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Abstract:
We present the use of mapping functions to automatically

generate levels of detail with known error bounds for polygo-
nal models. We develop a piece-wise linear mapping function
for each simplification operation and use this function to mea-
sure deviation of the new surface from both the previous level
of detail and from the original surface. In addition, we use the
mapping function to compute appropriate texture coordinates if
the original map has texture coordinates at its vertices. Our over-
all algorithm uses edge collapse operations. We present rigorous
procedures for the generation of local planar projections as well
as for the selection of a new vertex position for the edge collapse
operation. As compared to earlier methods, our algorithm is able
to compute tight error bounds on surface deviation and produce
an entire continuum of levels of detail with mappings between
them. We demonstrate the effectiveness of our algorithm on
several models: a Ford Bronco consisting of over 300 parts and
70 000 triangles, a textured lion model consisting of 49 parts
and 86 000 triangles, and a textured, wrinkled torus consisting
of 79 000 triangles.

CR Categories and Subject Descriptors: I.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling —
Curve, surface, solid, and object representations.
Additional Key Words and Phrases: model simplification,
levels-of-detail, surface approximation, projection, linear pro-
gramming.

1 Introduction
Automatic generation of levels of detail for polygonal data sets
has become a task of fundamental importance for real-time ren-
dering of large polygonal environments on current graphics sys-
tems. Many detailed models are obtained by scanning physical
objects using range scanning systems or created by modeling
systems. Besides surface geometry these models, at times, con-
tain additional information such as normals, texture coordinates,
color etc. As the field of model simplification continues to ma-
ture, many applications desire high quality simplifications, with
tight error bounds of various types across the surface being sim-

plified.
Most of the literature on simplification has focused purely

on surface approximation. Many of these techniques give guar-
anteed error bounds on the deviation of the simplified surface
from the original surface. Such bounds are useful for providing
a measure of the screen-space deviation from the original sur-
face. A few techniques have been proposed to preserve other
attributes such as color or overall appearance. However, they
are not able to give tight error bounds on these parameters. At
times the errors accumulated in all these domains may cause vis-
ible artifacts, even though the surface deviation itself is properly
constrained. We believe the most promising approach to mea-
suring and bounding these attribute errors is to have a mapping
between the original surface and the simplified surface. With
such a mapping in hand, we are free to devise suitable methods
for measuring and bounding each type of error.

Main Contribution: In this paper we present a new simpli-
fication algorithm, which computes a piece-wise linear mapping
between the original surface and the simplified surface. The al-
gorithm uses the edge collapse operation due to its simplicity,
local control, and suitability for generating smooth transitions
between levels of detail. We also present rigorous and complete
algorithms for collapsing an edge to a vertex such that there are
no local self-intersections. The algorithm keeps track of surface
deviation from both the current level of detail as well as from the
original surface. The main features of our approach are:

1. Successive Mapping: This mapping between the levels of
detail is a useful tool. We currently use the mapping in
several ways: to measure the distance between the levels
of detail before an edge collapse, to choose a location for
the generated vertex that minimizes this distance, to accu-
mulate an upper bound on the distance between the new
level of detail and the original surface, and to map surface
attributes to the simplified surface.

2. Tight Error Bounds: Our approach can measure and min-
imize the error for surface deviation and is extendible to
other attributes. These error bounds give guarantees on the
shape of the simplified object and screen-space deviation.

3. Generality: Portions of our approach can be easily com-
bined with other algorithms, such as simplification en-
velopes [5]. Furthermore, the algorithm for collapsing an
edge into a vertex is rather general and does not restrict the
vertex to lie on the original edge.

4. Surface Attributes: Given an original surface with texture
coordinates, our algorithm uses the successive mapping to
compute appropriate texture coordinates for the simplified



mesh. Other attributes such as color or surface normal can
also be maintained with the mapping.

5. Continuum of Levels of Details: The algorithm incre-
mentally produces an entire spectrum of levels-of-details
as opposed to a few discrete levels. Furthermore, the algo-
rithm incrementally stores the error bounds for each level.
Thus, the simplified model can be stored as a progressive
mesh [12] if desired.

The algorithm has been successfully applied to a number of
models. These models consist of hundreds of parts and tens of
thousands of polygons, including a Ford Bronco with 300 parts,
a textured lion model and a textured wrinkled torus.

