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Abstract

Over the yeas, there have been two main branches of computer
graphics image-synthesis reseach; one focused on interactivity,
the other on image quality. Procedural shading is a powerful tod,
commonly used for creaing high-quality images and production
animation. A key aspect of most procedural shading is the use of
a shading language, which alows a high-level description of the
color and shading o each surface. However, shading languages
have been beyond the capabiliti es of the interactive graphics
hardware community. We have creaed a parallel graphics multi-
computer, PixelFlow, that can render images at 30 frames per
second wsing a shading language. This is the first system to be
able to support a shading language in red-time. In this paper, we
describe some of the techniques that make thistdess
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Additional Keywords: red-time image generation, procedural
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1 INTRODUCTION

We have creded a SIMD graphics multicomputer, PixelFlow,
which supports procedural shading using a shading language.
Even a small (single chasss) PixelFlow system is capable of
rendering scenes with procedural shading at 30 frames per sec-
ond or more. Figure 1 shows sveral examples of shaders that

were written in our shading language and rendered on PixelFlow.

In procedural shading, a user (someone other than a system
designer) creaes a short procedure, called a shader, to determine
the final color for each point on a surface. The shader is respon-
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Figurel: Some PixelFlow surface shaders. a) brick. b)
mirror with animated ripple. ¢) wood planks. d) d-vo
ume-based wood. e) light shining through a paned wi
dow. f) view of a bowling scene.

* UNC Department of Computer Science, Sitterson Hall, CB #3175, Chapel Sible for color variations acrossthe surface and the interaction of

Hill, NC 27599 (email: ldra@cs.unc.edu)

light with the surface. Shaders can use a asrtment of inpu
appearance parameters, usualy including the surface normal,
texture coordinates, texture maps, light direction athdrso
Procedural shading is quite popular in the production industry
where it is commonly used for rendering in feaure films and
commercias. The best known examples of this have been ren-
dered uwsing Pixar's PhotoRedistic RenderMan software
[Upstill 90]. A key aspect of RenderMan is its shading language.
The shading language provides a high-level description of each
procedural shader. Shaders written in the RenderMan shading
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language can be used by any compliant renderer, no matter what

rendering method it uses.

There ae severa reasons to provide procedural shading in-
stead of just image texturing on a real-time graphics system:
e |t is eay to add mise and random variability to make a

surface look more realistic.

e |t can be eaier to creae aprocedura shader for a compli-
cated surface than to try to eliminate the distortions caused
by wrapping a flat, scanned texture over the surface.

e |tiseasier to“twed” a procedural shader than to rescan or
repaint an image texture.

e |t isoften easier to crede detail on an object using a proce-
dural shader instead of modifying the object geometry.

e A procedurally shaded surface can change with time, dis-
tance, or viewing angle.

Usually procedural shading is associated with images that take a
while to generate — from a few minutes to a day or so. Recently,
graphics hardware reached the point where image texture map-
ping was not just posgble, but common; now hardware is reach-
ing the point where shading languages for interactive graphics
are postble.

We have produced a shading language and shading language
compiler for our high-end graphics machine, PixelFlow. This
language is called pfman (pf for PixelFlow, man because it is
similar to Pixar's RenderMan shading language). One of the
grea advantages of a shading language for procedural shading,
particularly on a complex graphics engine, is that it effectively
hides the implementation details from the shader-writer. The
specifics of the graphics architecture ae hidden in the shading
language compiler, as are dl of the tricks, optimizations, and
special adaptations required by the machine. In this paper, we
describe shading on PixelFlow, the pfman language, and the
optimizations that were necessary to make it run in real-time.

Section 2is areview of the relevant prior work. Section 3 cov-
ers feaures of the pfman shading language, paying particular
attention to the ways that it differs from the RenderMan shading
language. Section 4 describes our extensions to the OpenGL API
[Neider93] to support procedural shading. Section 5 gives a brief
overview of the PixelFlow hardware. Section 6 covers our im-
plementation and the optimizations that are done by PixelFlow
and the pfman compiler. Finally, Section 7 has some usiacls.

