications and the motivation behind this thesis and the contributions made. 

1.1 Volume Rendering 

 
Volume rendering is the process of transforming 3D discretely sampled dataset into a 

2D image [MW10].  The discretely sampled data can be in the form of the images acquired 

from CAT or MR scans and other such modalities. The 3D data consists of 2D slices of these 

images. Figures 1.1 (a) and (b) show the 2D slices acquired from a CAT scanner while Figure 

1.1 (c) shows the corresponding volume created using the process of volume rendering: 
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           (a)                      (b) 

 

 

(c) 

Figure 1.1 (a) & (b) Example of 2D slices of images acquired from a CT scan (c) 3D 
volume rendering of the input images (Image Courtesy: Osirix) 
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Figure 1.2 Volumetric Grid 
 

As shown in Figure 1.2, the volume dataset is in the form of 2D image slices. These 

images slices form a volumetric grid each element of which is called as a voxel as shown in 

Figure 1.2. Each voxel is assigned an opacity and color value, which contribute to the 

formation of the volume. The color values are computed by a color transfer function in the 

form of red, green and blue (RGB) color channels while the opacity is defined by an opacity 

transfer function in the form of an alpha (A) channel.  

There have been numerous methods and algorithms presented for volume rendering of 

3D discretely sampled dataset with an aim of increasing the accuracy as well as the speed of 

the rendering process. These methods can be grouped into the following categories: 

1. Volume Ray Casting: In the Volume Ray Casting technique, a ray is cast from the 

center of the camera model to each image pixel on an imaginary screen [KH84], 

[DCH88]. The imaginary screen is considered to be in between the camera model and 

the 3D input dataset. The ray then passes through these image pixels into the dataset 

where the ray is sampled at various points and the corresponding color and opacity 

Voxel 

Image Slice 
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transfer functions are calculated at each of these points to compute the ultimate color 

and opacity of the volume [RPSC99].  

	
  
 

Figure 1.3 Volume Ray Casting Technique 
 

2. Splatting: Splatting considers one voxel at a time to find its contribution across a set 

of image pixels (as compared to ray casting that considers one pixel at a time across a 

set of voxels along the ray). The process involves projecting voxels in a back-to-front 

order and calculating the color and opacity based on the Gaussian Splat as discussed 

in [WA91].  

3. Iso-surface Rendering: Surface rendering involves creating surfaces of an object in 

the form of a 3D image. As opposed to volume rendering, where the volume is 

rendered using the image data itself, iso-surface rendering involves modeling the 

object using geometric primitives such as points, lines, triangles, etc. There are many 

ways of computing this surface, for example the marching cubes algorithm [LC87]. 

Surface rendering hides the internal information in the volume and thus isn’t 

extensively used as compared to volume rendering [KOR08].  

4. Texture Mapping: Using commodity graphics hardware, texture based volume 

rendering has evolved as a result of the fast and more accurate outputs. Texture 

mapping consists of the process of applying 3D textures or images to geometric 

objects. Texture based volume rendering efficiently renders slices of a 3D volume 

with the real-time interaction capability and thus can be an ideal source for rendering 

medical image datasets [EHK* 06] [CCF94]. 
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1.2 Applications of Volume Rendering  
 

Volume rendering is an efficient way of visualizing data and thus plays an important 

role in scientific visualization. Following subsections describe how volume rendering can be 

applicable in different areas for the visualization of the volumetric datasets. 

1.2.1 Geoscience 

Geoscience includes all the sciences (geology, geophysics, geochemistry) that study 

the structure, evolution and dynamics of the planet Earth and its natural mineral and energy 

resources. The different functions associated with the geoscientists involve geological survey 

and mapping, energy supplies, finding rocks as natural resources and so on. Volume 

rendering implementations in geoscience plays a vital role in different tasks such as real time 

scanning of massive datasets, simultaneous multiple volume viewing, well logs, tops and 

cultural data display, display of reservoir models, interpretation of multiple 3D seismic 

surveys into multiple 2D seismic surveys, isolation of different geobodies, etc. 

1.2.2 Astrophysics 

According to Li et al. [LFH08], with advancements in the measurement technology 

for astrophysical imaging, the view of the sky is not limited to 2D Celestial Sphere. A third 

dimension has been added allowing the examination of wavelength radio, microwaves, very 

short X-rays, and gamma rays. This leads to the exploration of volume visualization 

techniques including textured image stacks, the horseshoe representation and GPU-based 

volume visualization. 

1.2.3 Chemistry 

 Different areas where volume visualization in chemistry plays a vital role include 

visualization of quantum chemical and molecular dynamic modeling, drug designing, 

drawing complex molecular structures including crystal structure data, creation of a system 

for visualizing chemical reactions, etc. [JV09].   
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1.2.4 Mechanical Engineering 

 Volume rendering plays a vital role in the field of mechanical engineering in various 

areas such as computer-aided design, design of power plants, automobile engineering, 

simulator designs and so on. CADD (Computer Aided Design and Drafting) involving 2D 

and 3D volume rendering is used in a large scale to provide users an interface for 

streamlining design processes, drafting, documentation, and manufacturing. The design of 

different complex structures relating to automobiles involves the creation of 3D volumes 

followed by their practical implementation. Simulation design is the area that has started 

gaining importance in different fields such as training, testing, professional usage and so on. 

Simulators are used to provide an in depth knowledge of physics principles and to use these 

principles to design virtual models of mechanical designs. Such simulators make use of 

volume rendering as a tool to make the simulator as realistic as possible [WH03].  

1.2.5 Gaming 

 The gaming industry has been deploying different computer graphics technologies 

since the earliest computer games. Game designing involves different aspects such as design 

of gameplay, storyline, environment and characters pertaining to a game. Environment design 

involves the design of many real-world phenomena such as clouds, smoke, fog, explosions, 

fire and so on. Volume rendering simulates effects of light emitted, scattered, and absorbed 

by a large number of tiny particles in the volume. This volume is represented as a uniform 3D 

array of the samples, which are either pre-computed or procedural [JB10]. 

1.2.6 Medicine 

 The main concern of medical visualization is to aid clinicians in their diagnosis, 

surgery and in various training demonstrations. On this front, direct volume rendering is 

important as the surface rendering may lead to missing most important inner parts of the data 

by rendering only the outer surfaces [KM04]. Direct volume rendering consists of making the 
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visualization volumes such that almost all image pixels can contribute to the final visualized 

volume so that the inner parts can be displayed efficiently. Volume rendering in medicine 

involves very large input data in the form of images acquired from different scanners such as 

CAT, MRI, PET, X-Ray, etc. These images contain 3D data that the doctors need to see in 

different directions, scales that can efficiently be done with the help of 3D volumes. Another 

importance of volume rendering in medicine lies in the process of making these volumes 

semitransparent, which allows examining the internal organs and relevant details. Figure 1.4 

shows how volume rendering can be useful in rendering the same 3D dataset in different 

formats allowing doctors for a better volume visualization of the images. 

Application of volume rendering in the field of medicine also has significant 

importance in surgical planning. The surgeon can perform a mock surgery on the 3D volume 

developed using the patient’s image data to decide the actions that need to be taken during the 

actual surgery. 

  

 

Figure 1.4 Application of Volume Rendering in Medicine (Image Courtesy: Osirix) 
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1.3 GPU Based Volume Rendering  
 

Commonly used algorithms for volume rendering run on the system CPU. The CPU 

based execution is computationally expensive given the large datasets and complexities 

involved in the scientific visualization.  

A Graphics processing unit (GPU) is designed with a goal of accelerating the process 

of building the images in the frame buffer. GPUs have proven helpful in the field of computer 

graphics by their parallel structure that makes computation of complex data structure faster 

and more accurate [HN08]. The GPUs were first designed to accelerate the process of texture 

mapping and rendering of polygons. Later advancements in the GPUs resulted in the 

accelerated geometric computations such as rotation, translation, etc. With the help of GPUs, 

efficient programming for various coordinate systems operations is possible. Modern 

development in GPUs has resulted in the development of shaders in the language similar to C 

where vertices and textures can be manipulated to perform various operations such as 

oversampling and interpolation techniques to reduce aliasing, handling very high precision 

color spaces and so on [HN08]. 

GPU computing involves usage of both CPU and GPU in a heterogeneous co-

processing computing model. The sequential part of an application runs on CPU while GPU 

handles the computationally expensive part of the application. Following are some of the 

architectural advancements in GPUs that make them the first choice of many graphics 

programmers: 

1. Chips are based on multiprocessor with eight to ten cores, hundreds of ALUs, 

thousands of registers and some shared memory. 