Organization: The rest of the paper is organized as follows.
In Section 2, we survey related work on model simplification.
We give an overview of our algorithm in Section 3. Section 4
discusses the types of mappings computed by the algorithm and
describes the algorithm in detail. In Section 5, we present ap-
plications of these mapping. The implementation is discussed in
Section 6 and its performance in Section 7. Finally, in Section 8
we compare our approach to other algorithms.

2 Previous Work
Automatic simplification has been studied in both the compu-
tational geometry and computer graphics literature for several
years [1, 3, 5, 6, 7, 8, 9, 10, 12, 11, 15, 16, 17, 18, 19, 21, 22, 24].
Some of the earlier work by Turk [22] and Schroeder [19] em-
ployed heuristics based on curvature to determine which parts
of the surface to simplify to achieve a model with the desired
polygon count. Other work include that of Rossignac and Borrel
[16] where vertices close to each other are clustered and a vertex
is generated to represent them. This algorithm has been used in
the Brush walkthrough system [18]. A dynamic view-dependent
simplification algorithm has been presented in [24].

Hoppe et al. [12, 11] posed the model simplification prob-
lem into a global optimization framework, minimizing the least-
squares error from a set of point-samples on the original surface.
Later, Hoppe extended this framework to handle other scalar at-
tributes, explicitly recognizing the distinction between smooth
gradients and sharp discontinuities. He also introduced the pro-
gressive mesh [12], which is essentially a stored sequence of sim-
plification operations, allowing quick construction of any desired
level of detail along the continuum of simplifications. However,
the algorithm in [12] provides no guaranteed error bounds.

There is considerable literature on model simplification us-
ing error bounds. Cohen and Varshney et al. [5, 23] have used
envelopes to preserve the model topology and obtain tight error
bounds for a simple simplification. But they do not produce an
entire spectrum of levels of detail. Guéziec [9] has presented
an algorithm for computing local error bounds inside the sim-
plification process by maintaining tolerance volumes. However,
it does not produce a suitable mapping between levels of de-
tail. Bajaj and Schikore [1, 17] have presented an algorithm for
producing a mapping between approximations and measure the
error of scalar fields across the surface based on vertex-removals.
Some of the results presented in this paper extend this work non-
trivially to edge collapse operation. A detailed comparison with
these approaches is presented in Section 8.

An elegant solution to the polygon simplification problem has
been presented in [7, 8] where arbitrary polygonal meshes are
first subdivided into patches with subdivision connectivity and
then multiresolution wavelet analysis is used over each patch.
These methods preserve global topology, give error bounds on

the simplified object and provide a mapping between levels of
detail. In [3] they have been further extended to handle colored
meshes. However, the initial mesh is not contained in the level
of detail hierarchy, but can only be recovered to within an -
tolerance. In some cases this is undesirable. Furthermore, the
wavelet based approach can be somewhat conservative and for a
given error bound, algorithms based on vertex removal and edge
collapses [5, 12] have been empirically able to simplify more (in
terms of reducing the polygon count).

3 Overview
Our simplification approach may be seen as a high-level algo-
rithm which controls the simplification process with a lower-level
cost function based on local mappings. Next we describe this
high-level control algorithm and the idea of using local mappings
for cost evaluation.

3.1 High-level Algorithm
At a broad level, our simplification algorithm is a generic greedy
algorithm. Our simplification operation is the edge collapse.
We initialize the algorithm by measuring the cost of all possible
edge collapses, then we perform the edge collapses in order
of increasing cost. The cost function tries to minimize local
error bounds on surface deviation and other attributes. After
performing each edge collapse, we locally re-compute the cost
functions of all edges whose neighborhoods were affected by
the collapse. This process continues until none of the remaining
edges can be collapsed.

The output of our algorithm is the original model plus an
ordered list of edge collapses and their associated cost functions.
This progressive mesh [12] represents an entire continuum of
levels of detail for the surface. A graphics application can choose
to dynamically create levels of detail or to statically allocate a set
of levels of detail to render the model with the desired quality or
speed-up.

3.2 Local Mappings
The edge collapse operation we perform to simplify the surface
contracts an edge (the collapsed edge) to a single, new vertex
(the generated vertex). Most of the earlier algorithms position
the generated vertex to one of the end vertices or mid-point of
the collapse edge. However, these choices for generated vertex
position may not minimize the deviation or error bound and can
result in a local self-intersection. We choose a vertex position
in two dimensions to avoid self-intersections and optimize in
the third dimension to minimize error. This optimization of the
generated vertex position and measurement of the error are the
keys to simplifying the surface without introducing significant
error.