2 RELATED WORK

Early forms of progjammable shading were accomplished by
rewriting the shading code for the renderer (see for example,
[Max81]). Whitted and Weimer specificaly all owed this in their
testbed system [Whitted81]. Their span buffers are an imple-
mentation of a technique now call ed deferred shading, which we
use on PixelFlow. In this technique, the parameters for shading
are scan converted for alater shading pass This all owed them to
run multiple shaders on the same scene without having to re-
render. Previous uses of deferred shading for interactive graphics
systems includgDeering88]and[Ellsworth91]

More recently, easier accessto procedural shading capabilities
has been provided to the graphics programmer. Cook’s shade
trees [Cook84] were the base of most later shading works. He
turned simple expressons, describing the shading at a point on
the surface, into a parse tree form, which was interpreted. He
introduced the name appearance parameters for the parameters
that affect the shading calculations. He dso proposed an or-
thoganal subdvision of types of programmable functions into
displa@ment, surface shading, light, and atmosphere trees.

Perlin’s image synthesizer extends the simple expressons in
Codk’s dhade trees to a full language with control structures
[Perlin89. He dso introduced the powerful Perlin noise func-

tion, which produces random numbers with a band-limited fre-
quency spectrum. This gyle of noise plays a mgjor role in many
procedural shaders.

The RenderMan shading language [Hanrahan90][Upstill 90]
further extends the work of Cook and Perlin. It suggests new
procedures for transformations, image operations, and volume
effects. The shading language is presented as a standard, making
shaders portable to any conforming impleragon.

In additi on to the shading language, RenderMan also provides
a geometry description library (the RenderMan API) and a geo-
metric file format (called RIB). The reference implementation is
Pixar's PhotoRedi stic RenderMan based on the REYES render-
ing algarithm [Cook87], but other implementations now exist
[Slusallek94]Gritz96].

The same gplication will run on al of these without change.
RenderMan effectively hides the detail s of the implementation.
Not only does this allow multiple implementations using com-
pletely different rendering algorithms, but it means the user
writing the goplication and shaders doesn’t need to know any-
thing about the rendering algorithm being used. Knowledge of
basic graphics concepts suffices.

Previous efforts to support user-written procedural shading on
a red-time graphics g/stem are much more limited. The evolu-
tion of graphics hardware is only just reaching the point where
procedural shading is practical. The only implementation to date
was Pixel-Planes 5, which supported a simple form of procedural
shading [Rhoades92]. The language used by this g/stem was
quite low level. It used an asseembly-like interpreted language
with simple operations like copy, add, and multiply and a few
more complex operations like aPerlin noise function. The hard-
ware limitations of Pixel-Planes 5 limited the complexity of the

shaders, and the low-level nature of the language limited its use.

Lastra d. al. [Lastra95] presents previous work on the Pix-
elFlow shading implementation. It analyzes results from a Pix-
elFlow simulator for hand-coded shaders and draws a number of
conclusions about the hardware requirements for procedural
shading. At the time of that paper, the shading language compil er
was in its infancy, and we had not addressed many of the isues
that make ared-time shading language possble. [Lastra9y] is
the foundation on which we built our shading language.

3 SHADING LANGUAGE

A surface shader produces a color for eech point on a surface,
taking into account the color variations of the surface itself and
the lighting effects. As an example, we will show a shader for a
brick wall. The wall is rendered as a single polygon with texture
coordinates to parameterize the position on thiasce.

The shader requires several additional parameters to describe
the size, shape, and color of the brick. These ae the width and
height of the brick, the width of the mortar, and the colors of the
mortar and trick (Figure 2). These parameters are used to wrap
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Figure2: Example bricks and the size and shape p
rameters for the brick shader.
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/I figure out which row of bricks this is (row is 8-bit integer’

fixed<8,0> row = tt / height;
/I offset even rows by half a row
if (row % 2 == 0) ss += width/2;
/I wrap texture coordinates to get “brick coordinates”
SS = ss % width;
tt = tt % height;
/I pick a color for the brick surface
float surface_color[3] = brick_color;
if (ss < mortar || tt < mortar)
surface_color = mortar_color;

Figure3: Code from asimplebrick shader

the texture coordinates into brick mordinates for each brick.
These ae (0,0) at the lower left corner of each hrick, and are
used to choose @ther the brick or mortar color. A portion of the
brick shader is own in Figure 3. The brick image in Figure 2
was generated with this shader.

One alvantage of procedural shading is the eae with which
shaders can be modified to produce the desired results. Figure 1a
shows a more redistic brick that resulted from small modifica-
tions to the simple brick shader. It includes a simple proce-
durally-defined bump map to indent the mortar, high-frequency
band-limited noise to simulate grains in the mortar and krick,
patches of color variation within each brick to simulate swirls of
color in the clay, and variations in color from brick to brick.