2. A graphics card contains fast global memory accessible by all multiprocessors, local 

memory accessible by each multiprocessor, and special memory for constants. 
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3. The cores in the multiprocessors execute instructions simultaneously, which is the 

basic style of graphics programming [HL04]. 

Following are the three main types of GPU based rendering: 

1.3.1 2D Texture Based Rendering  

2D texture mapping involves exploiting the 2D texture mapping capabilities by 

storing volumetric data in several textures. In order to perform the rendering, an object-

aligned stack of texture slices is created as shown in Figure 1.5. All the polygons in the stack 

must be aligned to a single axis since for the 2D textured data one of the coordinates should 

be constant. The polygons are mapped with the respective 2D texture, which, in turn, is 

resampled by the hardware-native bilinear filtering. Three stacks of polygons corresponding 

to each of the axis to which the textures are aligned are created. The selection of the stack 

depends upon the camera orientation. [EHK* 06] 

                

 
 
 
 
 
 
 

 
 

Figure 1.5 2D Texture Based Rendering  
 

1.3.2 3D Texture Based Rendering  

A fixed number of slices and the axis-alignment cause several problems to the 2D 

based rendering. The volumes appear similar to being rendered using CPUs. Thus in order to 

acquire better accuracy for the volumes, 3D textured based rendering can be used. Unlike the 

2D texture based rendering, 3D textures based rendering uses viewport-aligned slices that 

allow the user to form the stack of the slices based on what the application demands. Figure 

Geometry 

2D Textures 

Final Volume 
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1.6 depicts the viewport-aligned slices. Thus 3D texture based rendering allows selecting and 

sampling arbitrary points in the 3D textures to form the polygons. 

                    

 
 
 
 
 
 
 

 
Figure 1.6 3D Texture Based Rendering  

 
 

1.3.3 GPU Based Ray Casting  

 Ray casting is the most natural approach to volume rendering, and, when 

implemented in software, this approach is most often used. A ray is cast from the camera 

location to each visible pixel on the surface of the volume-bounding box and values are 

sampled at regular intervals along the segment of each ray inside the volume. It is 

computationally expensive, as a large number of samples have to be taken along each ray to 

get acceptable quality. Figure 1.7 shows principle structure for multipass rendering for GPU 

ray casting [EHK*06]. 

 

Figure 1.7 Multipass Ray Casting Approach 
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1.4 Role of Integration in Ray Casting  
 

As explained in the Section 1.3.3, a ray casting technique transforms a limited form 

of data into 3D projection by tracing rays from the viewing point into the volume. The 

geometry setup for a texture based volume rendering involves creating a view-port aligned 

stack of textures generated from 3D images. In order to perform the volume rendering, a ray 

is cast from the viewing point through this stack intersecting the pixels in the volume.  

Each pixel along the ray has a color and opacity value associated with it which are 

used to determine the transparency, semi-transparency or opacity of the volume as well as the 

color in the form of RGB values. As the ray progresses from the viewpoint into the volume 

these chromaticity and opacity values are integrated to calculate the final color and opacity of 

the volume. For a texture-based volume rendering, when we slice the volume in a back-to-

front order these values are stored in a one-dimensional lookup table, which is used to 

transform the volume data into color, and opacity values [RGW* 03].  

 The chromaticity and opacity values of a value depend upon the effect of light on a 

volume. For example, for a given volume, the transparent volume corresponds to all the 

particles inside the volume emitting the light in contrast to absorbing it. Similarly there can 

be some opaque particles, which absorb all the amount of light being inserted to it. Reflection 

of light can also develop the scattering effect in a volume. Shadows can be formed based on 

the direction of light and the opacity of the particles inside the volume. Based on these 

shadows some of the particles may not be a part of the final volume and need to be discarded 

from the rendering process. All these calculations need to be performed for each ray-volume 

intersection and should be stored in the form of color and opacity values in a lookup table. 

This lookup table is then used to find the integrated value of the final color and opacity of the 

volume. This integration is given by equation (1.1) [DCH88]. 
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 I(D) = I0e
− τ (t )dt
0

D

∫
+ L(s)τ (s)e

− τ (t )dt
0

s

∫
ds

0

D

∫  (1.1) 

This equation says the illumination at distance D along a ray, I(D), is a 

combination of  the background illumination I0, attenuated by the volume from 0 to 

D, and the local lighting contribution at each point, s, along the path from 0 to D, 

attenuated by the portion of the volume between 0 and s. 

1.5 Thesis Contribution  
 
The main contributions of this thesis include: 

1) Three algorithms for adapting the integration step size based on local color and 

opacity: a Poisson distribution algorithm to determine the number of samples in the given 

interval of two consecutive steps, an adaptive step size integration scheme making linear 

changes to the level step, and an adaptive step size integration scheme making scaling 

changes to the integration step size 

2) Comparison of results of different integration techniques on image quality and 

performance in frames per second. 
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Chapter 2: Background and Related Work 

 
A significant amount of work has been done with a goal of accelerating the process 

of volume rendering. Given the applications of volume rendering as discussed in Chapter 1, 

an efficient implementation of the advancements in graphics hardware would result in better 

and faster volume rendering methods. Understanding the application of volume rendering in 

medicine requires some knowledge in medical imaging techniques. This chapter discusses 

different medical imaging techniques, followed by an overview of some mathematical 

integration techniques. We then discuss some prior research in the field of integration for 

volume rendering. 

2.1 Image Modalities 
 

The overall objective of medical imaging is to acquire useful information about 

physiological processes or organs of the body by using external or internal sources of energy 

[PS02]. This subsection discusses the ways by which images are acquired from various 

medical scanning instruments, their modalities and the differences among them. Based upon 

the energy source used for acquiring the images, following are the main categories of medical 

images that are handled in our work. 

2.1.1 PET Scan  

 A PET scan stands for Positron Emission Tomography that allows doctors to 

examine signs of disease, such as areas with increased activity that may signal the origins of 

cancer.  A PET/CT scan involves acquiring the images in a computer-assisted manner 

[www.mayoclinic.com]. 
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2.1.2 CT Scan 

CT stands for Computed Tomography and it is considered to be a sophisticated form 

of X-Ray imaging. The scanner takes X-Ray images of the body at many different angles 

around the body thus generating a series of images. A CT scan shows clear images of bone, 

internal organs, muscles and blood vessels and allows doctors to distinguish between normal 

and diseased or injured tissue [www.medicinenet.com]. Figure 2.1 shows a CT scanner: 

 

Figure 2.1 A Computed Tomography (CT) Scanner (Image Courtesy: www.medicinenet.com) 

2.1.3 MRI Scan 

MRI stands for Magnetic Resonance Imaging. This type of imaging modality uses 

radio waves that force the nuclei of a body’s atoms to different locations that send out their 

own waves while coming back to their original positions. These waves are then used by a 

computer to generate images of body structures. The MRI scanner contains a giant circular 

magnet that creates a strong magnetic field that aligns the protons of hydrogen atoms, which 

are then exposed to a beam of radio waves. This spins the various protons of the body, and 
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they produce a faint signal that is detected by the receiver portion of the MRI scanner 

[www.medicinenet.com]. Figure 2.2 shows the MRI scanner: 

 

Figure 2.2 A Magnetic Resonance (MR) Image Scanner (Image Courtesy: 
www.medicinenet.com) 

 

2.1.4 X-Ray 

 An x-ray image is produced when a small amount of radiation passes through the 

body. The ability of x-rays to penetrate tissues and bones varies according to its composition 

and mass, which allows doctors to obtain images from inside the body [PS02]. 

2.1.5 Multi-Modality 

 As discussed above, a PET scan can efficiently detect physiologic changes in the 

body while a CT scan is helpful in detecting the anatomical structure of the body where 

changes are taking place. Combining these two scans in one PET/CT imaging technique 

provides, during a single outpatient exam, detailed information to physicians about the 

presence or spread of disease and accurately identifies its precise location.  Figure 2.3 shows 

a PET and CT scan separately and also a combination of them. 
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Figure 2.3 A CT and PET Scan and Their Combined Image (Image Courtesy: 
www.mayoclinic.com) 

2.2 Texture Generation 
In the most generalized form, texture mapping is the process used for adding more 

realism to the rendering process. The simplest way to imagine texture mapping is to consider 

pasting a photograph onto the surface of a polygon. This photograph can be of wood, stone, 

brick, cloth and so on. Textures are arrays of data. These data values can be color, luminance 

or color and opacity data.  