For each edge collapse, we consider only the neighborhood
of the surface that is modified by the operation (i.e. those faces,
edges and vertices adjacent to the collapsed edge). There is
a natural mapping between the neighborhood of the collapsed
edge and the neighborhood of the generated vertex. Most of the
triangles incident to the collapsed edge are stretched into corre-
sponding triangles incident to the generated vertex. However, the
two triangles that share the collapsed edge are themselves col-
lapsed to edges (see Figure 1). These natural correspondences
are one form of mapping

This natural mapping has two weaknesses.



Figure 1: The natural mapping primarily maps triangles to
triangles. The two grey triangles map to edges, and the collapsed
edge maps to the generated vertex

1. The degeneracy of the triangles mapping to edges prevents
us from mapping points of the simplified surface back to
unique points on the original surface. This also implies that
if we have any sort of attribute field across the surface, a
portion of it disappears as a result of the operation.

2. The error implied by this mapping may be larger than nec-
essary.

We measure the surface deviation error of the operation by
the distances between corresponding points of our mapping. If
we use the natural mapping, the maximum distance between any
pair of points is defined as:

1 2

where the collapsed edge corresponds to 1 2 and
is the generated vertex.

If we place the generated vertex at the midpoint of the col-
lapsed edge, this distance error will be half the length of the edge.
If we place the vertex at any other location, the error will be even
greater.

We can create mappings that are free of degeneracies and often
imply less error than the natural mapping. For simplicity, and to
guarantee no self-intersections, we perform our mappings using
planar projections of our local neighborhood. We refer to them
as successive mappings.

4 Successive Mapping
In this section we present an algorithm to compute the mappings
and their error bounds, which guide the simplification process.
We present efficient and complete algorithms for computing a
planar projection, finding a generated vertex in the plane,creating
a mapping in the plane, and finally placing the generated vertex
in 3D. The resulting algorithms utilize a number of techniques
from computational geometry and are efficient in practice.

4.1 Computing a Planar Projection
Given a set of triangles in 3D, we present an efficient algorithm
to compute a planar projection which is one-to-one to the set of
triangles. The algorithm is guaranteed to find a plane, if it exists.

The projection we seek should be one-to-one to guarantee
that the operations we perform in the plane are meaningful. For
example, suppose we project a connected set of triangles onto
a plane and then re-triangulate the polygon described by their
boundary. The resulting set of triangles will contain no self-
intersections, so long as the projection is one-to-one. Many other
simplification algorithms, such as those by Turk [22], Schroeder
[19] and Cohen, Varshney et al. [5], also used such projections for
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Not one-to-one on this interval

Figure 2: A 2D example of an invalid projection

vertex removal. However, they would choose a likely direction,
such as the average of the normal vectors of the triangles of
interest. To test the validity of the resulting projection, these
earlier algorithms would project all the triangles onto the plane
and check for self-intersections. This process can be relatively
expensive and is not guaranteed to find a one-to-one projecting
plane.

We improve on earlier brute-force approaches in two ways.
First, we present a simple, linear-time algorithm for testing the
validity of a given direction. Second, we present a slightly more
complex, but still expected linear-time, algorithm which will find
a valid direction if one exists, or report that no such direction
exists for the given set of triangles.

4.1.1 Validity Test for Planar Projection

In this section, we briefly describe the algorithm which checks
whether a given set of triangles have a one-to-one planar projec-
tion. Assume that we can calculate a consistent set of normal
vectors for the set of triangles in question (if we cannot, the sur-
face is non-orientable and cannot be mapped onto a plane in a
one-to-one fashion). If the angle between a given direction of
projection and the normal vector of each of the triangles is less
than 90 , then the direction of projection is valid, and defines a
one-to-one mapping from the 3D triangles to a set of triangles in
the plane of projection (any plane perpendicular to the direction
of projection). Note that for a given direction of projection and a
given set of triangles, this test involves only a single dot product
and a sign test for each triangle in the set.

The correctness of the validity test can be established rigor-
ously [4]. Due to space limitations, we do not present the detailed
proof here. Rather, we give a short overview of the proof.