The remainder of this section covers ssme of the detail s of the
pfman shading language and some of the differences between it
and the RenderMan shading language. These differences are

1. the introduction of a fixed-point data type,

2. the use of arrays for points and vectors,

3. the introduction of transformation attributes,

4. the explicit listing of all shader parameters, and

5. the ability to link with external functions.
Of these changes, 1 and 2 alow us to use the faster and more
efficient fixed-point math on our SIMD processng elements. The
third covers a hole in the RenderMan standard that has snce
been fixed. The fourth was not necessary, but simplified the im-
plementation of our compiler. Finaly, item 5 is a result of our
language being compiled instead of interpreted (in contrast to
most off-line renderer implementations of RenderMan).

3.1 Types

As with the RenderMan shading language, variables may be
declared to be ather uni f or mor varyi ng. A varyi ng vari-
able is one that might vary from pixel to pixel — texture coordi-
nates for example. A uni f or mvariable is one that will never
vary from pixel to pixel. For the brick shader presented above,
the width, height and color of the bricks and the thickness and
color of the mortar are dl uniform parameters. These control the
appeaance of the brick, and alow us to use the same shader for
a variety of different styles of brick.

RenderMan has one representation for all numbers: floating-
point. We dso support floating-point (32-bit IEEE single preci-
sion format) because it is such a forgiving representation. This
format has about 10 relative aror for the entire range of num-
bers from 10 to 10°. However, for some quantities used in
shading this range is overkill (for colors, an 8 to 16 ht fixed-
point representation can be sufficient [Hill 97]). Worse, there ae
cases where floating-point has too much range but not enough
precision. For example, a Mandelbrot fractal shader has an insa-
tiable gpetite for precision, but only over the range [-22]
(Figure 4). In this case, it makes much more sense to use afixed-

Figure4: Fixed-point vs. floating-point comparison.
a) Mandelbrot set computed using floating-point.
b) Mandelbrot set computed using fixed-point

point format instead of a 32 Kt floating-point format: the float-
ing-point format wastes one of the four bytes for an exponent that
ishardly used. In generd, it is easiest to prototype ashader using
floating-point, then change to fixed-point as necessary for mem-
ory usage, precision, and speed. Our fixed-point types may be
signed or unsigned and have two parameters: the size in hits and
an exponent, written f i xed<si ze, exponent >. Fixed-point
behaves like floating-point where the exponent is a compil e-time
constant. Small exponents can be interpreted as the number of
fractional bits: atwo byteinteger isf i xed<16, 0>, while atwo
byte pure fractions f i xed<16, 16>.

Like recent versions of the RenderMan shading language
[Pixar97], pfman supports arrays of its basic types. However,
where RenderMan uses separate types for points, vectors, nor-
mals, and colors, pfman uses arrays with transformation atrib-
utes. By making each point be an array of floating-point or fixed-
point numbers, we can choose the gpropriate representation
independently for every point. A transformation attribute indi-
cates how the point or vector should be transformed. For exam-
ple, points use the regular transformation matrix, vectors use the
same transformation bu without translation, and rormals use the
adjoint or inverse without translation. We dso include atrans-
formation attribute for texture coordinates, which are trans-
formed by the OpenGL texture transformation matrix.

3.2 Explicit Shader Parameters

RenderMan defines a set of standad parameters that are im-
plicitly available for use by every surface shader. The surface
shader does not neal to declare these parameters and can use
them as if they were global variables. In pfman, these parameters
must be explicitly declared. This all ows us to construct a transfer
map (discussed later in Section 6) that contains only those pa-
rameters that are actually needed by the shader.

In retrospect, we should have done a static analysis of the
shader function to decide which bult-in parameters are used.
This would have made pfman that much more like RenderMan,
and consequently that much easier for new users arealy famili ar
with RenderMan.

3.3 External Linking

Compiling a pfman shader is a two-stage process The pfman
compil er produces C++ source code. This C++ code is then com-
piled by a C++ compiler to produce an object fil e for the shader.
The function definitions and call sin pfman correspond drectly to
C++ function definitions and calls. Thus, unlike most Render-
Man implementations, we support caling C++ functions from
the shading language and vice versa. This facility is limited to
functions using types that the shading languagpats.
Compiling to C++ aso provides other advantages. We ignore
certain optimizations in the pfman compiler since the C++ com-
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Figure5: Instances of a brick surface shader.

piler does them. One could &l so use the generated C++ code & a
starting point for a hand-optimized shader. Such a hand
optimized shader would no longer be portable, and performing
the optimization would require considerable understanding o the
PixelFlow internals normally hidden by the shading language.
Not surprsingly, no one has done this yet.

