

APPROVAL SHEET

Title of Thesis: Numerical Integration Techniques for Volume Rendering

Name of Candidate: Preeti Bindu
 Master of Science, 2012

Thesis and Abstract Approved: _________________________________
 Dr. Marc Olano
 Associate Professor
 Department of Computer Science
 and Electrical Engineering

Date Approved: ________________

Curriculum Vitae

Name: Preeti Subhash Bindu.

Permanent Address: 357, White Ash Place, Gaithersburg, MD – 20878.

Degree and date to be conferred: M.S. in Computer Science, May 2012.

Date of Birth: 02/04/1988.

Place of Birth: Aurangabad, India.

Secondary Education: Deogiri College, Aurangabad, India.

Collegiate institutions attended:
University of Maryland Baltimore County, M.S Computer Science, 2012.
Government College of Engineering, BE Information Technology, 2009.

Major: Computer Science.

Professional positions held:
Software Engineer Idea Fabrik Studios Plc. (November 2011 - Present)
3D Graphics Engineering Intern Global Science and Technology Inc.
(June 2010 – August 2011)

ABSTRACT

Title of Document: NUMERICAL INTEGRATION TECHNIQUES

FOR VOLUME RENDERING

 Preeti Subhash Bindu

MS in Computer Science
May 2012

Directed By: Dr. Marc Olano, Associate Professor

Department of Computer Science
And Electrical Engineering

Medical image visualization often relies on 3D volume rendering. To enable

interaction with 3D rendering of medical scans, improvements in the performance of

Volume Rendering Algorithms need significant attention. Real-time visualization of

3D image data set is one of the key tasks of Augmented Reality Systems required by

many medical imaging applications. Over past five years the development of the

Graphics Processing Unit (GPU) has proved beneficial when it comes to Real Time

Volume Rendering. We propose a GPU based volume rendering system for medical

images using adaptive integration to improve performance. Our system is able to read

and render DICOM images, implementing adaptive integration techniques that

increase frame rate for volume rendering with the same quality of output images.

NUMERICAL INTEGRATION TECHNIQUES FOR VOLUME RENDERING

By

Preeti Subhash Bindu

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of
[Master of Science]

[2012]

© Copyright by
Preeti Subhash Bindu

2012

 i

Dedicated to Aai, Pappa

 ii

Acknowledgements

I would like to express my sincere gratitude to my advisor Dr. Marc Olano. I thank

him for the constant support and guidance, and for his continued belief in me

throughout this thesis work. I am thankful for his words of advice and many skills I

have gained by working with him.

I would like to extend my sincere thanks to Dr. Penny Rheingans, Dr. Samir Chettri

for graciously agreeing to be on my thesis committee.

I am thankful to all VANGOGH Lab members for their suggestions. My special

thanks to Kishlay Kundu for his help during the implementation phase. I thank my

roommates and friends for timely reviewing my draft.

 iii

 iv

Table of Contents

Dedicated to Aai, Pappa .. i

Acknowledgements ... ii

Table of Contents ... iv

List of Tables .. vii

List of Figures .. viii

Chapter 1: Introduction ... 1

1.1 Volume Rendering .. 1

1.2 Applications of Volume Rendering .. 5

1.2.1 Geoscience ... 5

1.2.2 Astrophysics ... 5

1.2.3 Chemistry ... 5

1.2.4 Mechanical Engineering .. 6

1.2.5 Gaming ... 6

1.2.6 Medicine .. 6

1.3 GPU Based Volume Rendering .. 8

1.3.1 2D Texture Based Rendering ... 9

1.3.2 3D Texture Based Rendering ... 9

1.3.3 GPU Based Ray Casting .. 10

1.4 Role of Integration in Ray Casting ... 11

1.5 Thesis Contribution ... 12

Chapter 2: Background and Related Work ... 13

2.1 Image Modalities .. 13

2.1.1 PET Scan .. 13

2.1.2 CT Scan .. 14

2.1.3 MRI Scan ... 14

2.1.4 X-Ray ... 15

2.1.5 Multi-Modality ... 15

2.2 Texture Generation ... 16

2.3 Integration Techniques .. 17

 v

2.3.1 Linear Integration ... 18

2.3.2 Runge-Kutta Integration .. 19

2.3.3 Monte Carlo Integration ... 19

2.4 Ray Casting ... 20

2.4.1 Ray Casting Explained ... 20

2.3.2 GPU Based Ray Casting .. 21

2.5 Integration in Volume Rendering ... 23

Chapter 3: Approach ... 25

3.1 System Architecture .. 25

3.2 Generation of Textures from DICOM Images .. 26

3.2.1 DICOM Image Format ... 26

3.2.2 Generation of Textures .. 27

3.3 Texture Based Ray-Casting for Volume Generation .. 30

3.4 Shader Programs ... 31

3.4.1 Vertex Shader Program .. 32

3.4.2 Fragment Shader Program ... 33

3.5 Numerical Integration Techniques .. 34

3.5.1 Relative Error Computation ... 35

3.5.2 Adaptation of Step Sizes .. 36

3.5.2 Numerical Integration Techniques Based on Poisson Distribution 38

3.6 Implementation in LAB Color Space ... 40

Chapter 4: Results ... 41

4.1 Datasets and Hardware Used .. 41

4.2 Comparison of Results .. 42

4.2.1 Level Value Comparison (Linear Changes) .. 42

4.2.2 Level Value Comparison (Scale Changes) .. 47

4.2.3 Integrated Value Comparison (Linear Changes) 51

4.2.4 Integrated Value Comparison (Scale Changes) ... 55

4.2.5 Effects of Threshold ... 59

4.2.6 Poisson Distribution Algorithm ... 60

4.2.7 Experiments in LAB Color Space .. 62

 vi

Chapter 5: Conclusion and Future Work ... 64

Bibliography ... 66

 vii

List of Tables

Table 4.1 Performance Table for Level Value Comparison (Linear Changes) 44	

Table 4.2 Performance Table for Level Value Comparison (Scale Changes) 47	

Table 4.3 Performance Table for Integrated Value Comparison (Linear Changes) ... 51	

Table 4.4 Performance Table for Integrated Value Comparison (Scale Changes) 55	

 viii

List of Figures

Figure 1.1 (a) & (b) Example of 2D slices of images acquired from a CT scan (c) 3D

volume rendering of the input images (Image Courtesy: Osirix) 2	

Figure 1.2 Volumetric Grid ... 3	

Figure 1.3 Volume Ray Casting Technique .. 4	

Figure 1.4 Application of Volume Rendering in Medicine (Image Courtesy: Osirix) . 7	

Figure 1.5 2D Texture Based Rendering .. 9	

Figure 1.6 3D Texture Based Rendering .. 10	

Figure 1.7 Multipass Ray Casting Approach .. 10	

Figure 2.1 A Computed Tomography (CT) Scanner (Image Courtesy:

www.medicinenet.com) .. 14	

Figure 2.2 A Magnetic Resonance (MR) Image Scanner (Image Courtesy:

www.medicinenet.com) .. 15	

Figure 2.3 A CT and PET Scan and Their Combined Image (Image Courtesy:

www.mayoclinic.com) .. 16	

Figure 2.4 Texture Based Ray Casting ... 17	

Figure 2.5 Components of a Ray-Casting System .. 20

Figure 3.1 System Architecture………………………………..…………………….25

Figure 3.2 Information Exchange using DICOM Images…………………..………..27

Figure 3.4 Texture Slices for Skewed Head Datased in an Increasing Order from (a)

to (f)…………………………………………………………………….………28

Figure 3.5 Texture Slices for Lobster Datasein an Increasing Order from (a) to (f)...29

Figure 3.6 Ray Casting Principle, One Ray per Pixel………………………… ……30

Figure 3.7 Fixed Functional and Programmable Units of a GPU Pipeline..…………32

Figure 3.8 Hierarchy of Integration Technics Implemented………………………....36

Figure 4.1 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Skewed Head] 43	

 ix

Figure 4.2 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Skewed Head] 44	

Figure 4.3 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Skewed Head] 45	

Figure 4.4 Performance Graph for Level Value Comparison (Linear Changes) 46	

Figure 4.5 Image Quality Graph for Level Value Comparison (Linear Changes) 46	

Figure 4.6 Level Value Comparison (Scale Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Lobster] 48	

Figure 4.7 Level Value Comparison (Scale Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Lobster] 49	

Figure 4.8 Performance Graph for Level Value Comparison (Scale Changes) 50	

Figure 4.9 Image Quality Graph for Level Value Comaprison (Scale Changes) 50	

Figure 4.10 Integrated Value Comparison (Linear Changes): (a) Original Image (b)

Shader Implementation (c) Difference Image [Dataset: Skewed Head] 52	

Figure 4.11 Integrated Value Comparison (Linear Changes): (a) Original Image (b)

Shader Implementation (c) Difference Image [Dataset: Skewed Head] 53	

Figure 4.12 Performance Graph for Integrated Value Comparison (Linear Changes) 54	

Figure 4.13 Image Quality Graph for Integrated Value Comparison (Linear Changes)

... 54	

Figure 4.14 Integrated Value Comparison (Scale Changes): (a) Original Image (b)

Shader Implementation (c) Difference Image [Dataset: Skewed Head] 56	

Figure 4.15 Integrated Value Comparison (Scale Changes): (a) Original Image (b)

Shader Implementation (c) Difference Image [Dataset: Skewed Head] 57	

Figure 4.16 Performance Graph for Integrated Value Comparison (Scale Changes) . 58	

Figure 4.17 Image Quality Graph for Integrated Value Comparison (Scale Changes)

... 58	

Figure 4.18 Threshold Comparison (ε = 0.15): (a) Original Image (b) Shader

Implementation (c) Difference Image ... 60	

Figure 4.19 Threshold Comparison (ε = 0.2): (a) Original Image (b) Shader

Implementation (c) Difference Image ... 60	

 x

Figure 4.20 Poisson Distribution Algorithm: (a) Original Image (b) Shader

Implementation (c) Difference Image ... 61	

Figure 4.21 Poisson Distribution Algorithm: (a) Original Image (b) Shader

Implementation (c) Difference Image ... 62	

Figure 4.22 RGB vs. LAB Comparison (Linear Changes): (a) RGB Image (b) LAB

Image ... 63	

Figure 4.23 RGB vs. LAB Comparison (Scale Changes): (a) RGB Image (b) LAB

Image ... 63	

 xi

 1

Chapter 1: Introduction

The healthcare industry has always been a motivation for research in computer

graphics. The increasing demands on clinicians have led to the real-time visualization of 2D

and 3D image data. The inputs to the volume visualization technique are the images acquired

from CAT, MR or PET scan, the sizes of which tend to be fairly large. It is a difficult task to

achieve interactive frame rates with the highest accuracy. The computational complexity of

the CPU based volume rendering algorithms has led to the use of new technologies involving

Graphics Processing Units (GPUs). GPUs have hundreds to thousands of parallel processors.