Figure 2 illustrates our problem in 2D. We would like to
determine if the projection of the curve onto the line is one-to-one.
Without loss of generality, assume the direction of projection is
the y-axis. Each point on the curve projects to its x-coordinate
on the line. If we traverse the curve from its left-most endpoint,
we can project onto a previously projected location if and only
if we reverse our direction along the x-axis. This can only
occur when the y-component of the curve’s normal vector goes
from a positive value to a negative value. This is equivalent to
our statement that the normal will be more than 90 from the
direction of projection. With a little more work, we can show
that this characterization generalizes to 3D.

4.1.2 Finding a valid direction

The validity test in the previous section provides a quick method
of testing the validity of a likely direction as a one-to-one map-
ping projection. But the wider the spread of the normal vectors
of our set of triangles, the less likely we are to find a valid di-
rection by using any sort of heuristic. It is possible, in fact, to
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Figure 3: A 2D example of the valid projection space. a) Two
line segments and their normals. b) The 2D Gaussian circle, the
planes corresponding to each segment, and the space of valid
projection directions.

compute the set of all valid directions of projection for a given
set of triangles. However, to achieve greater efficiency and to
reduce the complexity of the software system we choose to find
only a single valid direction, which is typically all we require.

The Gaussian sphere [2] is the unit sphere on which each point
corresponds to a unit normal vector with the same coordinates.
Given a triangle, we define a plane through the origin with the
same normal as the triangle. For a direction of projection to
be valid with respect to this triangle, its point on the Gaussian
sphere must lie on the correct side of this plane (i.e. within the
correct hemisphere). If we consider two triangles simultaneously
(shown in 2D in Figure 3) the direction of projection must lie on
the correct side of the planes determined by the normal vectors
of both triangles. This is equivalent to saying that the valid
directions lie within the intersection of half-spaces defined by
these two planes. Thus, the valid directions of projection for a
set of N triangles lie within the intersection of N half-spaces.

This intersection of half-spaces forms a convex polyhedron.
This polyhedron is a cone, with its apex at the origin and an
unbounded base (shown as a triangular region in Figure 3). We
can force this polyhedron to be bounded by adding more half-
spaces (we use the six faces of a cube containing the origin). By
finding a point on the interior of this cone and normalizing its
coordinates, we shall construct a unit vector in the direction of
projection.

Rather than explicitly calculating the boundary of the cone,
we simply find a few corners (vertices) and average them to find
a point that is strictly inside. By construction, the origin is def-
initely such a corner, so we just need to find three more unique
corners to calculate an interior point. We can find each of these
corners by solving a 3D linear programming problem. Linear
programming allows us to find a point that maximizes a linear ob-
jective function subject to a collection of linear constraints [13].
The equations of the half-spaces serve as our linear constraints.
We maximize in the direction of a vector to find the corner of our
cone that lies the farthest in that direction.

As stated above, the origin is our first corner. To find the
second corner, we try maximizing in the positive- direction.
If the resulting point is the origin, we instead maximize in the
negative- direction. To find the third corner, we maximize
in a direction orthogonal to the line containing the first two
corners. If the resulting point is one of the first two corners,
we maximize in the opposite direction. Finally, we maximize
in a direction orthogonal to the plane containing the first three
corners. Once again, we may need to maximize in the opposite
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Figure 4: The neighborhood of an edge as projected into 2D
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Figure 5: a) An invalid 2D vertex position. b) The kernel of a
polygon is the set of valid positions for a single, interior vertex
to be placed. It is the intersection of a set of inward half-spaces.

direction instead. Note that it is possible to reduce the worst-case
number of optimizations from six to four by using the triangle
normals to guide the selection of optimization vectors.

We used Seidel’s linear time randomized algorithm [20] to
solve each linear programming problem. A public domain im-
plementation of this algorithm by Hohmeyer is available. It is
very fast in practice.

4.2 Placing the Vertex in the Plane
In the previous section, we presented an algorithm to compute
a valid plane. The edge collapse, which we use as our simplifi-
cation operation, entails merging the two vertices of a particular
edge into a single vertex. The topology of the resulting mesh is
completely determined, but we are free to choose the position of
the vertex, which will determine the geometry of the resulting
mesh.