4 API

The RenderMan standard [Upstill 90] defines not only the shad-
ing language, but also a graphics application program interface
(API). This is a library of graphics functions that the graphics
application can call to describe the scene to the renderer. We
elected to base our APl on OpenGL [Neider93] instead of Ren-
derMan. OpenGL is a popular API for interactive graphics appli-
cations, supported on a number of graphics hardware platforms.
It provides about the same capabiliti es as the RenderMan API,
with a similar collection of functions, but with more focus on
interactive graphics. By using OpenGL as our base we can easily
port applications written for other hardware.

We etended OpenGL to support procedural shading
[Leech9g. We required that the procedural shading extensions
have no impact on applications that do not use procedural shad-
ing. We dso endeavored to make them fit the framework and
phil osophy of OpenGL. Our efforts to extend OpenGL should be

readily usable by future real-time shading language systems.

Foll owing the OpenGL standard, all of our extensions have the
suffix EXT. We will follow that convention here to help clarify
what is arealy part of OpenGL and what we alded. OpenGL
functions aso include suffix letters (f, i , s, etc.) indicating the
operand type. For brevity, we omit these in the text.

4.1 Loading Functions

Procedural surface shaders and lights are written as pfman func-
tions. The new API call, gl LoadExt ensi onCodeEXT, loads
ashader. Currently, we do not support dynamic linking of surface
or light functions, so this call just declares which shaders will be
used. In the future, we do plan to dynamically load shaders.

4.2 Shading Parameters

On PixelFlow, the default shader implements the OpenGL
shading model. Applications that do not “use” procedural shad-
ing use this default OpenGL shader without having to know any
of the shading extensions to OpenGL.

We set the values for shading parameters using the
gl Mat eri al cal, arealy used by OpenGL to set parameters
for the built-in shading model. Parameters st in this fashion go
into the OpenGL global state, where they may be used by any
shader. Any shader can use the same parameters as the OpenGL
shader simply by sharing the same parameter names, or it can
define its own new parameter names.

OpenGL aso has a handful of other, parameter-specific, calls.
gl Col or can be set to change awy of several posshle color
parameters, each of which can aso be changed with
gl Mat eri al . We creded similar parameter name equivalents
for gl Nor mal and gl TexCoor d. Other shaders may use these
names to access the normals st with gl Nor mal and texture
coordinates frongl Texcoor d.

4.3 Shader Instances

The RenderMan APl alows ome parameter values to be set
when a shader function is chosen. Our equivalent is to alow
certain bound parameter values. A shading function and its
bound parameters together make a shader instance (or some-
times just shader) that describes a particular type of surface.
Because the character of a shader is as much a product of its
parameter settings as its code, we may creade and wse severa
instances of each shading function. For example, given the brick
shading function of Figure 3, we can define instances for fat red
bricks and thin yellow bricks by using different bound values for
the width, height, and color of the brick&dure5).

To set the bound parameter values for an instance, we use a
gl BoundMat eri al EXT function. This is equivalent to gl -
Mat eri al , but operates only on bound parameters.

We creae anew instance with a gl NewShader EXT, gl -
EndShader EXT pair. This is smilar to the way OpenGL de-
fines other objects, for example display list definitions are brack-
eted by calls to gl NewLi st and gl EndLi st. gl NewSha-
der EXT takes the shading function to use and returns a shader
ID that can be used to identify the instance later. Between the
gl NewShader EXT and gl EndShader EXT we use gl Sha-
der Par anmet er Bi ndi ngEXT, which takes a parameter ID
and one of GL_MATERI AL_EXT or GL_BOUND_MATER-
| AL_EXT. This indicates whether the parameter should be set
by cdls to gl Mat eri al (for ordinary parameters) or gl -
BoundMat er i al EXT (for bound paramters).

To choose ashader instance, we call gl Shader EXT with a
shader ID. Primitives drawn after the gl Shader EXT call will
use the specified shader instance.

4.4 Lights

OpenGL normally supports up to eight lights, GL_LI GHTO
through GL_LI GHT7. New light IDs beyond these d@ght are
creaed with gl NewLi ght EXT. Lights are turned on and off
through calls to gl Enabl e and gl Di sabl e. Parameters for
the lights are set with gl Li ght, which takes the light ID, the
parameter name, and the new value. As with surface shaders, we
have a built-in OpenGL light that implements the OpenGL
lighting model. The eght standard lights are pre-loaded to use
this function.