During graphics rendering, these processors execute programs; the program is executed once

per vertex (called a vertex shader), or once per pixel (called a fragment shader). Modern

graphics cards include a GPU capable of executing small vertex and fragment shader

programs. The use of these shader programs can harness the power of the GPU for real-time

rendering. In this chapter we explore the process of volume rendering, along with its

applications and the motivation behind this thesis and the contributions made.

1.1 Volume Rendering

Volume rendering is the process of transforming 3D discretely sampled dataset into a

2D image [MW10]. The discretely sampled data can be in the form of the images acquired

from CAT or MR scans and other such modalities. The 3D data consists of 2D slices of these

images. Figures 1.1 (a) and (b) show the 2D slices acquired from a CAT scanner while Figure

1.1 (c) shows the corresponding volume created using the process of volume rendering:

 2

 (a) (b)

(c)

Figure 1.1 (a) & (b) Example of 2D slices of images acquired from a CT scan (c) 3D
volume rendering of the input images (Image Courtesy: Osirix)

 3

Figure 1.2 Volumetric Grid

As shown in Figure 1.2, the volume dataset is in the form of 2D image slices. These

images slices form a volumetric grid each element of which is called as a voxel as shown in

Figure 1.2. Each voxel is assigned an opacity and color value, which contribute to the

formation of the volume. The color values are computed by a color transfer function in the

form of red, green and blue (RGB) color channels while the opacity is defined by an opacity

transfer function in the form of an alpha (A) channel.

There have been numerous methods and algorithms presented for volume rendering of

3D discretely sampled dataset with an aim of increasing the accuracy as well as the speed of

the rendering process. These methods can be grouped into the following categories:

1. Volume Ray Casting: In the Volume Ray Casting technique, a ray is cast from the

center of the camera model to each image pixel on an imaginary screen [KH84],

[DCH88]. The imaginary screen is considered to be in between the camera model and

the 3D input dataset. The ray then passes through these image pixels into the dataset

where the ray is sampled at various points and the corresponding color and opacity

Voxel

Image Slice

 4

transfer functions are calculated at each of these points to compute the ultimate color

and opacity of the volume [RPSC99].

	

Figure 1.3 Volume Ray Casting Technique

2. Splatting: Splatting considers one voxel at a time to find its contribution across a set

of image pixels (as compared to ray casting that considers one pixel at a time across a

set of voxels along the ray). The process involves projecting voxels in a back-to-front

order and calculating the color and opacity based on the Gaussian Splat as discussed

in [WA91].

3. Iso-surface Rendering: Surface rendering involves creating surfaces of an object in

the form of a 3D image. As opposed to volume rendering, where the volume is

rendered using the image data itself, iso-surface rendering involves modeling the

object using geometric primitives such as points, lines, triangles, etc. There are many

ways of computing this surface, for example the marching cubes algorithm [LC87].

Surface rendering hides the internal information in the volume and thus isn’t

extensively used as compared to volume rendering [KOR08].

4. Texture Mapping: Using commodity graphics hardware, texture based volume

rendering has evolved as a result of the fast and more accurate outputs. Texture

mapping consists of the process of applying 3D textures or images to geometric

objects. Texture based volume rendering efficiently renders slices of a 3D volume

with the real-time interaction capability and thus can be an ideal source for rendering

medical image datasets [EHK* 06] [CCF94].

 5

1.2 Applications of Volume Rendering

Volume rendering is an efficient way of visualizing data and thus plays an important

role in scientific visualization. Following subsections describe how volume rendering can be

applicable in different areas for the visualization of the volumetric datasets.

1.2.1 Geoscience

Geoscience includes all the sciences (geology, geophysics, geochemistry) that study

the structure, evolution and dynamics of the planet Earth and its natural mineral and energy

resources. The different functions associated with the geoscientists involve geological survey

and mapping, energy supplies, finding rocks as natural resources and so on. Volume

rendering implementations in geoscience plays a vital role in different tasks such as real time

scanning of massive datasets, simultaneous multiple volume viewing, well logs, tops and

cultural data display, display of reservoir models, interpretation of multiple 3D seismic

surveys into multiple 2D seismic surveys, isolation of different geobodies, etc.

1.2.2 Astrophysics

According to Li et al. [LFH08], with advancements in the measurement technology

for astrophysical imaging, the view of the sky is not limited to 2D Celestial Sphere. A third

dimension has been added allowing the examination of wavelength radio, microwaves, very

short X-rays, and gamma rays. This leads to the exploration of volume visualization

techniques including textured image stacks, the horseshoe representation and GPU-based

volume visualization.

1.2.3 Chemistry

 Different areas where volume visualization in chemistry plays a vital role include

visualization of quantum chemical and molecular dynamic modeling, drug designing,

drawing complex molecular structures including crystal structure data, creation of a system

for visualizing chemical reactions, etc. [JV09].

 6

1.2.4 Mechanical Engineering

 Volume rendering plays a vital role in the field of mechanical engineering in various

areas such as computer-aided design, design of power plants, automobile engineering,

simulator designs and so on. CADD (Computer Aided Design and Drafting) involving 2D

and 3D volume rendering is used in a large scale to provide users an interface for

streamlining design processes, drafting, documentation, and manufacturing. The design of

different complex structures relating to automobiles involves the creation of 3D volumes

followed by their practical implementation. Simulation design is the area that has started

gaining importance in different fields such as training, testing, professional usage and so on.

Simulators are used to provide an in depth knowledge of physics principles and to use these

principles to design virtual models of mechanical designs. Such simulators make use of

volume rendering as a tool to make the simulator as realistic as possible [WH03].

1.2.5 Gaming

 The gaming industry has been deploying different computer graphics technologies

since the earliest computer games. Game designing involves different aspects such as design

of gameplay, storyline, environment and characters pertaining to a game. Environment design

involves the design of many real-world phenomena such as clouds, smoke, fog, explosions,

fire and so on. Volume rendering simulates effects of light emitted, scattered, and absorbed

by a large number of tiny particles in the volume. This volume is represented as a uniform 3D

array of the samples, which are either pre-computed or procedural [JB10].

1.2.6 Medicine

 The main concern of medical visualization is to aid clinicians in their diagnosis,

surgery and in various training demonstrations. On this front, direct volume rendering is

important as the surface rendering may lead to missing most important inner parts of the data

by rendering only the outer surfaces [KM04]. Direct volume rendering consists of making the

 7

visualization volumes such that almost all image pixels can contribute to the final visualized

volume so that the inner parts can be displayed efficiently. Volume rendering in medicine

involves very large input data in the form of images acquired from different scanners such as

CAT, MRI, PET, X-Ray, etc. These images contain 3D data that the doctors need to see in

different directions, scales that can efficiently be done with the help of 3D volumes. Another

importance of volume rendering in medicine lies in the process of making these volumes

semitransparent, which allows examining the internal organs and relevant details. Figure 1.4

shows how volume rendering can be useful in rendering the same 3D dataset in different

formats allowing doctors for a better volume visualization of the images.

Application of volume rendering in the field of medicine also has significant

importance in surgical planning. The surgeon can perform a mock surgery on the 3D volume

developed using the patient’s image data to decide the actions that need to be taken during the

actual surgery.

Figure 1.4 Application of Volume Rendering in Medicine (Image Courtesy: Osirix)

 8

1.3 GPU Based Volume Rendering

Commonly used algorithms for volume rendering run on the system CPU. The CPU

based execution is computationally expensive given the large datasets and complexities

involved in the scientific visualization.

A Graphics processing unit (GPU) is designed with a goal of accelerating the process

of building the images in the frame buffer. GPUs have proven helpful in the field of computer

graphics by their parallel structure that makes computation of complex data structure faster

and more accurate [HN08]. The GPUs were first designed to accelerate the process of texture

mapping and rendering of polygons. Later advancements in the GPUs resulted in the

accelerated geometric computations such as rotation, translation, etc. With the help of GPUs,

efficient programming for various coordinate systems operations is possible. Modern

development in GPUs has resulted in the development of shaders in the language similar to C

where vertices and textures can be manipulated to perform various operations such as

oversampling and interpolation techniques to reduce aliasing, handling very high precision

color spaces and so on [HN08].

GPU computing involves usage of both CPU and GPU in a heterogeneous co-

processing computing model. The sequential part of an application runs on CPU while GPU

handles the computationally expensive part of the application. Following are some of the

architectural advancements in GPUs that make them the first choice of many graphics

programmers:

1. Chips are based on multiprocessor with eight to ten cores, hundreds of ALUs,

thousands of registers and some shared memory.

2. A graphics card contains fast global memory accessible by all multiprocessors, local

memory accessible by each multiprocessor, and special memory for constants.

 9

3. The cores in the multiprocessors execute instructions simultaneously, which is the

basic style of graphics programming [HL04].

Following are the three main types of GPU based rendering:

1.3.1 2D Texture Based Rendering

2D texture mapping involves exploiting the 2D texture mapping capabilities by

storing volumetric data in several textures. In order to perform the rendering, an object-

aligned stack of texture slices is created as shown in Figure 1.5. All the polygons in the stack

must be aligned to a single axis since for the 2D textured data one of the coordinates should

be constant. The polygons are mapped with the respective 2D texture, which, in turn, is

resampled by the hardware-native bilinear filtering. Three stacks of polygons corresponding

to each of the axis to which the textures are aligned are created. The selection of the stack

depends upon the camera orientation. [EHK* 06]

Figure 1.5 2D Texture Based Rendering

1.3.2 3D Texture Based Rendering

A fixed number of slices and the axis-alignment cause several problems to the 2D

based rendering. The volumes appear similar to being rendered using CPUs. Thus in order to

acquire better accuracy for the volumes, 3D textured based rendering can be used. Unlike the

2D texture based rendering, 3D textures based rendering uses viewport-aligned slices that

allow the user to form the stack of the slices based on what the application demands. Figure

Geometry

2D Textures

Final Volume

 10

1.6 depicts the viewport-aligned slices. Thus 3D texture based rendering allows selecting and

sampling arbitrary points in the 3D textures to form the polygons.