In case of the GPU programming textures can be used as a memory. Data values 

pertaining to chromaticity and opacity values can be stored in the texture memory. This 

texture memory is then used in order to perform the volume rendering by ray casting or the 

ray-tracing approach. This process is called as texture based volume rendering. The basic idea 

behind texture based volume rendering is to render a stack of texture slices. This is shown in 

the following figure.  
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pre-integrated colors C̃ C̃ s f sb d and opacities α α s f sb d .
As these tables depend on the transfer functions, any modification
of the transfer functions requires an update of the lookup tables.
This might be no concern for games and entertainment applica-
tions, but it strongly limits the interactivity of applications in the
domain of scientific volume visualization, which often depend on
user-specified transfer functions. Therefore, we will suggest three
methods to accelerate the pre-integration step.
Firstly, under some circumstances it is possible to reduce the di-

mensionality of the tables from three to two (only s f and sb) by as-
suming a constant length of the segments. Obviously, this applies to
ray-casting with equidistant samples. It also applies to 3D texture-
based volume visualization with orthographic projection and is a
good approximation for most perspective projections. It is less ap-
propriate for axes-aligned 2D texture-based volume rendering as
discussed in Section 5.5. Even if very different lengths occur, the
complicated dependency on the segment length might be approxi-
mated by a linear dependency as suggested in [12]; thus, the lookup
tables may be calculated for a single segment length.
Secondly, a local modification of the transfer functions for a par-

ticular scalar value s does not require to update the whole lookup
table. In fact, only the values C̃ s f sb d and α s f sb d with
s f s sb or s f s sb have to be recomputed; i.e., in the worst
case about half of the lookup table has to be recomputed.
Finally, the pre-integration may be greatly accelerated by eval-

uating the integrals in Equations (5), (6), and (7) by employing
integral functions for τ s , c̃ s , and τ s c s , respectively. More
specifically, Equation (5) for αi α s f sb d can be rewritten as

α s f sb d 1 exp d
sb s f

T s f T sb (8)

with the integral function T s : s
0 τ s ds, which is easily com-

puted in practice as the scalar values s are usually quantized.
Equation (6) for C̃i C̃ s f sb d may be approximated analo-

gously:

C̃ s f sb d
d

sb s f
K sb K s f (9)

with the integral function K s : s
0 c̃ s ds. However, this requires

to neglect the attenuation within a ray segment. As mentioned
above, this is a common approximation for post-classified volume
rendering and well justified for small products τ s d.
For the non-associated color transfer function c s we approxi-

mate Equation (7) by

C̃τ s f sb d
d

sb s f
Kτ sb Kτ s f (10)

with Kτ s : s
0 τ s c s ds.

Thus, instead of numerically computing the integrals in Equa-
tions (5), (6), and (7) for each combination of s f , sb, and d, we will
only once compute the integral functions T s , K s , or Kτ s and
employ these to evaluate colors and opacities according to Equa-
tions (8), (9), or (10) without any further integration.

3.6 Application to Volume Rendering Techniques
Pre-integrated classification is not restricted to a particular volume
rendering technique, rather it may replace the post-classification
step of various techniques. For example, in [12] Röttger et al. have
applied pre-integrated classification to cell projection employing
3D textures for the lookup of segment colors C̃ and opacities α.
In fact, the application of pre-integrated classification is quite natu-
ral for the cell projection of tetrahedral meshes, because the linear

interpolation of the scalar field between two samples is exact if the
samples are taken at the faces of tetrahedra as in the case of cell
projection.
Of course, pre-integrated classification may also be employed

in other volume rendering techniques, e.g., software ray-casting of
structured and unstructured meshes. In the remainder of this pa-
per, however, we will focus on the implementation of pre-integrated
classification in texture-based volume rendering algorithms.

4 Texture-Based Pre-Integrated Volume
Rendering

Based on the description of pre-integrated classification in Sec-
tion 3.4, we will now present two novel texture-based algorithms
(one for 2D textures and one for 3D textures) that implement pre-
integrated classification. Both algorithms employ dependent tex-
tures, i.e., rely on the possibility to convert fragment (or pixel)
colors into texture coordinates. The technical details of this table
lookup will be discussed in Section 5.
The basic idea of texture-based volume rendering is to render

a stack of textured slices. Texture maps may either be taken from
three stacks of two-dimensional texture maps (object-aligned slices;
see [11]) or from one three-dimensional texture map (view-aligned
slices; see [3]). Pre-classification is implemented by applying the
transfer functions once for each texel and storing colors and opac-
ities in the texture map(s). On the other hand, post-classification
is performed by storing the scalar field value in the texture map(s)
and applying transfer functions during the rasterization of the slices
for each pixel. Each pixel (more precisely spoken, each fragment)
of a slice corresponds to the contribution of one ray segment to the
volume rendering integral for this pixel. Therefore, the composit-
ing Equations (3) or (4) are employed for the rasterization of the
textured slices. As each fragment of a slice corresponds to one ray
segment, the whole slice corresponds to a slab of the volume as
depicted in Figure 2.

s f
sb

front slice
back slice

Figure 2: A slab of the volume between two slices. The scalar value
on the front (back) slice for a particular viewing ray is called s f (sb).

After these preliminaries, we can now describe pre-integrated
volume rendering using textured slices. The texture maps (either
three-dimensional or two-dimensional textures) contain the scalar
values of the volume, just as for post-classification. As each pair of
adjacent slices (either view-aligned or object-aligned) corresponds
to one slab of the volume (see Figure 2), the texture maps of
two adjacent slices have to be mapped onto one slice (either the
front or the back slice) by means of multiple textures (see Sec-
tion 5.1). Thus, the scalar values of both slices (front and back) are
fetched from texture maps during the rasterization of the polygon
for one slab (see Section 5.2). These two scalar values are required
for a third texture fetch operation, which performs the lookup of
pre-integrated colors and opacities from a two-dimensional texture

 

Figure 2.4 Texture Based Ray Casting 

The figure also shows how a ray can be cast through this stack of textures. As each 

fragment of a slice corresponds to one ray segment, the whole slice corresponds to a slab of 

the volume as depicted. 

2.3 Integration Techniques 

In calculus, numerical integration corresponds to finding a numerical estimate for a 

definite integral.  The problem that the numerical integration handles is to compute a solution 

for a definite integral: 

f (x)
a

b

∫ dx       (2.1) 

 

Here, we try to compute the integral over a definite interval [a,b] for a function f(x). 

The need for calculating the integral numerically arises in many cases. The integrand f(x) may 

be too complex to find a closed-form solution. It is also possible that the integrand f(x) is 

known only at certain arbitrary points and we need the composite value. This is also the case 

for determining the integral in volume rendering which will be discussed in next subsection. 
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Below we discuss some of the main techniques of calculating the integral as defined in 

calculus. 

2.3.1 Linear Integration 

Linear integration is the most basic form of the integration methods where the 

integration is defined by the following formula: 

I( f ) = f (x)
a

b

∫ dx     

 (2.2) 

This is a linear functional defined over a vector space C[a, b] of continuous functions 

on the interval [a, b] to the real numbers.  The linearity of I(ƒ) follows from the standard facts 

about the integral: y ' = f (t, y), y(t0 ) = y0  

I( f + g) = ( f (x)+ g(x))dx
a

b

∫  

                          = f (x)dx
a

b

∫ + g(x)dx
a

b

∫  

              = I( f )+ I(g)    (2.3) 

 

where, f(x) and g(x)  are two  integrals for the defined interval of [a, b] and their 

addition corresponds to the addition of the respective integral values for the given interval 

[DR07]. 
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2.3.2 Runge-Kutta Integration 

The Runge-Kutta methods are used for the implicit and explicit approximation of 

solutions of ordinary differential equations. The most commonly used Runge-Kutta method is 

the fourth order integration known as “RK4”. 

In a Runge-Kutta method an initial value problem and the corresponding RK4 

method is given by the following equations: 

y ' = f (t, y),   tn+1 = tn + h y(t0 ) = y0  

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4 )  

tn+1 = tn + h       (2.4) 

where y’ is a function of time t and y and yn+1 is the RK4 approximation of y(tn+1) 

and the constants k1, k2, k3 and k4 are calculated based upon y and t [DR07]. Runge-Kutta 

integration method can be used adaptively wherein the step size can be altered adaptively 

based upon an estimation of the truncation error. 

2.3.3 Monte Carlo Integration 

Monte Carlo integration is a family of numerical integration techniques, which 

integrate the values at random points as opposed to other numerical integration techniques. 

Monte Carlo integrations are used for the approximate evaluation of the definite integrals; 

normally working on the multidimensional ones. The distinguishing property of Monte Carlo 

integration lies in the way the integrand is operated over random points unlike a regular grid 

of points [DR07].  