The OpenGL lighting model uses multiple colors for eech
light, with a different color for each of the ambient, diffuse and
specular shading computations. In contrast, the RenderMan
lighting model has only one color for eech light. We dlow a mix
of these two styles. The only constraint is that surface shaders
that use threedifferent light colors can only be used with lights
that provide three light colors. Surface shaders that follow the
RenderMan model will use only the diffuse light color from
lights that follow the OpenGL model.

5 PIXELFLOW

We implemented the pfman shading language on PixelFlow, a
hi gh-performance graphics machine. The foll owing sections give
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Figure6: PixelFlow: a) machine organization.
b) simplified view of the system.

a brief overview of PixelFlow. For more details, refer to
[Molnar92] or [Eyles97]

5.1 Low-level View

A typical PixelFlow system consists of a host, a number of ren-
dering nodes, a number of shading nodes, and a frame buffer
node (Figure 6a). The rendering nodes and shading nodes are
identical, so the balance between rendering performance and
shading performance can be decided for each application. The
frame buffer node is also the same, though it includes an addi-
tional daughter card to produce video autput. The host is con-
nected through a daughter card on one of theemring nodes.

The pipelined design of PixelFlow all ows the rendering per-
formance to scale linealy with the number of rendering nodes
and the shading performance to scale linealy with the number of
shading nodes.

Each rendering node is responsible for an effectively random
subset of the primitives in the scene. The rendering nodes hande
one 128x64 pxel region at atime. More precisely, the region is
128x64 image samples. When antialiasing, the image samples
are blended into a smaller block of pixels after shading. For
brevity, we will continue to use the word “pixel”, with the un-
derstanding that sometimes they may be image samples instead
of actual pxels.

Since e&h rendering node has only a subset of the primiti ves,
aregion rendered by one node will have holes and missng poly-
gons. The different versions of the region are merged wsing a
technique called image composition. PixelFlow includes a spe-
cia high-bandwidth composition network that allows image
composition to proceed at the same time @ pixel data communi-
cation. As al of the rendering nodes gmultaneously transmit
their data for a region, the hardware on each node compares,
pixel-by-pixel, the data it is transmitting with the data from the
upstream nodes. It sends the closer of each pair of pixels down-
stream. By the time dl of the pixels reach their destination, one
of the system’s shading nodes, the compositionrigotete.

Once the shading node has received the data, it does the sur-
face shading for the entire region. In a PixelFlow system with n
shading nodes, each shades every n'" region. Once e&h region
has been shaded, it is snt over the composition network (without
compositing) to the frame buffer node, where the regions are
collected and displayed.

Each node has two RISC processors (HP PA-80005s), a custom
SIMD array of pixel procesors, and a texture memory store.
Each processng element of the SIMD array has 256 kytes of
memory, an 8bit ALU with support for integer muiltiplication,
and an enable flag indicating the active processors. All enabled
procesors in the 128x64array simultaneously compute, on their
own data, the result of any operation. This provides a speedup of
up to 8192 times the rate of a single processiemeht.

X~ RISC “ SIMD

o] I ~

S processor array =

©

tgj texture/ g

@n frame buffer o
memory

Figure7: Simple block digram of a PixelFlow node.

5.2 High-level View

The hardware and basic system software hande the detail s of
scheduling primitives for the rendering nodes, compositing pixel
samples from these nodes, asggning them to shading nodes, and
moving the shaded pixel information to the frame buffer. Conse-
quently, it is posgble to take the simplified view of PixelFlow as
a simple pipeline (Figure 6b). This view is based on the passage
of a single displayed pixel through the system. Each displayed
pixel arrives at the frame buffer, having been shaded by a single
shading node. We can ignore the fact that displayed pixels in
other regions were shaded by different physical shading nodes.
Before ariving at the shading node, the pixel was part of a
primitive on just one of the rendering nodes. We can ignore the
fact that other pixels may display different primitives from dif-
ferent rendering nodes.