Figure 1.6 3D Texture Based Rendering

1.3.3 GPU Based Ray Casting

 Ray casting is the most natural approach to volume rendering, and, when

implemented in software, this approach is most often used. A ray is cast from the camera

location to each visible pixel on the surface of the volume-bounding box and values are

sampled at regular intervals along the segment of each ray inside the volume. It is

computationally expensive, as a large number of samples have to be taken along each ray to

get acceptable quality. Figure 1.7 shows principle structure for multipass rendering for GPU

ray casting [EHK*06].

Figure 1.7 Multipass Ray Casting Approach

Ray
Set-up

Ray
traversal

integration

Check
ray

terminati
on

Terminated

Not terminated

Geometry

3D Textures

Final Volume

 11

1.4 Role of Integration in Ray Casting

As explained in the Section 1.3.3, a ray casting technique transforms a limited form

of data into 3D projection by tracing rays from the viewing point into the volume. The

geometry setup for a texture based volume rendering involves creating a view-port aligned

stack of textures generated from 3D images. In order to perform the volume rendering, a ray

is cast from the viewing point through this stack intersecting the pixels in the volume.

Each pixel along the ray has a color and opacity value associated with it which are

used to determine the transparency, semi-transparency or opacity of the volume as well as the

color in the form of RGB values. As the ray progresses from the viewpoint into the volume

these chromaticity and opacity values are integrated to calculate the final color and opacity of

the volume. For a texture-based volume rendering, when we slice the volume in a back-to-

front order these values are stored in a one-dimensional lookup table, which is used to

transform the volume data into color, and opacity values [RGW* 03].

 The chromaticity and opacity values of a value depend upon the effect of light on a

volume. For example, for a given volume, the transparent volume corresponds to all the

particles inside the volume emitting the light in contrast to absorbing it. Similarly there can

be some opaque particles, which absorb all the amount of light being inserted to it. Reflection

of light can also develop the scattering effect in a volume. Shadows can be formed based on

the direction of light and the opacity of the particles inside the volume. Based on these

shadows some of the particles may not be a part of the final volume and need to be discarded

from the rendering process. All these calculations need to be performed for each ray-volume

intersection and should be stored in the form of color and opacity values in a lookup table.

This lookup table is then used to find the integrated value of the final color and opacity of the

volume. This integration is given by equation (1.1) [DCH88].

 12

 I(D) = I0e
− τ (t)dt
0

D

∫
+ L(s)τ (s)e

− τ (t)dt
0

s

∫
ds

0

D

∫ (1.1)

This equation says the illumination at distance D along a ray, I(D), is a

combination of the background illumination I0, attenuated by the volume from 0 to

D, and the local lighting contribution at each point, s, along the path from 0 to D,

attenuated by the portion of the volume between 0 and s.

1.5 Thesis Contribution

The main contributions of this thesis include:

1) Three algorithms for adapting the integration step size based on local color and

opacity: a Poisson distribution algorithm to determine the number of samples in the given

interval of two consecutive steps, an adaptive step size integration scheme making linear

changes to the level step, and an adaptive step size integration scheme making scaling

changes to the integration step size

2) Comparison of results of different integration techniques on image quality and

performance in frames per second.

 13

Chapter 2: Background and Related Work

A significant amount of work has been done with a goal of accelerating the process

of volume rendering. Given the applications of volume rendering as discussed in Chapter 1,

an efficient implementation of the advancements in graphics hardware would result in better

and faster volume rendering methods. Understanding the application of volume rendering in

medicine requires some knowledge in medical imaging techniques. This chapter discusses

different medical imaging techniques, followed by an overview of some mathematical

integration techniques. We then discuss some prior research in the field of integration for

volume rendering.

2.1 Image Modalities

The overall objective of medical imaging is to acquire useful information about

physiological processes or organs of the body by using external or internal sources of energy

[PS02]. This subsection discusses the ways by which images are acquired from various

medical scanning instruments, their modalities and the differences among them. Based upon

the energy source used for acquiring the images, following are the main categories of medical

images that are handled in our work.

2.1.1 PET Scan

 A PET scan stands for Positron Emission Tomography that allows doctors to

examine signs of disease, such as areas with increased activity that may signal the origins of

cancer. A PET/CT scan involves acquiring the images in a computer-assisted manner

[www.mayoclinic.com].

 14

2.1.2 CT Scan

CT stands for Computed Tomography and it is considered to be a sophisticated form

of X-Ray imaging. The scanner takes X-Ray images of the body at many different angles

around the body thus generating a series of images. A CT scan shows clear images of bone,

internal organs, muscles and blood vessels and allows doctors to distinguish between normal

and diseased or injured tissue [www.medicinenet.com]. Figure 2.1 shows a CT scanner:

Figure 2.1 A Computed Tomography (CT) Scanner (Image Courtesy: www.medicinenet.com)

2.1.3 MRI Scan

MRI stands for Magnetic Resonance Imaging. This type of imaging modality uses

radio waves that force the nuclei of a body’s atoms to different locations that send out their

own waves while coming back to their original positions. These waves are then used by a

computer to generate images of body structures. The MRI scanner contains a giant circular

magnet that creates a strong magnetic field that aligns the protons of hydrogen atoms, which

are then exposed to a beam of radio waves. This spins the various protons of the body, and

 15

they produce a faint signal that is detected by the receiver portion of the MRI scanner

[www.medicinenet.com]. Figure 2.2 shows the MRI scanner:

Figure 2.2 A Magnetic Resonance (MR) Image Scanner (Image Courtesy:
www.medicinenet.com)

2.1.4 X-Ray

 An x-ray image is produced when a small amount of radiation passes through the

body. The ability of x-rays to penetrate tissues and bones varies according to its composition

and mass, which allows doctors to obtain images from inside the body [PS02].

2.1.5 Multi-Modality

 As discussed above, a PET scan can efficiently detect physiologic changes in the

body while a CT scan is helpful in detecting the anatomical structure of the body where

changes are taking place. Combining these two scans in one PET/CT imaging technique

provides, during a single outpatient exam, detailed information to physicians about the

presence or spread of disease and accurately identifies its precise location. Figure 2.3 shows

a PET and CT scan separately and also a combination of them.

 16

Figure 2.3 A CT and PET Scan and Their Combined Image (Image Courtesy:
www.mayoclinic.com)

2.2 Texture Generation
In the most generalized form, texture mapping is the process used for adding more

realism to the rendering process. The simplest way to imagine texture mapping is to consider

pasting a photograph onto the surface of a polygon. This photograph can be of wood, stone,

brick, cloth and so on. Textures are arrays of data. These data values can be color, luminance

or color and opacity data.

In case of the GPU programming textures can be used as a memory. Data values

pertaining to chromaticity and opacity values can be stored in the texture memory. This

texture memory is then used in order to perform the volume rendering by ray casting or the

ray-tracing approach. This process is called as texture based volume rendering. The basic idea

behind texture based volume rendering is to render a stack of texture slices. This is shown in

the following figure.

 17

pre-integrated colors C̃ C̃ s f sb d and opacities α α s f sb d .
As these tables depend on the transfer functions, any modification
of the transfer functions requires an update of the lookup tables.
This might be no concern for games and entertainment applica-
tions, but it strongly limits the interactivity of applications in the
domain of scientific volume visualization, which often depend on
user-specified transfer functions. Therefore, we will suggest three
methods to accelerate the pre-integration step.
Firstly, under some circumstances it is possible to reduce the di-

mensionality of the tables from three to two (only s f and sb) by as-
suming a constant length of the segments. Obviously, this applies to
ray-casting with equidistant samples. It also applies to 3D texture-
based volume visualization with orthographic projection and is a
good approximation for most perspective projections. It is less ap-
propriate for axes-aligned 2D texture-based volume rendering as
discussed in Section 5.5. Even if very different lengths occur, the
complicated dependency on the segment length might be approxi-
mated by a linear dependency as suggested in [12]; thus, the lookup
tables may be calculated for a single segment length.
Secondly, a local modification of the transfer functions for a par-

ticular scalar value s does not require to update the whole lookup
table. In fact, only the values C̃ s f sb d and α s f sb d with
s f s sb or s f s sb have to be recomputed; i.e., in the worst
case about half of the lookup table has to be recomputed.
Finally, the pre-integration may be greatly accelerated by eval-

uating the integrals in Equations (5), (6), and (7) by employing
integral functions for τ s , c̃ s , and τ s c s , respectively. More
specifically, Equation (5) for αi α s f sb d can be rewritten as

α s f sb d 1 exp d
sb s f

T s f T sb (8)

with the integral function T s : s
0 τ s ds, which is easily com-

puted in practice as the scalar values s are usually quantized.
Equation (6) for C̃i C̃ s f sb d may be approximated analo-

gously:

C̃ s f sb d
d

sb s f
K sb K s f (9)

with the integral function K s : s
0 c̃ s ds. However, this requires

to neglect the attenuation within a ray segment. As mentioned
above, this is a common approximation for post-classified volume
rendering and well justified for small products τ s d.
For the non-associated color transfer function c s we approxi-

mate Equation (7) by

C̃τ s f sb d
d

sb s f
Kτ sb Kτ s f (10)

with Kτ s : s
0 τ s c s ds.

Thus, instead of numerically computing the integrals in Equa-
tions (5), (6), and (7) for each combination of s f , sb, and d, we will
only once compute the integral functions T s , K s , or Kτ s and
employ these to evaluate colors and opacities according to Equa-
tions (8), (9), or (10) without any further integration.

3.6 Application to Volume Rendering Techniques
Pre-integrated classification is not restricted to a particular volume
rendering technique, rather it may replace the post-classification
step of various techniques. For example, in [12] Röttger et al. have
applied pre-integrated classification to cell projection employing
3D textures for the lookup of segment colors C̃ and opacities α.
In fact, the application of pre-integrated classification is quite natu-
ral for the cell projection of tetrahedral meshes, because the linear

interpolation of the scalar field between two samples is exact if the
samples are taken at the faces of tetrahedra as in the case of cell
projection.
Of course, pre-integrated classification may also be employed

in other volume rendering techniques, e.g., software ray-casting of
structured and unstructured meshes. In the remainder of this pa-
per, however, we will focus on the implementation of pre-integrated
classification in texture-based volume rendering algorithms.