The traditional Monte Carlo algorithm distributes the evaluation points uniformly 

over the integration region. Adaptive algorithms such as VEGAS [GL80] and MISER  [PF90] 

use importance sampling and stratified sampling techniques to get a better result. 
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2.4 Ray Casting 

The process of ray casting takes 3D images as input and makes it possible to render 

them on a two-dimensional screen. This is accomplished by tracking the rays of light that 

trace a direct path from the eye to some source of light. However, ray casting discounts the 

influence of any element that may intersect that path between the eye and the light source. In 

this subsection we discuss the process of ray casting and previous work done in this area. 

 In its simplest form, ray casting can be considered as an approach where a ray of light 

is cast from an eye and continuing on its path until it is blocked by some object. As opposed 

to ray tracing where the process involves calculation of ray of light being reflected refracted 

and absorbed by an object; ray casting considers the path of a single ray along a direction. 

2.4.1 Ray Casting Explained 

 

Figure 2.5 Components of a Ray-Casting System 
 

Figure 2.5 depicts the common components of a ray casting method. As shown in the 

figure a ray is cast from an eye that goes through the image plane or the screen where we are 

trying to render the 3D image data and continues on till it hits the object.  
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The complex geometry involves multiple objects in the scene with multiple refractive 

indexes that change the percentage of the ray that is going to form the pixel on the screen. 

This calculation of the percentage of the light ray being reflected refracted or absorbed by the 

object; depends upon the color and opacity of each pixel in the 3D image data. Ultimately the 

color and opacity of the final volume is calculated as a composition of the color and opacity 

values of these individual pixels. This process is explained in detail in the following 

subsection. We limit our discussion to the process of ray casting in this subsection. 

Following is the list of the components of the ray casting system as explained in 

[RPSC99] 

1. Memory System provides the necessary voxel values. 

2. Ray-path Calculation determines the voxels that are penetrated by the given ray 

3. Interpolation estimates the value at a sample location using a small neighborhood 

of voxels 

4. Gradient estimation estimates a surface normal using the neighborhood voxels 

5. Classification maps interpolated sample values and the estimated surface normal 

to a color and opacity 

6. Shading uses gradient and classification information to compute a color based 

upon the interaction of light with the estimated surfaces in the dataset 

7. Composition uses shaded color values and opacity to compute a final pixel color 

for display. 

2.3.2 GPU Based Ray Casting 

We had a brief walkthrough of what a GPU is and how GPU based rendering 

algorithms work in chapter one. This subsection deals with some previous work in the field of 

ray casting on GPUs. 
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A detailed explanation of GPU based ray casting technique is discussed in [HL04]. 

As per [HL04] the basic idea of this technique is to store the entire volume in a single 3D 

texture and use GPU based implementations to render 3D volumes. These implementations 

include creating a vertex and fragment program. Eide explores various GPU based volume 

rendering algorithms in [KE05]. The document explains in detail the evolution of graphics 

cards as well as numerous rendering techniques. It also talks about GPU programming using 

OpenGL Shading Language called GLSL. Some interesting work in the field of hardware-

based ray casting can be seen in work by Stegmaier et al. [SSKE05]. Stegmaier et al. present 

a flexible framework for GPU-based volume rendering. Their work can be extended to other 

shader functionalities. First introduced by Cullip and Neumann [CN94] and Cabral et. al 

[CCF94], the basic concept of ray casting involves creating planar slices based upon the 

geometry of the volume data and sampling through them. A volume rendering integral is 

evaluated at each sample point, by accumulating the textured slices. 

More advanced texture mapping capabilities of the graphics hardware are used to the 

simple GPU-based ray-casting approach. Research in the field of GPU based volume 

rendering mainly focuses on two aims: To increase the quality of the volume being rendered 

and to accelerate the process of volume rendering. Research in improving the quality of 

volume renderings involves implementing multidimensional transfer functions as explained 

by Kniss et al. [KKH02]. In order to achieve high quality 3D volumes of medical image 

datasets Kreeger and Kaufman [KK99] present an algorithm that renders opaque and/or 

translucent polygons embedded within volumetric data. Two streams of algorithms are 

considered for accelerating the process of volume rendering on GPUs: The early ray 

termination technique was first introduced by Whitted [TW80]. As discussed in this paper 

and used by Levoy in his work in [ML90] the early ray termination algorithm has a very 

simple structure. It uses the basic ray casting approach and calculates the color and opacity 

values along the ray path. While calculating the opacity values if a value with highest opacity 
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is encountered, the assumption that nothing beyond that point can be visible is used to 

terminate the ray at that point. Levoy [ML90] incorporated the empty space-skipping 

algorithm. The empty space-skipping algorithm avoids processing empty voxels with the help 

of various pre-computed data structures such as binary volumes, proximity clouds and so on. 

Li et. al. have implemented the empty space skipping algorithm by skipping the rendering of 

invisible voxels and also presented an algorithm that computes incrementally the intersection 

of the volume with the slicing planes in [LMK03]. An integration of early ray termination 

and empty space skipping approach, in order to accelerate the process of GPU-based volume 

rendering is presented by Kruger and Westermann [KW03]. 

2.5 Integration in Volume Rendering 

As explained in Chapter 1, volume rendering is the process of representing 3D image 

data in 2D form. Many implementations are used in order to achieve this representation. The 

field of computer graphics has always been relying on mathematics for the representation of 

complex phenomena such as lighting, reflection, refraction, coordinate systems, projections, 

collisions and so on. This subsection explores the role of integration in volume rendering and 

the past research that has taken place in this area.  

 In a ray casting approach, a transfer function, which maps scalar values and gradients 

to color and opacities, is applied to the volume integral. These color and opacity properties of 

the volume are composited along the rays to obtain final pixel colors. This process of 

composition relies on mathematical integration. The integration process depends upon the 

number of sampling intervals in the volume data, which in turn depends upon the size of the 

data. With increasing size of input dataset, improvements in the integration process are 

needed in order to accelerate the volume rendering which resulted in numerous mathematical 

integration techniques being employed in fragment program of GPU-based ray casting 

technique [EHK*06].  
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The transfer function must be smooth in order to compute the numerical integral 

efficiently and accurately as no general, closed-form solutions are available. For the case of a 

smooth transfer function, well-known adaptive numerical schemes can be employed [NA92], 

and theory from Monte Carlo integration can guide their design [DH92]. However for certain 

rendering effects an infinite amount of sampling density is required. Implementation of 

smooth transfer function limits this range. To handle this problem Roettger et al. introduced a 

now well-known approach of preintegration in their work [RGW* 03]. In this work they have 

demonstrated a way to merge extensions of the original slicing approach namely pre-

integration, volumetric clipping and advanced lighting. According to this work and the work 

of Westermann and Ertl [WE98], the slicing of the volume results in the ring artifacts that can 

be resolved by rendering slabs instead of slices. The ray integral of the ray segments inside 

each slab is a function of the scalar values at the entry and exit points of the ray, and the 

thickness of the slab. The pre-integration technique discussed by Engel et al. [EKE01] 

involves the ray integral calculation of transfer function for each combination of scalar 

values, which is looked up for each rendered pixel.  
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Chapter 3: Approach 

 
In this chapter, we discuss the system implementation. The focus of our 

implementation was to experiment different integration techniques and compare them. We 

discuss the adaptive integration techniques and Poisson distribution technique in this chapter. 

In order to better describe out implementation we start with the system architecture followed 

by describing each phase in the architecture in detail. 

3.1 System Architecture 

 
 
 
 
 
 

 

 

 

 

 

 

Figure 3.1 System Architecture 
 

Figure 3.1 depicts the architecture of our system. As shown in the figure we have 

used the DICOM images acquired from the imaging scanners explained in Chapter 2 as input. 

The method that we have used for volume rendering is GPU-based ray casting where the ray 

casting algorithm takes 3D textures as input. Thus it was required to generate 3D textures of 
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the DICOM images. Shaders are the basic functional units of GPU programming. We 

implemented new integration techniques to compute the frame rate required for volume 

rendering. The following subsections discuss each of these phases in more detail followed by 

the next chapter where we discuss the results. 

3.2 Generation of Textures from DICOM Images 

3.2.1 DICOM Image Format 

Digital information management plays and important role in modern healthcare 

industry. As discussed by Graham et al. in [GPS05] the Digital Imaging and Communication 

in Medicine (DICOM) standard facilitates the communication of digital image information 

regardless of the device the images were acquired from. Digital images are generated by a 

wide variety of radiological hardware. Each device collects data, which are then encoded and 

stored electronically in DICOM format. Various radiological hardware developed by different 

manufacturers collect data in different manners; universal file type DICOM facilitates 

exchange between them.  