When we project the triangles neighboring the given edge onto
a valid plane of projection, we get a triangulated polygon with
two interior vertices, as shown in Figure 4. The edge collapse
will reduce this edge to a single vertex. There will be edges
connecting this generated vertex to each of the vertices of the
polygon. In the context of this mapping approach, we would like
the set of triangles around the generated vertex to have a one-
to-one mapping with our chosen plane of projection, and thus to
have a one-to- one mapping with the original edge neighborhood
as well.

In this section, we present linear time algorithms both to test
a candidate vertex position for validity, and to find a valid vertex
position, if one exists.

4.2.1 Validity test for Vertex Position

The edge collapse operation leaves the boundary of the polygon
in the plane unchanged. For the neighborhood of the generated
vertex to have a one-to-one mapping with the plane, its edges
must lie entirely within the polygon, ensuring that no edge cross-
ings occur.
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Figure 6: a) Edge neighborhood and generated vertex neigh-
borhood superimposed. b) A mapping in the plane, composed
of 25 polygonal cells (each cell contains a dot). Each cell maps
between a pair of planar elements in 3D.

This 2D visibility problem has been well-studied in the com-
putational geometry literature [14]. The generated vertex must
have an unobstructed line of sight to each of the surrounding
polygon vertices (unlike the vertex shown in Figure 5a). This
condition holds if and only if the generated vertex lies within the
polygon’s kernel, shown in Figure 5b. This kernel is the inter-
section of inward-facing half-planes defined polygon’s edges.

Given a potential vertex position in 2D, we test its validity
by plugging it into the implicit-form equation for each of the
polygon edges’ line. If the position is on the interior with respect
to each line, the position is valid, otherwise it is invalid.

4.2.2 Finding a Valid Position

The validity test highlighted above is useful if we wish to test out
a likely candidate for the generated vertex position, such as the
midpoint of the edge being collapsed. If such a heuristic choice
succeeds, we can avoid the work necessary to compute a valid
position directly.

Given the kernel definition for valid points, it is straightfor-
ward to find a valid vertex position using 2D linear programming.
Each of the lines provides one of the constraints for the linear
programming problem. Using the same methods as in Section
4.1.2, we can find a point in the kernel with no more than four
calls to the linear programming routine. The first and second
corners are found by maximizing in the positive- and negative-
directions. The final corner is found using a vector orthogonal to
the first two corners.

4.3 Creating a Mapping in the Plane
After mapping the edge neighborhood to a valid plane and choos-
ing a valid position for the generated vertex, we must define a
mapping between the edge neighborhood and the generated ver-
tex neighborhood. We shall map to each other the pairs of 3D
points which project to identical points on the plane. These
correspondences are shown in Figure 6a.

We can represent the mapping by a set of map cells, shown in
Figure 6b. Each cell is a convex polygon in the plane and maps
a piece of a triangle from the edge neighborhood to a similar
piece of a triangle from the generated vertex neighborhood. The
mapping represented by each cell is linear.

The vertices of the polygonal cells fall into four categories:
vertices of the overall neighborhood polygon, vertices of the
collapsed edge, the generated vertex itself, and edge-edge inter-
section points. We already know the locations of the first three
categories of cell vertices, but we must calculate the edge-edge
intersection points explicitly. Each such point is the intersection
of an edge adjacent to the collapsed edge with an edge adjacent to

the generated vertex. The number of such points can be quadratic
(in the worst case) in the number of neighborhood edges. If we
choose to construct the actual cells, we may do so by sorting
the intersection points along each neighborhood edge and then
walking the boundary of each cell.

4.4 Optimizing the 3D Vertex Position
Up to this point, we have projected the original edge neighbor-
hood onto a plane, performed an edge collapse in this plane,
and computed a mapping in the plane between these two local
meshes. We are now ready to choose the position of the gener-
ated vertex in 3D. This 3D position will completely determine
the geometry of the triangles surrounding the generated vertex.

To preserve our one-to-one mapping, it is necessary that all
the points of the generated vertex neighborhood, including the
generated vertex itself, project back into 3D along the direction of
projection (the normal to the plane of projection). This restricts
the 3D position of the generated vertex to the line parallel to the
direction of projection and passing through the generated vertex’s
2D position in the plane. We choose the vertex’s position along
this line such that it introduces as small a surface deviation as
possible, that is it minimizes the maximum distance between any
two corresponding points of the edge collapse neighborhood and
the generated vertex neighborhood.