4 Texture-Based Pre-Integrated Volume
Rendering

Based on the description of pre-integrated classification in Sec-
tion 3.4, we will now present two novel texture-based algorithms
(one for 2D textures and one for 3D textures) that implement pre-
integrated classification. Both algorithms employ dependent tex-
tures, i.e., rely on the possibility to convert fragment (or pixel)
colors into texture coordinates. The technical details of this table
lookup will be discussed in Section 5.
The basic idea of texture-based volume rendering is to render

a stack of textured slices. Texture maps may either be taken from
three stacks of two-dimensional texture maps (object-aligned slices;
see [11]) or from one three-dimensional texture map (view-aligned
slices; see [3]). Pre-classification is implemented by applying the
transfer functions once for each texel and storing colors and opac-
ities in the texture map(s). On the other hand, post-classification
is performed by storing the scalar field value in the texture map(s)
and applying transfer functions during the rasterization of the slices
for each pixel. Each pixel (more precisely spoken, each fragment)
of a slice corresponds to the contribution of one ray segment to the
volume rendering integral for this pixel. Therefore, the composit-
ing Equations (3) or (4) are employed for the rasterization of the
textured slices. As each fragment of a slice corresponds to one ray
segment, the whole slice corresponds to a slab of the volume as
depicted in Figure 2.

s f
sb

front slice
back slice

Figure 2: A slab of the volume between two slices. The scalar value
on the front (back) slice for a particular viewing ray is called s f (sb).

After these preliminaries, we can now describe pre-integrated
volume rendering using textured slices. The texture maps (either
three-dimensional or two-dimensional textures) contain the scalar
values of the volume, just as for post-classification. As each pair of
adjacent slices (either view-aligned or object-aligned) corresponds
to one slab of the volume (see Figure 2), the texture maps of
two adjacent slices have to be mapped onto one slice (either the
front or the back slice) by means of multiple textures (see Sec-
tion 5.1). Thus, the scalar values of both slices (front and back) are
fetched from texture maps during the rasterization of the polygon
for one slab (see Section 5.2). These two scalar values are required
for a third texture fetch operation, which performs the lookup of
pre-integrated colors and opacities from a two-dimensional texture

Figure 2.4 Texture Based Ray Casting

The figure also shows how a ray can be cast through this stack of textures. As each

fragment of a slice corresponds to one ray segment, the whole slice corresponds to a slab of

the volume as depicted.

2.3 Integration Techniques

In calculus, numerical integration corresponds to finding a numerical estimate for a

definite integral. The problem that the numerical integration handles is to compute a solution

for a definite integral:

f (x)
a

b

∫ dx (2.1)

Here, we try to compute the integral over a definite interval [a,b] for a function f(x).

The need for calculating the integral numerically arises in many cases. The integrand f(x) may

be too complex to find a closed-form solution. It is also possible that the integrand f(x) is

known only at certain arbitrary points and we need the composite value. This is also the case

for determining the integral in volume rendering which will be discussed in next subsection.

 18

Below we discuss some of the main techniques of calculating the integral as defined in

calculus.

2.3.1 Linear Integration

Linear integration is the most basic form of the integration methods where the

integration is defined by the following formula:

I(f) = f (x)
a

b

∫ dx

 (2.2)

This is a linear functional defined over a vector space C[a, b] of continuous functions

on the interval [a, b] to the real numbers. The linearity of I(ƒ) follows from the standard facts

about the integral: y ' = f (t, y), y(t0) = y0

I(f + g) = (f (x)+ g(x))dx
a

b

∫

 = f (x)dx
a

b

∫ + g(x)dx
a

b

∫

 = I(f)+ I(g) (2.3)

where, f(x) and g(x) are two integrals for the defined interval of [a, b] and their

addition corresponds to the addition of the respective integral values for the given interval

[DR07].

 19

2.3.2 Runge-Kutta Integration

The Runge-Kutta methods are used for the implicit and explicit approximation of

solutions of ordinary differential equations. The most commonly used Runge-Kutta method is

the fourth order integration known as “RK4”.

In a Runge-Kutta method an initial value problem and the corresponding RK4

method is given by the following equations:

y ' = f (t, y), tn+1 = tn + h y(t0) = y0

yn+1 = yn +
1
6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h (2.4)

where y’ is a function of time t and y and yn+1 is the RK4 approximation of y(tn+1)

and the constants k1, k2, k3 and k4 are calculated based upon y and t [DR07]. Runge-Kutta

integration method can be used adaptively wherein the step size can be altered adaptively

based upon an estimation of the truncation error.

2.3.3 Monte Carlo Integration

Monte Carlo integration is a family of numerical integration techniques, which

integrate the values at random points as opposed to other numerical integration techniques.

Monte Carlo integrations are used for the approximate evaluation of the definite integrals;

normally working on the multidimensional ones. The distinguishing property of Monte Carlo

integration lies in the way the integrand is operated over random points unlike a regular grid

of points [DR07].

The traditional Monte Carlo algorithm distributes the evaluation points uniformly

over the integration region. Adaptive algorithms such as VEGAS [GL80] and MISER [PF90]

use importance sampling and stratified sampling techniques to get a better result.

 20

2.4 Ray Casting

The process of ray casting takes 3D images as input and makes it possible to render

them on a two-dimensional screen. This is accomplished by tracking the rays of light that

trace a direct path from the eye to some source of light. However, ray casting discounts the

influence of any element that may intersect that path between the eye and the light source. In

this subsection we discuss the process of ray casting and previous work done in this area.

 In its simplest form, ray casting can be considered as an approach where a ray of light

is cast from an eye and continuing on its path until it is blocked by some object. As opposed

to ray tracing where the process involves calculation of ray of light being reflected refracted

and absorbed by an object; ray casting considers the path of a single ray along a direction.

2.4.1 Ray Casting Explained

Figure 2.5 Components of a Ray-Casting System

Figure 2.5 depicts the common components of a ray casting method. As shown in the

figure a ray is cast from an eye that goes through the image plane or the screen where we are

trying to render the 3D image data and continues on till it hits the object.

 21

The complex geometry involves multiple objects in the scene with multiple refractive

indexes that change the percentage of the ray that is going to form the pixel on the screen.

This calculation of the percentage of the light ray being reflected refracted or absorbed by the

object; depends upon the color and opacity of each pixel in the 3D image data. Ultimately the

color and opacity of the final volume is calculated as a composition of the color and opacity

values of these individual pixels. This process is explained in detail in the following

subsection. We limit our discussion to the process of ray casting in this subsection.

Following is the list of the components of the ray casting system as explained in

[RPSC99]

1. Memory System provides the necessary voxel values.

2. Ray-path Calculation determines the voxels that are penetrated by the given ray

3. Interpolation estimates the value at a sample location using a small neighborhood

of voxels

4. Gradient estimation estimates a surface normal using the neighborhood voxels

5. Classification maps interpolated sample values and the estimated surface normal

to a color and opacity

6. Shading uses gradient and classification information to compute a color based

upon the interaction of light with the estimated surfaces in the dataset

7. Composition uses shaded color values and opacity to compute a final pixel color

for display.

2.3.2 GPU Based Ray Casting

We had a brief walkthrough of what a GPU is and how GPU based rendering

algorithms work in chapter one. This subsection deals with some previous work in the field of

ray casting on GPUs.

 22

A detailed explanation of GPU based ray casting technique is discussed in [HL04].

As per [HL04] the basic idea of this technique is to store the entire volume in a single 3D

texture and use GPU based implementations to render 3D volumes. These implementations

include creating a vertex and fragment program. Eide explores various GPU based volume

rendering algorithms in [KE05]. The document explains in detail the evolution of graphics

cards as well as numerous rendering techniques. It also talks about GPU programming using

OpenGL Shading Language called GLSL. Some interesting work in the field of hardware-

based ray casting can be seen in work by Stegmaier et al. [SSKE05]. Stegmaier et al. present

a flexible framework for GPU-based volume rendering. Their work can be extended to other

shader functionalities. First introduced by Cullip and Neumann [CN94] and Cabral et. al

[CCF94], the basic concept of ray casting involves creating planar slices based upon the

geometry of the volume data and sampling through them. A volume rendering integral is

evaluated at each sample point, by accumulating the textured slices.

More advanced texture mapping capabilities of the graphics hardware are used to the

simple GPU-based ray-casting approach. Research in the field of GPU based volume

rendering mainly focuses on two aims: To increase the quality of the volume being rendered

and to accelerate the process of volume rendering. Research in improving the quality of

volume renderings involves implementing multidimensional transfer functions as explained

by Kniss et al. [KKH02]. In order to achieve high quality 3D volumes of medical image

datasets Kreeger and Kaufman [KK99] present an algorithm that renders opaque and/or

translucent polygons embedded within volumetric data. Two streams of algorithms are

considered for accelerating the process of volume rendering on GPUs: The early ray

termination technique was first introduced by Whitted [TW80]. As discussed in this paper

and used by Levoy in his work in [ML90] the early ray termination algorithm has a very

simple structure. It uses the basic ray casting approach and calculates the color and opacity

values along the ray path. While calculating the opacity values if a value with highest opacity

 23

is encountered, the assumption that nothing beyond that point can be visible is used to

terminate the ray at that point. Levoy [ML90] incorporated the empty space-skipping

algorithm. The empty space-skipping algorithm avoids processing empty voxels with the help

of various pre-computed data structures such as binary volumes, proximity clouds and so on.

Li et. al. have implemented the empty space skipping algorithm by skipping the rendering of

invisible voxels and also presented an algorithm that computes incrementally the intersection

of the volume with the slicing planes in [LMK03]. An integration of early ray termination

and empty space skipping approach, in order to accelerate the process of GPU-based volume

rendering is presented by Kruger and Westermann [KW03].

2.5 Integration in Volume Rendering

As explained in Chapter 1, volume rendering is the process of representing 3D image

data in 2D form. Many implementations are used in order to achieve this representation. The

field of computer graphics has always been relying on mathematics for the representation of

complex phenomena such as lighting, reflection, refraction, coordinate systems, projections,

collisions and so on. This subsection explores the role of integration in volume rendering and

the past research that has taken place in this area.

 In a ray casting approach, a transfer function, which maps scalar values and gradients

to color and opacities, is applied to the volume integral. These color and opacity properties of

the volume are composited along the rays to obtain final pixel colors. This process of

composition relies on mathematical integration. The integration process depends upon the

number of sampling intervals in the volume data, which in turn depends upon the size of the

data. With increasing size of input dataset, improvements in the integration process are

needed in order to accelerate the volume rendering which resulted in numerous mathematical

integration techniques being employed in fragment program of GPU-based ray casting

technique [EHK*06].