Each DICOM file has a header containing amongst other items, patient demographic 

information, acquisition parameters, referrer, practitioner and operator identifiers and image 

dimensions. The remaining portion of the DICOM file contains the image data. Because they 

often contain multiple high-resolution images, DICOM files tend to be large and are 

frequently compressed before storage and transfer. 

Figure 3.2 shows how the DICOM images make it easy to exchange image 

information acquired form various image equipment. The images can also be stored in a 

database from where they can be queried or retrieved as per the requirement. 
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Figure 3.2 Information Exchange using DICOM Images 

3.2.2 Generation of Textures 

Based upon the application textures can be one, two or three-dimensional. Since the 

DICOM images used as the input for our system contained 3-dimensional data, we have used 

3D textures for our implementation. As the volume data increases along the Z-direction, each 

image slice is a 2D image along X and Y-direction. The datasets are discussed in more detail 

in the following chapter. Each image in the series is used to create one texture slice. The stack 

of these textures looked as shown in the following Figure 3.4. These images contain textures 

generated for a selection of image slices in the dataset. We used two datasets for testing our 

implementations namely the skewed head dataset of Figure 3.4 and lobster dataset of Figure 

3.5.  
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Figure 3.3 Texture Slices for Skewed Head Datased in an Increasing Order from (a) to (f) 
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Figure 3.4 Texture Slices for Lobster Dataset an Increasing Order from (a) to (f) 
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3.3 Texture Based Ray-Casting for Volume Generation 

 
 

Figure 3.5 Ray Casting Principle, One Ray per Pixel 
 

Our implementation involves commonly used ray-casting approach. As explained in 

the previous chapters the basic idea behind ray casting is to evaluate the volume rendering 

integral along rays that are traversed from the camera into the volume data. A single ray 

corresponds to one pixel in the images. In order to accumulate light information along the ray 

we need the optical properties of the image pixels. Using the transfer function, scalar data 

values given in the volume data are mapped to these optical properties. This accumulation 

involves compositing chromaticity and opacity values computed at each sample location 

along the ray. Following equations are normally used to compute the color and opacity values 

along the ray: 

Cdst =Cdst + (1−αdst )Csrc  

                  αdst =αdst + (1−αdst )αsrc  
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The implementation uses the following pseudocode as explained by Engel et al. [EHK* 06] 

for ray casting:  

 

 

 

 

We used 3D textures to store our volume data as explained in the previous 

subsection. In order to make efficient use of graphics hardware, we created vertex shader and 

fragment shader that implemented the volume ray-casting algorithm. 

3.4 Shader Programs 

Figure below shows the basic stages of the pipeline through which an application 

goes in order to render an output onto the screen. As depicted in the figure the Vertex, 

Geometry and Pixel processing stages are the programmable units of GPU while the 

Rasterizing and Output stage are fixed functional units.  

 

 

Determine volume entry position  
Compute ray direction 
While (ray position in volume) 
 Access data value at current position 
 Compositing of color and opacity 
 Advance position along ray 
End while 
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Figure 3.6 Fixed Functional and Programmable Units of a GPU Pipeline 
 

Our implementation involves these stages that are written in two shaders namely 

Vertex Shader and Fragment Shader. 

3.4.1 Vertex Shader Program 

A vertex shader is the first stage in GPU pipeline and is responsible for transforming 

the position of each vertex according to the current view. In the vertex shader we 

implemented the vertex transformations as explained in the first stage of the pipeline. Vertex 

shader computed the eye location in the object space in order to transform the vertices in the 

object coordinate system. Since the volume data was stored in 3D texture, which was already 
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generated, no change in the vertices was needed to be done in vertex shader, we simply 

passed the vertex position to fragment shader. The bounding box of the volume was rendered 

as proxy geometry with the dimensions equal to the (x, y, z) dimensions of the volume data. 

The proxy geometry in the form of a bounding box helped us render the volumes in fragment 

shader phase. 

3.4.2 Fragment Shader Program 

The fragment shader in the GPU pipeline is responsible for computing color of each 

rendered pixel. The ray casting algorithm is implemented in the fragment shader for which 

the shader steps along the ray through the volume to determine the pixel color. Our fragment 

shader program involved the implementation of the ray-casting algorithm. As required by the 

ray-casting algorithm, we defined and initialized the maximum number of steps to be taken 

along the ray. We also specified a point to access the volume data from the 3D texture.  

The implementation of the ray-casting algorithm starts with computing the ray origin 

and direction. Ray origin is computed based upon position of the vertex as defined by the 

vertex shader and the size of the volume data. Ray direction is computed based upon the 

origin of the ray and the eye location given by the vertex shader. The eye position affects the 

ray direction thereby affecting the volume being rendered which is discussed in next chapter 

in more detail. 

We then computed the single ray step. For this computation we deal with two types 

of steps namely step in the volume and the step in the optical space. The step in the volume 

was calculated based upon the size of the ray step and the size of volume. Whereas the step in 

the optical space is computed based upon the step in volume space and an optical scale. We 

also define an exit point for the ray. The exit point is computed based upon the smaller of 

following two values: Value of the last coordinate on the axis parallel to which the ray was 

traversed or the smallest coordinate value of the remaining two axes. 
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Once these factors affecting the bounding conditions of the ray are computed we 

implement the volume ray-casting loop. For the given number of steps and the ray that is 

inside the volume; we compute the color and opacity at each ray-step.  This computed value 

is then added to the final resulting color and opacity value that ultimately gives us the 

composited color and opacity value for the volume being rendered. 

This implementation gave us a framework for simple GPU-based ray casting. In 

order to implement accelerated volume rendering of the input images our goal was to 

implement new integration techniques. The derivation and implementation of these 

techniques is discussed in the following subsection of the chapter. 

3.5 Numerical Integration Techniques 

We have mentioned in the thesis contribution subsection that one of the goals of our 

work was to render the volumes with higher frame rates. We implemented better integration 

techniques in order to obtain a significant performance gain. This chapter discusses the 

evaluation of these integration techniques. 

In a ray-casting algorithm we cast a ray through the volume data and at each sample 

interval we compute the color and opacity value of the image pixel. When the ray advances to 

next sampling interval we compute the color and opacity value for the pixel and add it to the 

previous value. Thus a linear computation of color and opacity values is done. This 

integration is thus given a name linear integration. 

Our implementation involved adapting to the sizes of the ray inspired from the 

discussion by Philip J Davis and Philip Rabinowitz [DR07]. This adaptation was performed 

based upon the changes in the volume data. Thus if there are small changes in attributes of 

the volume data then bigger steps were taken while for more interesting changes the step size 

was reduced. Thus in our work we computed the step size which adapted to the changes in 

the volume data. There were two factors that needed to be considered:  
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1) When to change the step size? 

2) How to change the step size? 

These two factors are discussed in the following two subsections. 

3.5.1 Relative Error Computation 

In this subsection we deal with the first question above. In order to adapt to changes 

in the volume data we need to know when should the step size be incremented and when 

should it be decremented. We computed a relative error, which was then compared with a 

threshold in order to see whether more interesting changes are happening, or not.  

We computed the relative error based on color values computed in two consecutive 

ray steps. Consider Cold to be the color value at previous step and Cnew to be the color value at 

current step. Then we first computed the absolute color values based upon the RGB 

components as follows: 

 

 
C = Cr

2 +Cg
2 +Cb

2
  (3.1) 

 

Based upon these absolute values we computed the difference between them as 

follows: 

 relative error  = 
|Cold −Cnew |

Cnew
 (3.2) 

The relative approximation error was at first independent of opacity. In order to adapt 

the sampling as the opacity increases we multiplied the relative error by (αi ) where αi  is the 

opacity at ith sampling step. We then defined a threshold ε  to be the limiting value with 

which this relative error was compared. Thus the answer to the first question above in a 

mathematical form was: 
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|Cold −Cnew |
Cnew

(1−αi )< ε <
|Cold −Cnew |

Cnew

(1−αi )  (3.3) 

This equation computes the relative error and compares it to the threshold. The 

threshold was kept user-defined in order to be dependent upon the dataset. 

3.5.2 Adaptation of Step Sizes 

Once we know when should we change the size of the ray-step, the next question that 

needs to be dealt with is how to change it? We implemented two types of algorithm each of 

which had two separate sub-types. Figure below shows a tree diagram of our implementation 

algorithms.  

 

 

 

 

 

 

 

 

 

Figure 3.7 Hierarchy of Integration Techniques Implemented 

1) Comparison of Level Values: As discussed above we know that for a ray-casting algorithm 

we have defined the number of steps the ray should take in the volume. Thus for the first ray-

step we have compute the size of the step and the corresponding chromaticity and opacity 

values for first sampling pixel. Let’s store these values in Cold  and α1 . Now in order to 

compute the relative error we need to increment the step to next sampling position. Thus we 
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move on to the next step and compute the color and opacity values at this pixel sampling 

position. Let’s call these values Cnew  and α2 . We then compute the relative error using 

equations (1) and (2) above. Thus in this type of integration technique we compared the 

change in volume data based on each of the levels in integration.  