Only the rendering nodes make use of the second RISC proc-
esr. The primitives assgned to the node ae split between the
procesors. We can take the simplified view that there is only
one processor on the node, and let the lower level software han-
dle the scheduling between the physical processors. Figure 7 is
simple block diagram of a PixelFlow node with these simplifica-
tions. Each node is connected to two communication networks.
The geometry network (800 MB/s in each drection), handes
information about the scene geometry, bound prameter values,
and other data bound for the RISC processors. It is 32 hts wide,
operating at 200 MHz. The composition network (6.4 GB/s in
each drection) hand es transfers of pixel data from node to node.
It is 256 hts wide, also goerating at 200 MHz. Since our simpli-
fied view of the PixelFlow system hides the image composition,
it is reasonable to simply refer to the composition network as a
pixel network.

6 IMPLEMENTATION

Implementation of a shading language on PixelFlow requires
optimizations. Some ae necessry to achieve the targeted inter-
active rates of 20-30 frames per second, whereas others are nec-
essry just to enable shaders to run on PixelFlow. The three
scarce resources impact our PixelFlow implementation: time,
communication bandwidth, and memory. In this sction, we pres-
ent qotimizations to address each.

6.1 Execution Optimizations

Our target frame rate of 30 frames per second translates to 33 ms
per frame. The system pipelining means that most of thistime is
actually avail able for shading. Each shading node can hande one
128x64region at atime and a 1280x1024screen (or 640x512
screen with 4-sample antialiasing) contains 160 such regions. On
a system with four shading nodes, each is responsible for 40
regions and can take an average of 825 ps shading each region.
On alarger system with 16shading nodes, each is responsible for
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shader bytesfree | execution time
brick 46 613.15us
ripple reflection 59 1058.07us
planks 105 532.30us
bowling pin 86 401.96us
nanoManipulator 1 75 567.95us
nanoManipulator 2 1 2041.44us
nanoManipulator 3 51 1638.67us

Tablel: Memory and pgormance summary.

10 regions and can spend an average of 3.3 ms sading a region.
Table 1 shows per-region execution times fore some sample
shaders. The first four shaders appea in Figure 1. The other
shaders were written by the UNC nanoManipulator project for
surface data visualization.

6.1.1 Deferred Shading

Deferred shading is the technique of performing shading compu-
tations on pixels only after the visible pixels have been deter-
mined [Whitted81][Deeaing88][Ell sworth91]. It provides svera
advantages for the execution of surface shading functions. First,
no time is wasted on shading computations for pixels that will
not be visible. Second, our SIMD array can simultaneously
evaluate asingle surface shader instance on every primitive that
uses it in a 128x64region. Finaly, it decouples the rendering
performance and shading performance of the system. To handle
more complex shading, add more shading hardware. To hande
more complex geometry, add more renderinghvare.

6.1.2 Uniform and Varying

RenderMan has uniform and varying types (Section 3.1), in pert
for the dficiency of their software renderer. A uniform expres-
sion uses only uniform operands and haes a uniform result; a
varying expression may have both uriform and varying qperands
but has a varying result. As Pixar’s prman renderer evaluates the
shading an a surface, it computes uniform expressons only once,
sharing the results with all of the surface samples, but logps over
the surface samples to compute the varykgessions.

We can use asimilar division of labor. The microprocessor on
each PixelFlow node can compute the result of a single operation
much faster than the SIMD array; but the microprocessor pro-
duces one result, while the SIMD array can produce a different
result on each of the 8K pixel processng elements. If the value is
the same everywhere, it is faster for the microprocessor to com-
pute and kroadcast the result to the pixel processors. If the value
is different at different pixel procesors, it is much faster to al-
low the SIMD array to compute all of the results in parallel.

Since uniform expressons do not vary acrossthe pixels, it is
much more dficient to compute them using the microprocessor
and store them in microprocessor memory. In contrast, varying
expressons are the domain of the pixel processors. They can
potentially have different values at every pixel, so must exist in
pixel memory. They are fast and efficient because their storage
and operations are replicated acrossthe SIMD array. This same
distinction between shared (uniform) and SIMD array (varying)
memory was made by Thinking Machines for the Connection

Operation || 16-bit fixed | 32-bit fixed | 32-bit float
+ 0.07us 0.13pus 3.08us
* 0.50ps 2.00ps 2.04ps
/ 1.60ps 6.40ps 7.07ps
sqrt 1.22ps 3.33us 6.99us
noi se 5.71ps — 21.64ps

Table2: Fixed-point and floating-point execution times
for 128x64 SIMD array.

Machine [ThinkingMachines89], though they called them mono
and poly, and by MasPar for the MP-1 [MasPar9(], though their
terms weresingular andplural.