 24

The transfer function must be smooth in order to compute the numerical integral

efficiently and accurately as no general, closed-form solutions are available. For the case of a

smooth transfer function, well-known adaptive numerical schemes can be employed [NA92],

and theory from Monte Carlo integration can guide their design [DH92]. However for certain

rendering effects an infinite amount of sampling density is required. Implementation of

smooth transfer function limits this range. To handle this problem Roettger et al. introduced a

now well-known approach of preintegration in their work [RGW* 03]. In this work they have

demonstrated a way to merge extensions of the original slicing approach namely pre-

integration, volumetric clipping and advanced lighting. According to this work and the work

of Westermann and Ertl [WE98], the slicing of the volume results in the ring artifacts that can

be resolved by rendering slabs instead of slices. The ray integral of the ray segments inside

each slab is a function of the scalar values at the entry and exit points of the ray, and the

thickness of the slab. The pre-integration technique discussed by Engel et al. [EKE01]

involves the ray integral calculation of transfer function for each combination of scalar

values, which is looked up for each rendered pixel.

 25

Chapter 3: Approach

In this chapter, we discuss the system implementation. The focus of our

implementation was to experiment different integration techniques and compare them. We

discuss the adaptive integration techniques and Poisson distribution technique in this chapter.

In order to better describe out implementation we start with the system architecture followed

by describing each phase in the architecture in detail.

3.1 System Architecture

Figure 3.1 System Architecture

Figure 3.1 depicts the architecture of our system. As shown in the figure we have

used the DICOM images acquired from the imaging scanners explained in Chapter 2 as input.

The method that we have used for volume rendering is GPU-based ray casting where the ray

casting algorithm takes 3D textures as input. Thus it was required to generate 3D textures of

CT / MRI OpenGL DICOM

Vertex Shaders

Textures

Fragment
Shaders

Volume
rendering

Integration
Techniques

 26

the DICOM images. Shaders are the basic functional units of GPU programming. We

implemented new integration techniques to compute the frame rate required for volume

rendering. The following subsections discuss each of these phases in more detail followed by

the next chapter where we discuss the results.

3.2 Generation of Textures from DICOM Images

3.2.1 DICOM Image Format

Digital information management plays and important role in modern healthcare

industry. As discussed by Graham et al. in [GPS05] the Digital Imaging and Communication

in Medicine (DICOM) standard facilitates the communication of digital image information

regardless of the device the images were acquired from. Digital images are generated by a

wide variety of radiological hardware. Each device collects data, which are then encoded and

stored electronically in DICOM format. Various radiological hardware developed by different

manufacturers collect data in different manners; universal file type DICOM facilitates

exchange between them.

Each DICOM file has a header containing amongst other items, patient demographic

information, acquisition parameters, referrer, practitioner and operator identifiers and image

dimensions. The remaining portion of the DICOM file contains the image data. Because they

often contain multiple high-resolution images, DICOM files tend to be large and are

frequently compressed before storage and transfer.

Figure 3.2 shows how the DICOM images make it easy to exchange image

information acquired form various image equipment. The images can also be stored in a

database from where they can be queried or retrieved as per the requirement.

 27

Figure 3.2 Information Exchange using DICOM Images

3.2.2 Generation of Textures

Based upon the application textures can be one, two or three-dimensional. Since the

DICOM images used as the input for our system contained 3-dimensional data, we have used

3D textures for our implementation. As the volume data increases along the Z-direction, each

image slice is a 2D image along X and Y-direction. The datasets are discussed in more detail

in the following chapter. Each image in the series is used to create one texture slice. The stack

of these textures looked as shown in the following Figure 3.4. These images contain textures

generated for a selection of image slices in the dataset. We used two datasets for testing our

implementations namely the skewed head dataset of Figure 3.4 and lobster dataset of Figure

3.5.

CT, MR, CR, PET
Digital X-ray

Imaging equipment

Workstation analysis
or review

Imaging equipment

Workstation
Remote

DICOM
Storage

DICOM
Storage

DICOM
Storage

 28

Figure 3.3 Texture Slices for Skewed Head Datased in an Increasing Order from (a) to (f)

(a) (b) (c)
(d) (e)

(f)

 29

Figure 3.4 Texture Slices for Lobster Dataset an Increasing Order from (a) to (f)

(a) (b) (c)
(d)
(e)

(f)

 30

3.3 Texture Based Ray-Casting for Volume Generation

Figure 3.5 Ray Casting Principle, One Ray per Pixel

Our implementation involves commonly used ray-casting approach. As explained in

the previous chapters the basic idea behind ray casting is to evaluate the volume rendering

integral along rays that are traversed from the camera into the volume data. A single ray

corresponds to one pixel in the images. In order to accumulate light information along the ray

we need the optical properties of the image pixels. Using the transfer function, scalar data

values given in the volume data are mapped to these optical properties. This accumulation

involves compositing chromaticity and opacity values computed at each sample location

along the ray. Following equations are normally used to compute the color and opacity values

along the ray:

Cdst =Cdst + (1−αdst)Csrc

 αdst =αdst + (1−αdst)αsrc

 31

The implementation uses the following pseudocode as explained by Engel et al. [EHK* 06]

for ray casting:

We used 3D textures to store our volume data as explained in the previous

subsection. In order to make efficient use of graphics hardware, we created vertex shader and

fragment shader that implemented the volume ray-casting algorithm.

3.4 Shader Programs

Figure below shows the basic stages of the pipeline through which an application

goes in order to render an output onto the screen. As depicted in the figure the Vertex,

Geometry and Pixel processing stages are the programmable units of GPU while the

Rasterizing and Output stage are fixed functional units.

Determine volume entry position
Compute ray direction
While (ray position in volume)
 Access data value at current position
 Compositing of color and opacity
 Advance position along ray
End while

 32

Figure 3.6 Fixed Functional and Programmable Units of a GPU Pipeline

Our implementation involves these stages that are written in two shaders namely

Vertex Shader and Fragment Shader.

3.4.1 Vertex Shader Program

A vertex shader is the first stage in GPU pipeline and is responsible for transforming

the position of each vertex according to the current view. In the vertex shader we

implemented the vertex transformations as explained in the first stage of the pipeline. Vertex

shader computed the eye location in the object space in order to transform the vertices in the

object coordinate system. Since the volume data was stored in 3D texture, which was already

CPU

Vertex

Geometry

Rasterize

Pixel

Output

Texture/Volume
Memory

GPU

 33

generated, no change in the vertices was needed to be done in vertex shader, we simply

passed the vertex position to fragment shader. The bounding box of the volume was rendered

as proxy geometry with the dimensions equal to the (x, y, z) dimensions of the volume data.

The proxy geometry in the form of a bounding box helped us render the volumes in fragment

shader phase.

3.4.2 Fragment Shader Program

The fragment shader in the GPU pipeline is responsible for computing color of each

rendered pixel. The ray casting algorithm is implemented in the fragment shader for which

the shader steps along the ray through the volume to determine the pixel color. Our fragment

shader program involved the implementation of the ray-casting algorithm. As required by the

ray-casting algorithm, we defined and initialized the maximum number of steps to be taken

along the ray. We also specified a point to access the volume data from the 3D texture.

The implementation of the ray-casting algorithm starts with computing the ray origin

and direction. Ray origin is computed based upon position of the vertex as defined by the

vertex shader and the size of the volume data. Ray direction is computed based upon the

origin of the ray and the eye location given by the vertex shader. The eye position affects the

ray direction thereby affecting the volume being rendered which is discussed in next chapter

in more detail.

We then computed the single ray step. For this computation we deal with two types

of steps namely step in the volume and the step in the optical space. The step in the volume

was calculated based upon the size of the ray step and the size of volume. Whereas the step in

the optical space is computed based upon the step in volume space and an optical scale. We

also define an exit point for the ray. The exit point is computed based upon the smaller of

following two values: Value of the last coordinate on the axis parallel to which the ray was

traversed or the smallest coordinate value of the remaining two axes.

 34

Once these factors affecting the bounding conditions of the ray are computed we

implement the volume ray-casting loop. For the given number of steps and the ray that is

inside the volume; we compute the color and opacity at each ray-step. This computed value

is then added to the final resulting color and opacity value that ultimately gives us the

composited color and opacity value for the volume being rendered.

This implementation gave us a framework for simple GPU-based ray casting. In

order to implement accelerated volume rendering of the input images our goal was to

implement new integration techniques. The derivation and implementation of these

techniques is discussed in the following subsection of the chapter.

3.5 Numerical Integration Techniques

We have mentioned in the thesis contribution subsection that one of the goals of our

work was to render the volumes with higher frame rates. We implemented better integration

techniques in order to obtain a significant performance gain. This chapter discusses the

evaluation of these integration techniques.

In a ray-casting algorithm we cast a ray through the volume data and at each sample

interval we compute the color and opacity value of the image pixel. When the ray advances to

next sampling interval we compute the color and opacity value for the pixel and add it to the

previous value. Thus a linear computation of color and opacity values is done. This

integration is thus given a name linear integration.

Our implementation involved adapting to the sizes of the ray inspired from the

discussion by Philip J Davis and Philip Rabinowitz [DR07]. This adaptation was performed

based upon the changes in the volume data. Thus if there are small changes in attributes of

the volume data then bigger steps were taken while for more interesting changes the step size

was reduced. Thus in our work we computed the step size which adapted to the changes in

the volume data. There were two factors that needed to be considered:

 35

1) When to change the step size?

2) How to change the step size?

These two factors are discussed in the following two subsections.

3.5.1 Relative Error Computation

In this subsection we deal with the first question above. In order to adapt to changes

in the volume data we need to know when should the step size be incremented and when

should it be decremented. We computed a relative error, which was then compared with a

threshold in order to see whether more interesting changes are happening, or not.

We computed the relative error based on color values computed in two consecutive

ray steps. Consider Cold to be the color value at previous step and Cnew to be the color value at

current step. Then we first computed the absolute color values based upon the RGB

components as follows:

C = Cr

2 +Cg
2 +Cb

2
 (3.1)

Based upon these absolute values we computed the difference between them as

follows:

 relative error =
|Cold −Cnew |

Cnew
 (3.2)

The relative approximation error was at first independent of opacity. In order to adapt

the sampling as the opacity increases we multiplied the relative error by (αi) where αi is the

opacity at ith sampling step. We then defined a threshold ε to be the limiting value with

which this relative error was compared. Thus the answer to the first question above in a

mathematical form was:

 36

|Cold −Cnew |
Cnew

(1−αi)< ε <
|Cold −Cnew |

Cnew

(1−αi) (3.3)

This equation computes the relative error and compares it to the threshold. The

threshold was kept user-defined in order to be dependent upon the dataset.