Next, we perform the comparison with the threshold. For the given threshold we 

compare the relative error to see if it is greater or less than the threshold. If the relative error 

is less than the threshold it indicates that not much interesting changes are happening in the 

volume data and thus we can increase size of the ray-step; while a greater relative error 

indicates that there are interesting changes going on in the volume data and thus we take 

smaller steps. These changes in the step size are either linear or scaling as explained below: 

i. Linear Changes: As explained above for a relative error less than the threshold, the 

step size needs to be incremented. Linearly, this was done by incrementing the ray-

step size with a constant factor for example 0.5. Thus our equation looked like 

raystep += 0.5. When the relative error was greater than the threshold the step size 

was linearly decremented by using raystep -= 0.5. The choice of the incrementing and 

decrementing factor is discussed in next chapter. We also needed to prevent the step 

size from incrementing or decrementing linearly such that it does not reach a value 

that was not acceptable. To achieve this we limited the increase as well as the 

decrease in these values by a certain defined number.  

ii. Scaling Changes: Similar to the linear changes, the step size could also be changes 

by scaling up or down. For incrementing the step size when not much interesting 

changes were going on in the volume data we used equation that looked like raystep 

*= 0.5 while when more interesting changes were seen the raystep was reduced by 

the equation raystep /= 0.5.  
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2) Comparison of Integrated Values: In this type of integration technique we defined Cold  

and Cnew  to be the integrated values. Consider for instance that we are at 7th step in the 

volume data. We have the integrated color value for steps 1-6 stored in Cold  while the color 

value computed for steps 1-7 are stored in Cnew . We then compute the relative error using 

equations (3.1) and (3.2) above and then compare it with the threshold. Similar to the level 

comparison, we change the step size linearly or by scaling up and down with a predefined 

factor. This type of integration would be beneficial when the ray gets deep in the volume, 

where errors in integration may be less visible allowing the possibility of taking larger steps 

in case of step-value comparison. 

3.5.2 Numerical Integration Techniques Based on Poisson Distribution 

The other stream of our implementation involved changing the number of samples in 

a single raystep based upon the changes in the color and opacity between two consecutive 

raysteps. This was implemented using the Poisson distribution algorithm, which will be 

discussed in detail in this subsection of the chapter. 

Poisson distribution was first introduced by Simeon Denis Poisson and involves 

finding the probability of a number of events that can occur in a given time or space based 

upon a previous knowledge. We used this algorithm in our work to determine the number of 

samples in one given raystep based upon the previous knowledge of how frequently the color 

and opacity between two raysteps change. The result of this algorithm was in the form of 

number of samples in a given raystep for which the resulting color and opacity values were 

then computed. 

As discussed by Knuth [K69], we implemented the following algorithm to achieve 

Poisson distribution algorithm for finding the number if samples in a given raystep. 
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The algorithm takes as initial values in the form of L, k and p where, k represents the 

number of samples in the given raystep. Our implementation based on the similarity of the 

color values of the pixels in the consecutive raysteps and thus to make the Poisson algorithm 

implementation proportionate to this difference, we initialized L to  where,  represented 

the difference between the color values of pixels in the consecutive raysteps. Thus, similar to 

our earlier implementations we first computed Cold and Cnew for the first two raysteps. Then 

we calculated the difference between these two values and assigned it to . k and p were 

initialized to 0 and 1 respectively. The output of Poisson implementation was used as the 

number of samples in a given raystep for which the color and opacity was recursively 

computed and assigned to the final volume. 

1) Computation of Random Numbers: Another important factor in the Poisson distribution is 

the way random numbers are generated. These random numbers work as a multiplier, which 

ultimately helps in determining the output of the Poisson distribution. We used Linear 

Congruential Generator method to compute the random numbers.  Linear congruential 

generator method provides a set of pseudo-random numbers in the given range using the 

following formula: 

   (3.4) 

where, a, c and m are the pre-selected values for multiplier, increment and modulus 

respectively. I is called as the seed value and each Ik gives a random number in the given 

range. The effectiveness of LCG depends largely upon the initialization values of a, c and m. 

Init: L = , k = 0, p = 1 
do  
 k = k + 1 
 generate random number u in [0, 1]  
 p = p * u 
while p > L 
return k – 1 
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After trying a set of values as discussed by Knuth [K97], we initialized a, c, m to 1664525, 

1013904223, and  respectively. Since we needed to compute the number of samples in the 

single raystep, we divided a, c, m by a uniform value of . The output of this 

implementation was the multiplier used in Poisson distribution. 

3.6 Implementation in LAB Color Space 

In the previous subsection we discussed numerical integration techniques for RGB 

Color Space. To compare our integration techniques with more minute details, we also 

implemented these techniques for LAB Color Space. The LAB color space as compared to 

RGB color space represents L channel for lightness and the A and B channels for the color 

opponent dimensions.  

We used following standard equations to convert the RGB color space to XYZ and 

then XYZ to LAB. This color in LAB space was then used to compute the final result value.  

Cxyx.x =Crgb.r *0.4124+Crgb.g *0.3576+Crgb.b *0.1805  (3.5) 

Cxyx.y =Crgb.r *0.2126+Crgb.g *0.7152+Crgb.b *0.0722  (3.6) 

Cxyx.z =Crgb.r *0.0193+Crgb.g *0.1192+Crgb.b *0.9505  (3.7) 

where, Cxyz and Crgb indicate colors in XYZ and RGB color space respectively.  

Clab.l =116*( Cxyz.y
3 −16)      (3.8) 

Clab.a = 500*( Cxyz.x
3 − Cxyz.y

3 )      (3.9) 

Clab.b = 200*( Cxyz.y
3 − Cxyz.z

3 )      (3.10) 

where, Cxyz and Clab indicate colors in XYZ and LAB color space respectively. 
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Chapter 4: Results 

In this chapter we discuss the results of our implementation. We start with discussing 

the datasets we have used, the hardware on which we performed our experiments and 

conclude the chapter with the comparisons of performance gains and image quality acquired. 

4.1 Datasets and Hardware Used 

The datasets that we used for our implementation were taken from the webpage of 

Osirix DICOM Image Viewer software. The sizes of the datasets were in the range of 5MB to 

300MB. We selected the datasets of sizes in the range of 100MB to 200MB. The DICOM 

images were read by the Grassroots DICOM image library (GDCM) and then the image data 

was stored in a data file (.dat) to gain simplicity in accessing it. The results discussed in this 

chapter are rendered on a NVIDIA GeForce 320M graphics processor with 256MB of DDR3 

SDRAM.  

 We needed to design a way in which the images acquired by our implementation 

could be compared for quality with the original images. We devised two ways for the image 

quality comparison. The first one was a graphical comparison for which, we developed a 

MATLAB code to find the difference between the two images. We frequently use these 

difference images to illustrate the image quality of our implementation in the remaining of 

this chapter. The second stream of image quality comparison involved quantitative analysis 

for which we used Structural SIMilarity (SSIM) index. As discussed by Zhou Wang et al. in 

[WBSS04] SSIM computes the difference between two images based on the statistical 

features of the images, image distortions, viewing distances for the images and localized 

quality measurements. The implementation of SSIM algorithm in the form of DSSIM toolkit 

by Pornel gave us a numerical representation of the image quality, which is also presented in 
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this chapter. Based on the SSIM algorithm implementation, a SSIM index of 0 represents no 

difference between the two images being compared while as the index increases more 

difference between the two images is found. Thus, given to our implementation, a SSIM 

index value close to 0 indicated the similar quality of the output image to that of the original 

image and as the index value increased, the image quality was considered to be deteriorated.  

 In order to compare the results generated by each type of integration technique some 

interactivity in the system was needed. We implemented this interactivity in the form of a 

run-time change in shaders containing different integration techniques. This resulted in 

smooth transition between shaders. 