6.1.3 Fixed-point

We can achieve significant spead improvements by using fixed-
point operations for varying computations instead of floating-
point. Our pixel processors do not support floating-point in
hardware: every floating-point operation is built from basic inte-
ger math operations. These operations consist of the ejuivalent
integer operation with hitwise shifts to align the operands and
result. Fixed-point numbers may also require shifting to align the
decimal points, but the shifts are known at compile-time. The
timings of some fixed-point and floating-point operations are
shown in Table 2. These operations may be done by as many as
8K pixel processors at once, yet we would still li ke them to be &
fast as possible.

6.1.4 Math Functions

We provide floating-point versions of the standard meth library
functions. An efficient SIMD implementation of these functions
has dightly different constraints than a serial implementation.
Piece-wise polynomial approximation is the typical method to
evaluate transcendental math functions.

This approach presents a problem on PixelFlow due to the
handing o conditionals on a SIMD array. On a SIMD array, the
condition determines which processng elements are enabled.
The true part of an i f /el se is executed with some processng
elements enabled, the set of enabled processorsis fli pped and the
false part is executed. Thus the SIMD array spends the time to
execute both branches of the.

This means that using a table of 32 polynomials takes as much
time & a single polynomial with 32times as many terms cover-
ing the etire domain. Even so, a polynomia with, say, 160
terms is not practical. For each PixelFlow math function, we
reduce the function domain using identities, but do not reduce it
further. For example, the log d afloating-point number, mt 2°, is
e*|l og(2) +l og(m . We fit | og(m with a single polyno-
mial. Each polynomial is chosen to use & few terms as possble
while remaining acaurate to within the floating-point precision.
Thus, we still do a piece-wise fit, but fit a single large piece with
a polnomial of relatively high degree.

While we provide acaurate versions of the math functions, of-
ten shaders do not redly need the “true” function. With the rip-
ple reflection shader in Figure 1b, it is not important that the
ripples be sine waves. They just neal to look like sine waves.
For that reason, we dso provide faster, visualy accurate but
numerically poor, versions of the math functions. The fast ver-
sions use simpler polynomials, just matching value and first de-
rivative & each endpoint of the range fit by the more exact ap-
proximations. This provides a function that appeas visualy cor-

function exact fast

sin 81.36pus 45.64pus
cos 81.36ps 48.77us
tan 93.25us 52.65us
asin, acos| 78.52us 47.50pus
at an 66.41ps 35.34ps
at an2 66.17pus 35.15ps
exp 53.37pus 37.86pus
exp2 51.09us 35.58us
| og 57.76us 21.57us
| 0g2 57.68pus 21.49ps

Table3: Execution times for floating-point math
functions on 128x64 SIMD array.
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/I setup, compute base surface color
illuminance() {
/l'add in the contribution of one light

}
Il wrap-up

Figure8: Outline of a typical surface shader.

rect but executes in about half the time.
6.1.5 Combined Execution

Many shading functions have similar organizations. Combin-
ing the execution of the common sections of code in multiple
shaders can leal to large gains in performance. In the next few
sections, we will discuss ®me of these methods. The eaiest and
most automatic of this classof optimizations is combined execu-
tion of lights for all surface shaders. For some of the more tradi-
tional surface shaders, involving image texture lodkups and
Phong shading, we can do further overlapped computation.

6.1.5.1 Lights

One of the jobs of a surface shader is to incorporate the dfects
of eech light in the scene. As in the RenderMan shading lan-
guage, this is accomplished through the i | | uni nance con-
struct, which behaves like aloop over the ative lights (Figure
8). This means that each surface shader effectively includes a
loop over every light. For mshaders and n lights, this results in
ntn light executions. This can be quite epensive since the
lights themselves are procedural, and could be abitrarily com-
plex. Since the lights are the same for each of the mshaders, we
compute e&h light just once and share its results among al of
the shaders, resulting in only n light executions. We do this by
interleaving the execution of all of the lights and shaders.

We acocomplish this interleaving by having each surface shader
generate threeinstruction streans for the SIMD array. The first
stream, which we call pre-i | | um contains only the setup code
(urtil thei I I um nance in Figure 8). The second strean con-
tains the body of thei | | um nance construct. We cal this the
i Il umstrean. Finally, the post -i | | umstream contains eve-
rything after the i I | um nance. The lights themselves creae
their own stream of SIMD commands. The interleaving pattern of
these streams is shownRigure9.