3.5.2 Adaptation of Step Sizes

Once we know when should we change the size of the ray-step, the next question that

needs to be dealt with is how to change it? We implemented two types of algorithm each of

which had two separate sub-types. Figure below shows a tree diagram of our implementation

algorithms.

Figure 3.7 Hierarchy of Integration Techniques Implemented

1) Comparison of Level Values: As discussed above we know that for a ray-casting algorithm

we have defined the number of steps the ray should take in the volume. Thus for the first ray-

step we have compute the size of the step and the corresponding chromaticity and opacity

values for first sampling pixel. Let’s store these values in Cold and α1 . Now in order to

compute the relative error we need to increment the step to next sampling position. Thus we

Integration
Techniques

Comparison
 of Level
Values

Comparison
 of Integrated

Values

Linear
Change

Scaling
Change

Linear
Change

Scaling
Change

 37

move on to the next step and compute the color and opacity values at this pixel sampling

position. Let’s call these values Cnew and α2 . We then compute the relative error using

equations (1) and (2) above. Thus in this type of integration technique we compared the

change in volume data based on each of the levels in integration.

Next, we perform the comparison with the threshold. For the given threshold we

compare the relative error to see if it is greater or less than the threshold. If the relative error

is less than the threshold it indicates that not much interesting changes are happening in the

volume data and thus we can increase size of the ray-step; while a greater relative error

indicates that there are interesting changes going on in the volume data and thus we take

smaller steps. These changes in the step size are either linear or scaling as explained below:

i. Linear Changes: As explained above for a relative error less than the threshold, the

step size needs to be incremented. Linearly, this was done by incrementing the ray-

step size with a constant factor for example 0.5. Thus our equation looked like

raystep += 0.5. When the relative error was greater than the threshold the step size

was linearly decremented by using raystep -= 0.5. The choice of the incrementing and

decrementing factor is discussed in next chapter. We also needed to prevent the step

size from incrementing or decrementing linearly such that it does not reach a value

that was not acceptable. To achieve this we limited the increase as well as the

decrease in these values by a certain defined number.

ii. Scaling Changes: Similar to the linear changes, the step size could also be changes

by scaling up or down. For incrementing the step size when not much interesting

changes were going on in the volume data we used equation that looked like raystep

*= 0.5 while when more interesting changes were seen the raystep was reduced by

the equation raystep /= 0.5.

 38

2) Comparison of Integrated Values: In this type of integration technique we defined Cold

and Cnew to be the integrated values. Consider for instance that we are at 7th step in the

volume data. We have the integrated color value for steps 1-6 stored in Cold while the color

value computed for steps 1-7 are stored in Cnew . We then compute the relative error using

equations (3.1) and (3.2) above and then compare it with the threshold. Similar to the level

comparison, we change the step size linearly or by scaling up and down with a predefined

factor. This type of integration would be beneficial when the ray gets deep in the volume,

where errors in integration may be less visible allowing the possibility of taking larger steps

in case of step-value comparison.

3.5.2 Numerical Integration Techniques Based on Poisson Distribution

The other stream of our implementation involved changing the number of samples in

a single raystep based upon the changes in the color and opacity between two consecutive

raysteps. This was implemented using the Poisson distribution algorithm, which will be

discussed in detail in this subsection of the chapter.

Poisson distribution was first introduced by Simeon Denis Poisson and involves

finding the probability of a number of events that can occur in a given time or space based

upon a previous knowledge. We used this algorithm in our work to determine the number of

samples in one given raystep based upon the previous knowledge of how frequently the color

and opacity between two raysteps change. The result of this algorithm was in the form of

number of samples in a given raystep for which the resulting color and opacity values were

then computed.

As discussed by Knuth [K69], we implemented the following algorithm to achieve

Poisson distribution algorithm for finding the number if samples in a given raystep.

 39

The algorithm takes as initial values in the form of L, k and p where, k represents the

number of samples in the given raystep. Our implementation based on the similarity of the

color values of the pixels in the consecutive raysteps and thus to make the Poisson algorithm

implementation proportionate to this difference, we initialized L to where, represented

the difference between the color values of pixels in the consecutive raysteps. Thus, similar to

our earlier implementations we first computed Cold and Cnew for the first two raysteps. Then

we calculated the difference between these two values and assigned it to . k and p were

initialized to 0 and 1 respectively. The output of Poisson implementation was used as the

number of samples in a given raystep for which the color and opacity was recursively

computed and assigned to the final volume.

1) Computation of Random Numbers: Another important factor in the Poisson distribution is

the way random numbers are generated. These random numbers work as a multiplier, which

ultimately helps in determining the output of the Poisson distribution. We used Linear

Congruential Generator method to compute the random numbers. Linear congruential

generator method provides a set of pseudo-random numbers in the given range using the

following formula:

 (3.4)

where, a, c and m are the pre-selected values for multiplier, increment and modulus

respectively. I is called as the seed value and each Ik gives a random number in the given

range. The effectiveness of LCG depends largely upon the initialization values of a, c and m.

Init: L = , k = 0, p = 1
do
 k = k + 1
 generate random number u in [0, 1]
 p = p * u
while p > L
return k – 1

 40

After trying a set of values as discussed by Knuth [K97], we initialized a, c, m to 1664525,

1013904223, and respectively. Since we needed to compute the number of samples in the

single raystep, we divided a, c, m by a uniform value of . The output of this

implementation was the multiplier used in Poisson distribution.

3.6 Implementation in LAB Color Space

In the previous subsection we discussed numerical integration techniques for RGB

Color Space. To compare our integration techniques with more minute details, we also

implemented these techniques for LAB Color Space. The LAB color space as compared to

RGB color space represents L channel for lightness and the A and B channels for the color

opponent dimensions.

We used following standard equations to convert the RGB color space to XYZ and

then XYZ to LAB. This color in LAB space was then used to compute the final result value.

Cxyx.x =Crgb.r *0.4124+Crgb.g *0.3576+Crgb.b *0.1805 (3.5)

Cxyx.y =Crgb.r *0.2126+Crgb.g *0.7152+Crgb.b *0.0722 (3.6)

Cxyx.z =Crgb.r *0.0193+Crgb.g *0.1192+Crgb.b *0.9505 (3.7)

where, Cxyz and Crgb indicate colors in XYZ and RGB color space respectively.

Clab.l =116*(Cxyz.y
3 −16) (3.8)

Clab.a = 500*(Cxyz.x
3 − Cxyz.y

3) (3.9)

Clab.b = 200*(Cxyz.y
3 − Cxyz.z

3) (3.10)

where, Cxyz and Clab indicate colors in XYZ and LAB color space respectively.

 41

Chapter 4: Results

In this chapter we discuss the results of our implementation. We start with discussing

the datasets we have used, the hardware on which we performed our experiments and

conclude the chapter with the comparisons of performance gains and image quality acquired.

4.1 Datasets and Hardware Used

The datasets that we used for our implementation were taken from the webpage of

Osirix DICOM Image Viewer software. The sizes of the datasets were in the range of 5MB to

300MB. We selected the datasets of sizes in the range of 100MB to 200MB. The DICOM

images were read by the Grassroots DICOM image library (GDCM) and then the image data

was stored in a data file (.dat) to gain simplicity in accessing it. The results discussed in this

chapter are rendered on a NVIDIA GeForce 320M graphics processor with 256MB of DDR3

SDRAM.

 We needed to design a way in which the images acquired by our implementation

could be compared for quality with the original images. We devised two ways for the image

quality comparison. The first one was a graphical comparison for which, we developed a

MATLAB code to find the difference between the two images. We frequently use these

difference images to illustrate the image quality of our implementation in the remaining of

this chapter. The second stream of image quality comparison involved quantitative analysis

for which we used Structural SIMilarity (SSIM) index. As discussed by Zhou Wang et al. in

[WBSS04] SSIM computes the difference between two images based on the statistical

features of the images, image distortions, viewing distances for the images and localized

quality measurements. The implementation of SSIM algorithm in the form of DSSIM toolkit

by Pornel gave us a numerical representation of the image quality, which is also presented in

 42

this chapter. Based on the SSIM algorithm implementation, a SSIM index of 0 represents no

difference between the two images being compared while as the index increases more

difference between the two images is found. Thus, given to our implementation, a SSIM

index value close to 0 indicated the similar quality of the output image to that of the original

image and as the index value increased, the image quality was considered to be deteriorated.

 In order to compare the results generated by each type of integration technique some

interactivity in the system was needed. We implemented this interactivity in the form of a

run-time change in shaders containing different integration techniques. This resulted in

smooth transition between shaders.

4.2 Comparison of Results

4.2.1 Level Value Comparison (Linear Changes)

In case of a level value comparison for a relative error, which was less than the

threshold, we increased the step size linearly with a factor of 1. In order to avoid the linear

increment to reach infinity, we limited the maximum step size value to 6.0. We gained a

significant amount of frames per second for the same quality of the images as that of the ones

produced by the original integration technique. These images and the performance gain are

depicted in the following diagrams.

 43

Figure 4.1 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader
Implementation (c) Difference Image [Dataset: Skewed Head]

(a) (b)

(c)

(a) (b)

 44

 (a) (b)

(c)

Figure 4.2 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader
Implementation (c) Difference Image [Dataset: Skewed Head]

Dataset Size Dimensions Threshold (ε) FPS SSIM
Index

Skewed Head 120 MB 184x256x170 0.03 60 0.0067
Lobster 27 MB 120x120x34 0.03 548 0.0004
Present 69 MB 246x246x221 0.03 27 0.002

Table 4.1 Performance Table for Level Value Comparison (Linear Changes)

Figures 4.1 and 4.2 show the images taken from a single viewpoint. The first two

parts of the figures, (a) and (b), show the original image and the output image after the

 45

implementation of the linear integration. These two figures show the images when the

raysteps were incremented and decremented by a factor of 0.1 and 1.0 respectively. The

SSIM index values for these two comparisons were 0.0067 and 0.0006 respectively. Since

these index values are almost close to 0, it shows that there was no significant difference

between the two images for a performance gain as shown in the table 4.1. However, figure

4.3 below shows that when the raystep was incremented and decremented by a factor of 2.0

some difference in the two images with a SSIM index of 0.0326 was found for the same

amount of performance gain.