4.2 Comparison of Results 

4.2.1 Level Value Comparison (Linear Changes) 

In case of a level value comparison for a relative error, which was less than the 

threshold, we increased the step size linearly with a factor of 1. In order to avoid the linear 

increment to reach infinity, we limited the maximum step size value to 6.0. We gained a 

significant amount of frames per second for the same quality of the images as that of the ones 

produced by the original integration technique. These images and the performance gain are 

depicted in the following diagrams.   
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Figure 4.1 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader 
Implementation (c) Difference Image [Dataset: Skewed Head] 

 

(a) (b) 

(c) 

(a) (b) 
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  (a)      (b) 

 

 
(c) 

Figure 4.2 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader 
Implementation (c) Difference Image [Dataset: Skewed Head] 

 
 

 
 

Dataset Size Dimensions Threshold (ε) FPS SSIM 
Index 

Skewed Head 120 MB 184x256x170 0.03 60 0.0067 
Lobster 27 MB 120x120x34 0.03 548 0.0004 
Present 69 MB 246x246x221 0.03 27 0.002 

 
Table 4.1 Performance Table for Level Value Comparison (Linear Changes) 

Figures 4.1 and 4.2 show the images taken from a single viewpoint. The first two 

parts of the figures, (a) and (b), show the original image and the output image after the 
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implementation of the linear integration. These two figures show the images when the 

raysteps were incremented and decremented by a factor of 0.1 and 1.0 respectively. The 

SSIM index values for these two comparisons were 0.0067 and 0.0006 respectively. Since 

these index values are almost close to 0, it shows that there was no significant difference 

between the two images for a performance gain as shown in the table 4.1. However, figure 

4.3 below shows that when the raystep was incremented and decremented by a factor of 2.0 

some difference in the two images with a SSIM index of 0.0326 was found for the same 

amount of performance gain. 

      
(a)      (b) 

 
(c) 

Figure 4.3 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader 
Implementation (c) Difference Image [Dataset: Skewed Head] 
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Figure 4.4 Performance Graph for Level Value Comparison (Linear Changes) 

 

 
Figure 4.5 Image Quality Graph for Level Value Comparison (Linear Changes) 
 

Figure 4.4 shows a graph of the performance in the form of frames per 

second against the different step size values used for linearly changing the ray step. 

Different lines in the graph represent the different angles at which the images were 
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taken. This graph shows that when the step sizes were linearly changed within a 

range of 1 to 2 we found a significant performance gain compared to the frame rate 

of original implementation (17 fps). The graph in Figure 4.5 indicates the image 

quality in the form of SSIM index at different step sizes. As can be seen from this 

graph when the step sizes were linearly changed in the range of 0.1 to 1 we found the 

images, which were close to the original image. The combination of these graphs can 

lead to a conclusion that when the step sizes were linearly changed within a range of 

0.1 to 1.5 we found a significant gain of upto 20 frames per second without losing 

image quality in the form of SSIM index. 

4.2.2 Level Value Comparison (Scale Changes) 

For a relative error, which was greater than the threshold, we decreased the step size 

linearly with a factor of 0.5. In order to avoid the linear decrement to go below 0, we limited 

the minimum step size value to 0.0. We gained a significant amount of frames per second for 

the same quality of the images as that of the ones produced by the original integration 

technique. These images and the performance gain are depicted in the following diagrams. 

Dataset Size Dimensions Threshold (ε) FPS SSIM 
Index 

Skewed Head 120 MB 184x256x170 0.03 50 0.0011 
Lobster 27 MB 120x120x34 0.03 560 0.0121 
Present 69 MB 246x246x221 0.03 36 0.0062 

 
Table 4.2 Performance Table for Level Value Comparison (Scale Changes) 
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        (a)                                                             (b) 

 
(c) 

Figure 4.6 Level Value Comparison (Scale Changes): (a) Original Image (b) Shader 
Implementation (c) Difference Image [Dataset: Lobster] 

 

      
       (a)                    (b) 
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(c) 

 
Figure 4.7 Level Value Comparison (Scale Changes): (a) Original Image (b) Shader 

Implementation (c) Difference Image [Dataset: Lobster] 
 

In order to evaluate the quality of images acquired using this integration method, we 

use the lobster dataset as shown in Figure 4.6. Figure 4.6 shows the output when the stepsize 

was increased and decreased with a scaling factor of 1.2 and 0.5 respectively. For this 

implementation we achieved a SSIM index of 0.0011. For a very high boost in the 

performance gain we got a deteriorated quality output when the stepsize was changed by a 

factor of 0.1 as depicted by the figure 4.7. At this higher performance gain the SSIM index 

was 0.2410. This performance gain vs. stepsize changing factor comparison is shown in the 

following graph of figure 4.8. Based on the following graph and the images shown in the 

previous and current subsections it can be seen that linear changes in stepsizes are more 

efficient than the scale changes. 
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Figure 4.8 Performance Graph for Level Value Comparison (Scale Changes) 
 

 
Figure 4.9 Image Quality Graph for Level Value Comaprison (Scale Changes) 

 

Figure 4.8 shows a graph of the performance in the form of frames per second against 

the different step size values used for scaling the ray step. Different lines in the graph 

represent the different angles at which the images were taken. This graph shows that when 
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the step sizes were scaled up or down within a range of 1.5 to 3 we found a significant 

performance gain compared to the frame rate of original implementation (17 fps). The graph 

in Figure 4.9 indicates the image quality in the form of SSIM index at different step sizes. As 

can be seen from this graph when the step sizes were changed in the range of 1 to 2 we found 

the images, which were close to the original image. This graph also shows that as the scaling 

factor increased, the image quality degraded for all viewpoints. The combination of these 

graphs can lead to a conclusion that when the step sizes were changed within a range of 1.5 to 

2.5 we found a significant gain of upto 20 frames per second without losing image quality in 

the form of SSIM index. 

4.2.3 Integrated Value Comparison (Linear Changes) 

We also discussed in previous chapter how the integrated value comparison was 

implemented. For a relative error, which was less than the threshold, we increased the step 

size linearly with a factor of 1. In order to avoid the linear increment to reach infinity, we 

limited the maximum step size value to 6.0. We gained a significant amount of frames per 

second for the same quality of the images as that of the ones produced by the original 

integration technique. These images and the performance gain are depicted in the following 

diagrams. 

Dataset Size Dimensions Threshold (ε) FPS 
SSIM  
Index 

Skewed Head 120 MB 184x256x170 0.03 58 0.0003 
Lobster 27 MB 120x120x34 0.03 420 0.0025 
Present 69 MB 246x246x221 0.03 28 0.0002 

Table 4.3 Performance Table for Integrated Value Comparison (Linear Changes) 

Figures 4.10 and 4.11 show the images taken from a single viewpoint. These two 

figures show the images when the raysteps were incremented and decremented by a factor of 

0.5 and 1.0 respectively. SSIM indices for these two image comparisons were found to be 

0.0003 and 0.0028 respectively. Since the figure (c) is blank and based on the SSIM index 

values, we can say that there was no significant difference between the two images for a 
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performance gain as shown in the Table 4.3. As can be seen in the following figures, there 

was not much change in the results found when the comparison involved integrated values as 

opposed to the values at individual levels. 

   

(a)       (b) 
 

 
 (c) 

Figure 4.10 Integrated Value Comparison (Linear Changes): (a) Original Image (b) Shader 
Implementation (c) Difference Image [Dataset: Skewed Head] 
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(a)            (b) 
 

 
       (c) 

Figure 4.11 Integrated Value Comparison (Linear Changes): (a) Original Image (b) 
Shader Implementation (c) Difference Image [Dataset: Skewed Head] 
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Figure 4.12 Performance Graph for Integrated Value Comparison (Linear Changes) 

 

 
Figure 4.13 Image Quality Graph for Integrated Value Comparison (Linear Changes) 

 
Figure 4.12 shows a graph of the performance in the form of frames per second 

against the different step size values used for linearly changing the ray step. Different lines in 
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the graph represent the different angles at which the images were taken. This graph shows 

that we found a significant performance gain compared to the frame rate of original 

implementation (17 fps) except when the step sizes were changed with a factor of 0.5. The 

graph in Figure 4.13 indicates the image quality in the form of SSIM index at different step 

sizes. As can be seen from this graph for all step sizes we found the images, which were close 

to the original image. 

4.2.4 Integrated Value Comparison (Scale Changes) 

For a relative error, which was greater than the threshold, we decreased the step size 

linearly with a factor of 0.5. In order to avoid the linear decrement to go below 0, we limited 

the minimum step size value to 0.0. We gained a significant amount of frames per second for 

the same quality of the images as that of the ones produced by the original integration 

technique. These images and the performance gain are depicted in the following diagrams. 