4.4.1 Distance function of the map

Each cell of our mapping determines a correspondence between
a pair of planar elements. The maximum distance between any
pair of planar functions must be at the boundary. For these pairs
of polygons, the maximum distance must occur at a vertex. So
the maximum distance for the entire mapping will always be at
one of the interior cell vertices (because the cell vertices along
the boundary do not move).

We parameterize the position of the generated vertex along
its line of projection by a single parameter, . As varies, the
distance between the corresponding cell vertices in 3D varies lin-
early. Note that these distances will always be along the direction
of projection, because the distance between corresponding cell
vertices is zero in the other two dimensions (those of the plane of
projection). Because the distance is always positive, the distance
function of each cell vertex is actually a pair of lines intersecting
on the x-axis (shaped like a “V”).

4.4.2 Minimizing the distance function

Given the distance function, we would like to choose the param-
eter that minimizes the maximum distance between any pair of
mapped points. This point is the minimum of the so-called upper
envelope. For a set of linear functions, we define the upper
envelope function as follows:

1 ;

For linear functions with no boundary conditions, this function
is convex. Again we use linear programming to find the value
at which the minima occurs. We use this value of to calculate
the position of the generated vertex in 3D.

4.5 Accommodating Bordered Surfaces
Bordered surface are those containing edges adjacent to only a
single triangle, as opposed to two triangles. Such surfaces are



quite common in practice. Borders create some complications
for the creation of a mapping in the plane. The problem is that the
total shape of the neighborhood projected into the plane changes
as a result of the edge collapse.

Bajaj and Schikore [1], who employ a vertex-removal ap-
proach, deal with this problem by mapping the removed vertex
to a length-parameterized position along the border. This solu-
tion can be employed for the edge-collapse operation as well. In
their case, a single vertex maps to a point on an edge. In ours,
three vertices map to points on a chain of edges.

5 Applying Mappings
The previous section described the steps required to compute a
mapping using planar projections. Given such a mapping, we
would now like to apply it to the problem of computing high-
quality surface approximations. We will next discuss how to
bound the distance from the current simplified surface to the
original surface, and how to compute new values for scalar sur-
face attributes at the generated vertex.

5.1 Approximation of Original Surface
Position

In the process of creating a mapping, we have measured the
distance between the current surface and the surface resulting
from the application of one more simplification operation. What
we eventually desire is the distance between this new surface
and the original surface. One possible solution would be to in-
corporate the information from all the previous mappings into
an increasingly complex mapping as the simplification process
proceeds. While this approach has the potential for a high de-
gree of accuracy, the increasing complexity of the mappings is
undesirable.

Instead, we associate with every point on the current surface
a volume that is guaranteed to contain the corresponding point
on the original surface. This volume is chosen conservatively so
we can use the same volume for all points in a triangle. Thus the
portion of the original surface corresponding to the triangle lies
within the convolution of the triangle and the volume.

Possible volume choices include axis-aligned boxes, triangle-
aligned prisms and sphere. For computational efficiency, we use
axis-aligned boxes. To improve the error bounds, we do not
require the box to be centered at the point of application.

The initialbox at every triangle has zero size and displacement.
After computing the mapping in the plane and choosing the 3D
vertex position, we propagate the error by adjusting the size and
displacement of the box associated with each new triangle.

For each cell vertex, we create a box that contains the boxes of
the old triangles that meet there. The box for each new triangle
is then constructed to contain the boxes of all of its cell vertices.
By maintaining this containment property at the cell vertices, we
guarantee it for all the interior points of the cells.

The maximum error for each triangle is the distance between
a point on the triangle and the farthest corner of its associated
box. The error of the entire current mesh is the largest error of
any of its triangles.

5.2 Computing Texture Coordinates
The use of texture maps has become common over the last several
years, as the hardware support for texture mapping has increased.

Texture maps provide visual richness to computer-rendered mod-
els without adding more polygons to the scene.

Texture mapping requires two texture coordinatesat every ver-
tex of the model. These coordinates provide a parameterization
of the texture map over the surface.

As we collapse an edge, we must compute texture coordinates
for the generated vertex. These coordinates should reflect the
original parameterization of the texture over the surface. We
use linear interpolation to find texture coordinates for the corre-
sponding point on the old surface, and assign these coordinates
to the generated vertex.

This approach works well in many cases, as demonstrated in
Section 7. However, there can still be some sliding of the texture
across the surface. We can extend our mapping approach to also
measure and bound the deviation of the texture. This extension,
currently under development, will provide more guarantees about
the smoothness of transitions between levels of detail.