(a) (b)

(c)

Figure 4.3 Level Value Comparison (Linear Changes): (a) Original Image (b) Shader
Implementation (c) Difference Image [Dataset: Skewed Head]

 46

Figure 4.4 Performance Graph for Level Value Comparison (Linear Changes)

Figure 4.5 Image Quality Graph for Level Value Comparison (Linear Changes)

Figure 4.4 shows a graph of the performance in the form of frames per

second against the different step size values used for linearly changing the ray step.

Different lines in the graph represent the different angles at which the images were

 47

taken. This graph shows that when the step sizes were linearly changed within a

range of 1 to 2 we found a significant performance gain compared to the frame rate

of original implementation (17 fps). The graph in Figure 4.5 indicates the image

quality in the form of SSIM index at different step sizes. As can be seen from this

graph when the step sizes were linearly changed in the range of 0.1 to 1 we found the

images, which were close to the original image. The combination of these graphs can

lead to a conclusion that when the step sizes were linearly changed within a range of

0.1 to 1.5 we found a significant gain of upto 20 frames per second without losing

image quality in the form of SSIM index.

4.2.2 Level Value Comparison (Scale Changes)

For a relative error, which was greater than the threshold, we decreased the step size

linearly with a factor of 0.5. In order to avoid the linear decrement to go below 0, we limited

the minimum step size value to 0.0. We gained a significant amount of frames per second for

the same quality of the images as that of the ones produced by the original integration

technique. These images and the performance gain are depicted in the following diagrams.

Dataset Size Dimensions Threshold (ε) FPS SSIM
Index

Skewed Head 120 MB 184x256x170 0.03 50 0.0011
Lobster 27 MB 120x120x34 0.03 560 0.0121
Present 69 MB 246x246x221 0.03 36 0.0062

Table 4.2 Performance Table for Level Value Comparison (Scale Changes)

 48

 (a) (b)

(c)

Figure 4.6 Level Value Comparison (Scale Changes): (a) Original Image (b) Shader
Implementation (c) Difference Image [Dataset: Lobster]

 (a) (b)

 49

(c)

Figure 4.7 Level Value Comparison (Scale Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Lobster]

In order to evaluate the quality of images acquired using this integration method, we

use the lobster dataset as shown in Figure 4.6. Figure 4.6 shows the output when the stepsize

was increased and decreased with a scaling factor of 1.2 and 0.5 respectively. For this

implementation we achieved a SSIM index of 0.0011. For a very high boost in the

performance gain we got a deteriorated quality output when the stepsize was changed by a

factor of 0.1 as depicted by the figure 4.7. At this higher performance gain the SSIM index

was 0.2410. This performance gain vs. stepsize changing factor comparison is shown in the

following graph of figure 4.8. Based on the following graph and the images shown in the

previous and current subsections it can be seen that linear changes in stepsizes are more

efficient than the scale changes.

 50

Figure 4.8 Performance Graph for Level Value Comparison (Scale Changes)

Figure 4.9 Image Quality Graph for Level Value Comaprison (Scale Changes)

Figure 4.8 shows a graph of the performance in the form of frames per second against

the different step size values used for scaling the ray step. Different lines in the graph

represent the different angles at which the images were taken. This graph shows that when

 51

the step sizes were scaled up or down within a range of 1.5 to 3 we found a significant

performance gain compared to the frame rate of original implementation (17 fps). The graph

in Figure 4.9 indicates the image quality in the form of SSIM index at different step sizes. As

can be seen from this graph when the step sizes were changed in the range of 1 to 2 we found

the images, which were close to the original image. This graph also shows that as the scaling

factor increased, the image quality degraded for all viewpoints. The combination of these

graphs can lead to a conclusion that when the step sizes were changed within a range of 1.5 to

2.5 we found a significant gain of upto 20 frames per second without losing image quality in

the form of SSIM index.

4.2.3 Integrated Value Comparison (Linear Changes)

We also discussed in previous chapter how the integrated value comparison was

implemented. For a relative error, which was less than the threshold, we increased the step

size linearly with a factor of 1. In order to avoid the linear increment to reach infinity, we

limited the maximum step size value to 6.0. We gained a significant amount of frames per

second for the same quality of the images as that of the ones produced by the original

integration technique. These images and the performance gain are depicted in the following

diagrams.

Dataset Size Dimensions Threshold (ε) FPS
SSIM
Index

Skewed Head 120 MB 184x256x170 0.03 58 0.0003
Lobster 27 MB 120x120x34 0.03 420 0.0025
Present 69 MB 246x246x221 0.03 28 0.0002

Table 4.3 Performance Table for Integrated Value Comparison (Linear Changes)

Figures 4.10 and 4.11 show the images taken from a single viewpoint. These two

figures show the images when the raysteps were incremented and decremented by a factor of

0.5 and 1.0 respectively. SSIM indices for these two image comparisons were found to be

0.0003 and 0.0028 respectively. Since the figure (c) is blank and based on the SSIM index

values, we can say that there was no significant difference between the two images for a

 52

performance gain as shown in the Table 4.3. As can be seen in the following figures, there

was not much change in the results found when the comparison involved integrated values as

opposed to the values at individual levels.

(a) (b)

 (c)

Figure 4.10 Integrated Value Comparison (Linear Changes): (a) Original Image (b) Shader
Implementation (c) Difference Image [Dataset: Skewed Head]

 53

(a) (b)

 (c)

Figure 4.11 Integrated Value Comparison (Linear Changes): (a) Original Image (b)
Shader Implementation (c) Difference Image [Dataset: Skewed Head]

 54

Figure 4.12 Performance Graph for Integrated Value Comparison (Linear Changes)

Figure 4.13 Image Quality Graph for Integrated Value Comparison (Linear Changes)

Figure 4.12 shows a graph of the performance in the form of frames per second

against the different step size values used for linearly changing the ray step. Different lines in

 55

the graph represent the different angles at which the images were taken. This graph shows

that we found a significant performance gain compared to the frame rate of original

implementation (17 fps) except when the step sizes were changed with a factor of 0.5. The

graph in Figure 4.13 indicates the image quality in the form of SSIM index at different step

sizes. As can be seen from this graph for all step sizes we found the images, which were close

to the original image.

4.2.4 Integrated Value Comparison (Scale Changes)

For a relative error, which was greater than the threshold, we decreased the step size

linearly with a factor of 0.5. In order to avoid the linear decrement to go below 0, we limited

the minimum step size value to 0.0. We gained a significant amount of frames per second for

the same quality of the images as that of the ones produced by the original integration

technique. These images and the performance gain are depicted in the following diagrams.

Dataset Size Dimensions Threshold (ε) FPS
SSIM
Index

Skewed Head 120 MB 184x256x170 0.03 40 0.0201
Lobster 27 MB 120x120x34 0.03 511 0.0314
Present 69 MB 246x246x221 0.03 33 0.0035

Table 4.4 Performance Table for Integrated Value Comparison (Scale Changes)

In order to evaluate the quality of images acquired using this integration method, we

used the skewed head dataset as shown in Figure 4.14. Figure 4.14 shows the output when the

stepsize was increased and decreased with a scaling factor of 1.2 and 0.1 respectively. With

the above-mentioned values, the SSIM index value achieved was 0.0201. For a very high

boost in the performance gain we got a deteriorated quality output with SSIM index of 0.1386

when the stepsize was changed by a factor of 0.1 as depicted by the Figure 4.15. This

performance gain vs. stepsize changing factor comparison is shown in the following graph of

Figure 4.16.

 56

 (a) (b)

(c)

Figure 4.14 Integrated Value Comparison (Scale Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Skewed Head]

 57

 (a) (b)

(c)

Figure 4.15 Integrated Value Comparison (Scale Changes): (a) Original Image (b) Shader

Implementation (c) Difference Image [Dataset: Skewed Head]

 58

Figure 4.16 Performance Graph for Integrated Value Comparison (Scale Changes)

Figure 4.17 Image Quality Graph for Integrated Value Comparison (Scale Changes)

 Figure 4.16 shows a graph of the performance in the form of frames per second

against the different step size values used for scaling the ray step. Different lines in the graph

 59

represent the different angles at which the images were taken. This graph shows that when for

all the step sizes we found a significant performance gain, excluding at some viewpoints,

compared to the frame rate of original implementation (17 fps). The graph in Figure 4.17

indicates the image quality in the form of SSIM index at different step sizes. As can be seen

from this graph when the step sizes were changed in the range of 2 to 3 we found the images,

which were close to the original image. This graph also shows that for a scaling factor of 1.5,

the image quality degraded when the volume was viewed at 135o. The combination of these

graphs can lead to a conclusion that when the step sizes were changed within a range of 2 to 3

we found a significant gain of upto 30 frames per second without losing image quality in the

form of SSIM index.

4.2.5 Effects of Threshold

In this subsection we talk about the effects of changing the threshold with which the

difference between color values at intermediate stages in the integration process were

compared. As we have discussed in previous sections the threshold value was bound between

0.0 and 0.05 in order to check smaller changes in the volume data while it was bound

between 0.05 and 0.1 to check greater changes. Thus to compare the results based on

threshold, we changed the bounding values of threshold from 0.05 to 0.15 and 0.1 to 0.2. The

image quality was highly deteriorated with SSIM indices of 0.0935 and 0.0314 for both the

datasets of lobster and skewed head while the frames per second were boosted. Thus

irrespective of the size of dataset a change in the threshold value affected the image quality

negatively. Figures 4.18 and 4.19 show the images we got when we had set the threshold

value to 0.15 and 0.2 respectively.

 60

 (a) (b) (c)
Figure 4.18 Threshold Comparison (ε = 0.15): (a) Original Image (b) Shader Implementation (c)

Difference Image

 (a) (b) (c)

Figure 4.19 Threshold Comparison (ε = 0.2): (a) Original Image (b) Shader
Implementation (c) Difference Image

4.2.6 Poisson Distribution Algorithm

In this subsection we perform the image quality analysis of Poisson distribution

algorithm implementation. As discussed in the implementation details chapter, this

implementation involved changing the number of samples in a given raystep based upon the

change in color and opacity values of consecutive image pixels. Figures 4.20 and 4.21 below

show the images acquired using Poisson distribution algorithm with two different datasets.

We achieved a framerate that was nearly equivalent to the earlier framerate of 50 frames per

second for the skewed head dataset and 300 frames per second for the lobster dataset. Image

quality with respect to SSIM index was found to be 0.0512 and 0.0300. Thus we can say that

for the Poisson distribution implementation we did not achieve a significant performance gain

while the output images were deteriorated as compared to the original images.