Dataset Size Dimensions Threshold (ε) FPS 
SSIM 
Index 

Skewed Head 120 MB 184x256x170 0.03 40 0.0201 
Lobster 27 MB 120x120x34 0.03 511 0.0314 
Present 69 MB 246x246x221 0.03 33 0.0035 

Table 4.4 Performance Table for Integrated Value Comparison (Scale Changes) 
 

In order to evaluate the quality of images acquired using this integration method, we 

used the skewed head dataset as shown in Figure 4.14. Figure 4.14 shows the output when the 

stepsize was increased and decreased with a scaling factor of 1.2 and 0.1 respectively. With 

the above-mentioned values, the SSIM index value achieved was 0.0201. For a very high 

boost in the performance gain we got a deteriorated quality output with SSIM index of 0.1386 

when the stepsize was changed by a factor of 0.1 as depicted by the Figure 4.15. This 

performance gain vs. stepsize changing factor comparison is shown in the following graph of 

Figure 4.16. 
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       (a)       (b) 

 

 
(c) 

 
Figure 4.14 Integrated Value Comparison (Scale Changes): (a) Original Image (b) Shader 

Implementation (c) Difference Image [Dataset: Skewed Head] 
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          (a)      (b) 

 

 
(c) 

 
Figure 4.15 Integrated Value Comparison (Scale Changes): (a) Original Image (b) Shader 

Implementation (c) Difference Image [Dataset: Skewed Head] 
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Figure 4.16 Performance Graph for Integrated Value Comparison (Scale Changes) 

 

 
Figure 4.17 Image Quality Graph for Integrated Value Comparison (Scale Changes) 

 

 Figure 4.16 shows a graph of the performance in the form of frames per second 

against the different step size values used for scaling the ray step. Different lines in the graph 
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represent the different angles at which the images were taken. This graph shows that when for 

all the step sizes we found a significant performance gain, excluding at some viewpoints, 

compared to the frame rate of original implementation (17 fps). The graph in Figure 4.17 

indicates the image quality in the form of SSIM index at different step sizes. As can be seen 

from this graph when the step sizes were changed in the range of 2 to 3 we found the images, 

which were close to the original image. This graph also shows that for a scaling factor of 1.5, 

the image quality degraded when the volume was viewed at 135o. The combination of these 

graphs can lead to a conclusion that when the step sizes were changed within a range of 2 to 3 

we found a significant gain of upto 30 frames per second without losing image quality in the 

form of SSIM index. 

4.2.5 Effects of Threshold 

In this subsection we talk about the effects of changing the threshold with which the 

difference between color values at intermediate stages in the integration process were 

compared. As we have discussed in previous sections the threshold value was bound between 

0.0 and 0.05 in order to check smaller changes in the volume data while it was bound 

between 0.05 and 0.1 to check greater changes. Thus to compare the results based on 

threshold, we changed the bounding values of threshold from 0.05 to 0.15 and 0.1 to 0.2. The 

image quality was highly deteriorated with SSIM indices of 0.0935 and 0.0314 for both the 

datasets of lobster and skewed head while the frames per second were boosted. Thus 

irrespective of the size of dataset a change in the threshold value affected the image quality 

negatively.  Figures 4.18 and 4.19 show the images we got when we had set the threshold 

value to 0.15 and 0.2 respectively.  
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                         (a)                                                (b)                                               (c) 
Figure 4.18 Threshold Comparison (ε = 0.15): (a) Original Image (b) Shader Implementation (c) 

Difference Image 
 
 

 
     (a)                                         (b)                                            (c) 

Figure 4.19 Threshold Comparison (ε = 0.2): (a) Original Image (b) Shader 
Implementation (c) Difference Image 

4.2.6 Poisson Distribution Algorithm 

In this subsection we perform the image quality analysis of Poisson distribution 

algorithm implementation. As discussed in the implementation details chapter, this 

implementation involved changing the number of samples in a given raystep based upon the 

change in color and opacity values of consecutive image pixels. Figures 4.20 and 4.21 below 

show the images acquired using Poisson distribution algorithm with two different datasets. 

We achieved a framerate that was nearly equivalent to the earlier framerate of 50 frames per 

second for the skewed head dataset and 300 frames per second for the lobster dataset. Image 

quality with respect to SSIM index was found to be 0.0512 and 0.0300. Thus we can say that 

for the Poisson distribution implementation we did not achieve a significant performance gain 

while the output images were deteriorated as compared to the original images. 
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          (a)                 (b) 
 

 
                                                                           (c) 

Figure 4.20 Poisson Distribution Algorithm: (a) Original Image (b) Shader Implementation (c) 
Difference Image 
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         (a)                                                     (b)             

  
                                            (c) 

Figure 4.21 Poisson Distribution Algorithm: (a) Original Image (b) Shader 
Implementation (c) Difference Image 

4.2.7 Experiments in LAB Color Space 

This subsection talks about the performance and image quality comparisons, when 

the volumes were generated using LAB color space. Figure 4.22 and Figure 4.23 show the 

comparison of images acquired in RGB and LAB color space when the step size was linearly 

changed with a factor of 1.5 and with a scaling factor of 1.2 and 0.5 respectively. We found 

that there was a significant difference between the image quality in LAB color space and in 

RGB color space with LAB color space resulting in better images. But at the same time 

performance in the form of frames per second was seen to have decreased from 60 fps to 48 
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fps in case of linear changes and from 50 fps to 36fps in case of scale changes. An 

improvement in image quality with an SSIM index of 0.0001 was a result of better 

comparison between color values at different steps, while the lower performance can be 

thought of as result of higher computations (in the form of cube root computations) at each 

raystep in the volume data.  

       

   (a)             (b) 

 

Figure 4.22 RGB vs. LAB Comparison (Linear Changes): (a) RGB Image (b) LAB Image 
      

                                 

      

(a)      (b) 

Figure 4.23 RGB vs. LAB Comparison (Scale Changes): (a) RGB Image (b) LAB Image        
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Chapter 5:  Conclusion and Future Work 

 In this thesis we have presented a discussion of GPU based ray casting techniques 

and their advantages. We have incorporated a GPU based ray casting technique for our work, 

which involved using texture based volume rendering. Our work can mainly be divided into 

two stages. The first stage involved developing a GPU based volume renderer for medical 

images. Our system accepted DICOM images acquired from imaging scanners as inputs and 

converted them to 3D textures using OpenGL implementation. Once the volume data was 

stored in these textures we developed vertex and fragment shader programs to implement the 

ray-casting algorithm. Our vertex shader computed the viewpoint for the volume and passed 

texture information to the fragment shader. Our fragment shader then computed the size of 

the raystep and performed the ray-casting algorithm for the predefined number of raysteps. 

This gave us a volume renderer independent of any library or toolkit for reading the DICOM 

images.  

The second stage of our implementation involved trying out different numerical 

integration techniques for compositing the chromaticity and opacity values along the 

direction of the ray. The implementations involved computing these values for one level and 

comparing them with the values of the current level. The other type of implementation 

involved computing the integrated values of color and opacity at different ray samples. For 

more interesting changes in the volume data we decreased the size of the ray while for less 

interesting changes in the volume data the ray size was increased. In order to change the size 

of the ray step we incorporated linear as well as scaling increments and decrements. One 

other stream of our implementation involved finding the number of samples in a given 

raystep for more accurate volumes. This was done using the Poisson distribution algorithm 

technique where the difference between the color values of pixels in the consecutive raysteps 

was used as an input to Poisson distribution. Our system also incorporated some user 
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interactivity in the form of allowing the user to change the type of the shaders during runtime, 

zooming in and out of the volume, a pause and resume facility for the application while it was 

rotating, a print screen function which could save the current image in a PPM file format, etc. 

Our system could achieve an interactive frame rate from 10 FPS to almost above 150 FPS 

depending upon the size and complexity of the volume data being considered. Based on the 

performance we achieved for different integration techniques and the image qualities; we can 

say that linear changes in the size of a raystep can produce better results with a significant 

increase in frames per second as compared to scale changes. With scale changes resulting in 

deterioration of image quality with a very high performance gain, we found out that Poisson 

distribution implementation resulted in no performance gain yet a deteriorated image quality. 

The techniques were tested on a range of very small and trivial datasets to very large and 

complex datasets. Based on these results we can also say that the level values as well as 

integrated value comparison given to linear changes in the stepsizes can be applied to all 

kinds of dataset to achieve a significant performance gain. The implementation algorithm was 

also tested for LAB color space and based on the comparison results with RGB color space 

we can conclude that the implementation in LAB color space is useful where visual 

comparison between images is required. 

 We expect our system to work for more complex datasets containing computationally 

expensive texture information. The integration techniques that we have currently 

implemented compare the chromaticity and opacity values of the volume data at different ray 

samples. The same technique can be applied to compare the gradient, intensity and other such 

factors that might affect the computational complexity of an algorithm. Some sort of user 

interactivity can still be implemented into the system in the form of run-time change in the 

datasets, cropping of volumes, some lighting sources, etc. 
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