As we add more error measures to our system, it becomes
necessary to decide how to weight these errors to determine
the overall cost of an edge collapse. Each type of error at an
edge mandates a particular viewing distance based on a user-
specified screen-space tolerance (e.g. number of allowable pixels
of surface or texel deviation). We conservatively choose the
farthest of these. At run-time, the user can still adjust the overall
screen-space tolerance, but the relationships between the types
of error are fixed.

6 System Implementation
All the algorithms described in this paper have been implemented
and applied to various models. While the simplification process
itself is only a pre-process with respect to the graphics applica-
tion, we would still like it to be as efficient as possible. The most
time-consuming part of our implementation is the re-computation
of edge costs as the surface is simplified (Section 3.1). To reduce
this computation time, we allow our approach to be slightly less
greedy. Rather than recompute all the local edge costs after a
collapse, we simply set a dirty flag for these edges. If the next
minimum-cost edge we pick to collapse is dirty, we re-compute
it’s cost and pick again. This lazy evaluation of edge costs sig-
nificantly speeds up the algorithm without much effect on the
error across the progressive mesh.

More important than the cost of the simplification itself is
the speed at which our graphics application runs. To maximize
graphics performance, our display application renders simplified
objects only with display lists. After loading the progressive
mesh, it takes snapshots to use as levels of detail every time the
triangle count decreases by a factor of two. These choices limit
the memory usage to twice the original number of triangles, and
virtually eliminate any run-time cost of simplification.

7 Results
We have applied our simplification algorithm to four distinct
objects: a bunny rabbit, a wrinkled torus, a lion, and a Ford
Bronco, with a total of 390 parts. Table 1 shows the total input
complexity of each of these objects as well as the time needed to
generate a progressive mesh representation. All simplifications
were performed on a Hewlett-Packard 735/125 workstation.

Figure 7 graphs the complexity of each object vs. the number
of pixels of screen-space error for a particular viewpoint. Each set



Model Parts Orig. Triangles CPU Time (Min:Sec)
Bunny 1 69,451 9:05
Torus 1 79,202 10:53
Lion 49 86,844 8:52

Bronco 339 74,308 6:55

Table 1: Simplifications performed. CPU time indicates time
to generate a progressive mesh of edge collapses until no more
simplification is possible.
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Figure 7: Continuum of levels of detail for four models

of data was measured with the object centered in the foreground
of a 1000x1000-pixel viewport, with a 45 field-of-view, like
the Bronco in Plates 2 and 3. This was the easiest way for
us to measure the continuum. Conveniently, this function of
complexity vs. error at a fixed distance is proportional to the
function of complexity vs. viewing distance with a fixed error.
The latter is typically the function of interest.

Plate 1 shows the typical way of viewing levels of detail – with
a fixed error bound and levels of detail changing as a function of
distance. Plates 2 and 3 show close-ups of the Bronco model at
full and reduced resolution.

Plates 4 and 5 show the application of our algorithm to the
texture-mapped lion and wrinkled torus models. If you know
how to free-fuse stereo image pairs, you can fuse the torii or
any of the adjacent pairs of textured lion. Because the torii are
rendered at an appropriate distance for switching between the two
levels of detail, the images are nearly indistinguishable, and fuse
to a sharp, clear image. The lions, however, are not rendered at
their appropriate viewing distances, so certain discrepancies will
appear as fuzzy areas. Each of the lion’s 49 parts is individually
colored in the wire-frame rendering to indicate which of its levels
of detail is currently being rendered.

7.1 Applications of Projection Algorithm
We have also applied the technique of finding a one-to-one planar
projection to the simplification envelopes algorithm [5]. The
simplification envelopes method requires the calculation of a
vertex normal at each vertex that may be used as a direction
to offset the vertex. The criterion for being able to move a
vertex without creating a local self-intersection is the same as
the criterion for being able to project to a plane. The algorithm
presented in [5] used a heuristic based on averaging the face
normals.

By applying the projection algorithm based on linear program-
ming (presented in Section 4.1) to the computation of the offset

directions, we were able to perform more drastic simplifications.
The simplification envelopes method could previously only re-
duce the bunny model to about 500 triangles, without resulting
in any self-intersections. Using the new approach, the algorithm
can reduce the bunny to 129 triangles, with no self-intersections.