 61

 (a) (b)

 (c)

Figure 4.20 Poisson Distribution Algorithm: (a) Original Image (b) Shader Implementation (c)
Difference Image

 62

 (a) (b)

 (c)

Figure 4.21 Poisson Distribution Algorithm: (a) Original Image (b) Shader
Implementation (c) Difference Image

4.2.7 Experiments in LAB Color Space

This subsection talks about the performance and image quality comparisons, when

the volumes were generated using LAB color space. Figure 4.22 and Figure 4.23 show the

comparison of images acquired in RGB and LAB color space when the step size was linearly

changed with a factor of 1.5 and with a scaling factor of 1.2 and 0.5 respectively. We found

that there was a significant difference between the image quality in LAB color space and in

RGB color space with LAB color space resulting in better images. But at the same time

performance in the form of frames per second was seen to have decreased from 60 fps to 48

 63

fps in case of linear changes and from 50 fps to 36fps in case of scale changes. An

improvement in image quality with an SSIM index of 0.0001 was a result of better

comparison between color values at different steps, while the lower performance can be

thought of as result of higher computations (in the form of cube root computations) at each

raystep in the volume data.

 (a) (b)

Figure 4.22 RGB vs. LAB Comparison (Linear Changes): (a) RGB Image (b) LAB Image

(a) (b)

Figure 4.23 RGB vs. LAB Comparison (Scale Changes): (a) RGB Image (b) LAB Image

 64

Chapter 5: Conclusion and Future Work

 In this thesis we have presented a discussion of GPU based ray casting techniques

and their advantages. We have incorporated a GPU based ray casting technique for our work,

which involved using texture based volume rendering. Our work can mainly be divided into

two stages. The first stage involved developing a GPU based volume renderer for medical

images. Our system accepted DICOM images acquired from imaging scanners as inputs and

converted them to 3D textures using OpenGL implementation. Once the volume data was

stored in these textures we developed vertex and fragment shader programs to implement the

ray-casting algorithm. Our vertex shader computed the viewpoint for the volume and passed

texture information to the fragment shader. Our fragment shader then computed the size of

the raystep and performed the ray-casting algorithm for the predefined number of raysteps.

This gave us a volume renderer independent of any library or toolkit for reading the DICOM

images.

The second stage of our implementation involved trying out different numerical

integration techniques for compositing the chromaticity and opacity values along the

direction of the ray. The implementations involved computing these values for one level and

comparing them with the values of the current level. The other type of implementation

involved computing the integrated values of color and opacity at different ray samples. For

more interesting changes in the volume data we decreased the size of the ray while for less

interesting changes in the volume data the ray size was increased. In order to change the size

of the ray step we incorporated linear as well as scaling increments and decrements. One

other stream of our implementation involved finding the number of samples in a given

raystep for more accurate volumes. This was done using the Poisson distribution algorithm

technique where the difference between the color values of pixels in the consecutive raysteps

was used as an input to Poisson distribution. Our system also incorporated some user

 65

interactivity in the form of allowing the user to change the type of the shaders during runtime,

zooming in and out of the volume, a pause and resume facility for the application while it was

rotating, a print screen function which could save the current image in a PPM file format, etc.

Our system could achieve an interactive frame rate from 10 FPS to almost above 150 FPS

depending upon the size and complexity of the volume data being considered. Based on the

performance we achieved for different integration techniques and the image qualities; we can

say that linear changes in the size of a raystep can produce better results with a significant

increase in frames per second as compared to scale changes. With scale changes resulting in

deterioration of image quality with a very high performance gain, we found out that Poisson

distribution implementation resulted in no performance gain yet a deteriorated image quality.

The techniques were tested on a range of very small and trivial datasets to very large and

complex datasets. Based on these results we can also say that the level values as well as

integrated value comparison given to linear changes in the stepsizes can be applied to all

kinds of dataset to achieve a significant performance gain. The implementation algorithm was

also tested for LAB color space and based on the comparison results with RGB color space

we can conclude that the implementation in LAB color space is useful where visual

comparison between images is required.

 We expect our system to work for more complex datasets containing computationally

expensive texture information. The integration techniques that we have currently

implemented compare the chromaticity and opacity values of the volume data at different ray

samples. The same technique can be applied to compare the gradient, intensity and other such

factors that might affect the computational complexity of an algorithm. Some sort of user

interactivity can still be implemented into the system in the form of run-time change in the

datasets, cropping of volumes, some lighting sources, etc.

 66

Bibliography

[CCF94] CABRAL B., CAM N., FORAN J.: Accelerated Volume Rendering and

Tomographic Reconstruction using Texture Mapping Hardware. In VVS ’94: Proceedings of

the 1994 Symposium on Volume Visualization 1994

[CN94] Timothy J. Cullip, Ulrich Neumann Accelerating Volume Reconstruction With 3D

Texture Hardware Technical Report for University of North Carolina, Chapel Hill 1994

[DCH88] Robert A. Drebin, Loren Carpenter, Pat Hanrahan Volume rendering SIGGRAPH

'88 Proceedings 1988

[DH92] John Danskin, Pat Hanrahan Fast algorithms for volume ray tracing VVS '92

Proceedings of the 1992 workshop on Volume visualization

[DR07] Philip J Davis, Philip Rabinowitz Methods of Numerical Integration Dover

Publications, 2007

[EHK* 06] Klaus Engel, Markus Hadwiger, Joe M. Kniss, Christof Rezk-Salama, Daniel

Weiskopf Real Time Volume Graphics A. K. Peters, 2006

[EKE01] Klaus Engel, Martin Kraus, Thomas Ertl High-quality pre-integrated volume

rendering using hardware-accelerated pixel shading HWWS '01 Proceedings of the ACM

SIGGRAPH

[GL80] G.P. Lepage, VEGAS: An Adaptive Multi-dimensional Integration Program, Cornell

preprint CLNS 80-447, March 1980

[GPS05] R.N.J. Graham, R.W. Perriss, A.F. Scarsbrook DICOM demystified: A review of

digital file formats and their use in radiological practice Clinical Radiology 2005

[HL04] Mark Harris, David Luebke GPGPU Course SIGGRAPH 2004

[HN08] Hubert Nguyen GPU Gems 3 Addison-Wesley, 2008

 67

[JB10] Jon Jansen , Louis Bavoil, Fourier opacity mapping, Proceedings of the 2010 ACM

SIGGRAPH symposium on Interactive 3D Graphics and Games, 2010

[JV09] Yun Jang, Ugo Varetto Interactive Volume Rendering of Functional Representations

in Quantum Chemistry, IEEE Transactions on Visualization and Computer Graphics, 2009

[K69] Donald E. Knuth Seminumerical Algorithms. The Art of Computer Programming,

Volume 2. Addison Wesley, 1969

[K97] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical

Algorithms, Third Edition. Addison-Wesley, 1997

[KE05] Kristian Edie Use of GPU Functionality in Volume Rendering, Masters Thesis

Norwegian University of Science and Technology, 2005

[KK99] Kreeger, K.A. Kaufman, A.E. Mixing translucent polygons with volumes IEEE

Visualization ’99 proceedings 1999

[KKH02] Joe Kniss, Gordon Kindlmann, Charles Hansen Multidimensional Transfer

Functions for Interactive Volume Rendering IEEE TCVG 2002

[KM04] Kenneth Moreland. Fast High Accuracy Volume Rendering. PhD thesis, University

of New Mexico, 2004.

[KOR08] John Kloetzli, Marc Olano, and Penny Rheingans. Interactive volume isosurface

rendering using BT volumes. In SI3D ’08: Proceedings of the 2008 symposium on Interactive

3D graphics and games, 2008

[KW03] J. Kruger, R. Westermann Acceleration Techniques for GPU-based Volume

Rendering VIS '03 Proceedings of the 14th IEEE Visualization 2003

[KH84] James T. Kajiya , Brian P Von Herzen, Ray tracing volume densities, Proceedings of

the 11th annual conference on Computer graphics and interactive techniques, 1984

[LC87] William E. Lorensen , Harvey E. Cline, Marching cubes: A high resolution 3D

surface construction algorithm, Proceedings of the 14th annual conference on Computer

graphics and interactive techniques, 1987

 68

[LFH08] Hongwei Li, Chi-Wing Fu, Andrew Hanson Visualizing Multiwavelength

Astrophysical Data IEEE Transactions on Visualization and Computer Graphics 2008

[LMK03] Wei Li, Klaus Mueller, Arie Kaufman Empty Space Skipping and Occlusion

Clipping for Texture-based Volume Rendering VIS '03 Proceedings of the 14th IEEE

Visualization 2003

[ML90] Marc Levoy Efficient Ray Tracing of Volume Data ACM Transactions on Graphics

(TOG) 1990

[MW10] Magnus Wrenninge Volume Rendering Course SIGGRAPH 2010

[NA92] Kevin Novins, James Arvo Controlled precision volume integration VVS '92

Proceedings of the 1992 workshop on Volume visualization

[PS02] Paul Suetens Fundamentals of Medical Imaging Cambridge University Press, 2002

[PF90] W.H. Press, G.R. Farrar Recursive Stratified Sampling for Multidimensional Monte

Carlo Integration, Computers in Physics 1990

[RGW* 03] Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, Wolfgang

Strasser Smart Hardware Accelerated Volume Rendering IEEE TCVG Symposium on

Visualization 2003

[RPSC99] Harvey Ray, Hanspeter Pfister, Deborah Silver, Todd A. Cook Ray Casting

Architectures for Volume Visualization IEEE TCVG 1999

[SSKE05] Simon Stegmaier , Magnus Strengert , Thomas Klein , Thomas Ertl A Simple

and Flexible Volume Rendering Framework for Graphics-hardware–based Raycasting

Volume Graphics 2005

[TW80] Turner Whitted An improved illumination model for shaded display Magazine

Communications of the ACM 1980

[WA91] Westover, Lee Alan (July, 1991). "SPLATTING: A Parallel, Feed-Dorward Volume

Rendering Algorithm"

 69

[WE98] Rüdiger Westermann, Thomas Ertl Efficiently using graphics hardware in volume

rendering applications SIGGRAPH '98 Proceedings

[WH03] Warren J. Hehre A Guide to Molecular Mechanics and Quantum Chemical

Calculations, Wavefunction Inc. 2003

[WBSS04] Zhou Wang, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P. Image quality

assessment: from error visibility to structural similarity IEEE Image Processing 2004