7.2 Video Demonstration

We have produced a video demonstrating the capabilities of
the algorithm and smooth switching between different levels-
of-details for different models. It shows the speed-up in the
frame rate for eight circling Bronco models (about a factor of
six) with almost no degradation in image quality. This is based
on mapping the object space error bounds to screen space, which
can measure the maximum error in number of pixels. The video
also highlights the performance on simplifying textured models,
showing smooth switching between levels of detail. The texture
coordinates were computed using the algorithm in Section 5.2.

8 Comparison to Previous Work

While concrete comparisons are difficult to make without careful
implementation of all the related approaches readily available,we
compare some of the features of our algorithm with that of others.
The efficient and complete algorithms for computing the planar
projection and placing the generated vertex after edge collapse
should improve the performance of all the earlier algorithms that
use vertex removals or edge collapses.

We compared our implementation with that of the simplifica-
tion envelopes approach [5]. We generated levels of detail of the
Stanford bunny model (70,000 triangles) using the simplification
envelopes method, then generated levels of detail with the same
number of triangles using the successive mapping approach. Vi-
sually, the models were comparable. The error bounds for the
simplification envelopes method were smaller by about a factor
of two, but the error bounds for the two methods measure dif-
ferent things. Simplification envelopes only bounds the surface
deviation in the direction normal to the original surface, while
the mapping approach prevents the surface from sliding around
as well. Also, simplification envelopes created local creases in
the bunnies, resulting in some shading artifacts. The successive
mapping approach discourages such creases by its use of planar
projections. At the same time, the performance of the simplifi-
cation envelopes approach (in terms complexity vs. error) has
been improved by our new projection algorithm.

Hoppe’s progressive mesh [12] implementation is more com-
plete than ours in its handling of colors, textures, and disconti-
nuities. However, this technique provides no guaranteed error
bounds, so there is no simple way to automatically choose switch-
ing distances that guarantee some visual quality.

The multi-resolution analysis approach to simplification [7, 8]
does, in fact, provide strict error bounds as well as a mapping
between surfaces. However, the requirements of its subdivision
topology and the coarse granularity of its simplification operation
do not provide the local control of the edge collapse. In particular,
it does not deal well with sharp edges. Hoppe [12] has compared
his progressive meshes with the multi-resolutionanalysis meshes.
For a given number of triangles, his progressive meshes provide
much higher visual quality. Therefore, for a given error bound,
we expect our mapping algorithm to be able to simplify more
than the multi-resolution approach.



Guéziec’s tolerance volume approach [9] also uses edge col-
lapses with local error bounds. Unlike the boxes used by the
successive mapping approach, Guéziec’s error volume can grow
as the simplified surface fluctuates closer to and farther away
from the original surface. This is due to the fact that it uses
spheres which always remain centered at the vertices, and the
newer spheres must always contain the older spheres. The boxes
used by our successive mapping approach are not centered on the
surface and do not grow as a result of such fluctuations. Also, the
tolerance volume approach does not generate mappings between
the surfaces for use with other attributes.

We have made several significant improvements over the sim-
plification algorithm presented by Bajaj and Schikore [1, 17].
First, we have replaced their projection heuristic with a robust
algorithm for finding a valid direction of projection. Second, we
have generalized their approach to handle more complex oper-
ations, such as the edge collapse. Finally, we have presented
an error propagation algorithm which correctly bounds the er-
ror in the surface deviation. Their approach represented error
as infinite slabs surrounding each triangle. Because there is no
information about the extent of these slabs, it is impossible to
correctly propagate the error from a slab with one orientation to
a new slab with a different orientation.

9 Future Work

We are currently working on bounding the screen-space deviation
of the texture coordinates. By bounding the error of the texture
coordinates, we will provide one type of bound on the deviation
of surface colors (from a texture map) or normals (from a bump
map). We also plan to measure and bound the deviation of colors
and normals specified directly at the polygon vertices.

There are cases where the projection onto a plane produces
mappings with unnecessarily large error. We only optimize sur-
face position in the direction orthogonal to the plane of projection.
It would be useful to generate and optimize mappings directly in
3D to produce better simplifications.

Our system currently handles non-manifold topologies by
breaking them into independent surfaces, which does not main-
tain connectivity between the components. Handling such non-
manifold regions directly may provide higher visual fidelity for
large screen-space tolerances.
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