The SIMD memory usage of the surfaces and lights must be
chosen in such a way that each has room to goerate, but none
conflict. The surface shaders will not interfere with each other
since any one pixel can only use one surface shader. Different
surface shaders already use different pixel memory maps. Lights,
however, must operate in an environment that does not disturb
any surface shader, but provides results in aform that al surface

— time (not to scalep
shader stage setup|add light 1add light :iwrap-up
pre-illum .
Surface 1 111um [ | [ |
post-illum
pre-illum .
illum . .
post-illum ._
pre-illum .
Surface 3 illum N N
post-illum .

Light 1
Light 2 )

Figure9: Interleaving of stface shaders and lights.

Surface 2

shaders can use. The results of the lighting computation, the
color and drection of the light hitting each pixel, are stored in a
special communications areato be shared by all surface shaders.
The light functions themselves operate in the SIMD memory |eft
over by the retained result of the greediest of the surface shader

pre-ill umstages. Above this high water mark, the light can
fredy alocate whatever memory it neels. The il |l um and
post -i | | umstreams of al shaders can use dl avail able mem-

ory without interfering with either the other surfaces or the
lights.

6.1.5.2 Surface Position

For image composition, every pixel must contain the Z-buffer
depth of the closest surface visible & that pixel. This Z value,
along with the position of the pixel on the screen, is aifficient to
compute where the surface sample is in 3D. Since the surface
position can be reconstructed from these pieces of information,
we do not store the surface position in pixel memory during ren-
dering o waste composition bandwidth sending it from the ren-
dering nodes to the shading nodes. Instead, we compute it on the
shading nodes in a phase we call pre- shade, which ocaurs
before ay shading begins. Thus, we share the execution time
necessary to reconstruct the surface position. We dso save mem-
ory and bandwidth ealy in the graphics pipeline, helping with
the other two forms of optimization, to be mtiened later.

6.1.5.3 Support for Traditional Shaders

Some optimizations have been added to asdst in cases that are
common for forms of the OpenGL shading model. Unlike the
ealier execution optimizations, these special-purpose optimiza-
tions are only enabled by setting flags in the shader.

Surface shaders that use only the typical Phong shading model
can use ashared i | | umstream. This alows saders to set up
different parameters to the Phong shader, but the code for the
Phong shading model runs only once.

Surface shaders that use acertain classof texture lodkups can
share the lookup computations. These shaders know what texture
they want tolook upinthepre-i | | umphase, but don’t require
the results urtil the post -i | | umphase. The PixelFlow hard-
ware does not provide awy significant improvement in actual
lookup time for shared lookups, but this optimization al ows the
SIMD proces9ors to perform other operations while the lookup is
in progress To share the lookup processng, they place their
texture ID and texture coordinates in special shared “magic’
parameters. The results of the lookup are placed in another
shared magic parameter by the start ofptbst - i | | umstage.

6.1.6 Cached Instruction Streams

On PixelFlow, the microprocessor code computes the uniform
expressons and all of the uniform control flow (i f's with un-
form conditions, whi | e’s, f or’s, etc.), generating a stream of
SIMD processor instructions. This SIMD instruction stream is
buffered for later execution. The set of SIMD instructions for a
shader only changes when some uniform parameter of the shader
changes, so we cache the instruction stream and re-use it. Any
parameter change sets a flag that indicates that the stream must
be regenerated. For most non-animated shaders, this means that

the uniform code executes only once, when the application starts.

6.2 Bandwidth Optimizations

Communication bandwidth is another scarce resource on Pix-
elFlow. As mentioned in Section 5, there ae two communication
paths between nodes in the PixelFlow system, the geometry net
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and composition net. We ae primarily concerned with the com-
position net bandwidth. While its total bandwidth is 6.4 GB/s,
four bytes of every transfer are reserved for the pixel depth, giv-
ing an effective bandwidth of 5.6 GB/s.

Since PixelFlow uses deferred shading, the complete set of
varying shading parameters and the shader ID must be trans-
ferred acrossthe composition network. The final color must also
be transferred from the shader node to the frame buffer. How-
ever, the design of the composition network allows these two
transfers to be overlapped, so we redly only pay for the band-
width to send data for each visible pixel from the rendering
nodes to shading nodes. At 30 frames per second on a 1280x1024
screen, the maximum communication budyet is 142 hytes per
pixel. To ded with this limited communication budyet, we must
perform some optimizations to reduce the number of parameters
that need to be sent fronnderer node to shader node.

6.2.1 Shader-Specific Maps

Even though each 128x64 jxel region is $nt as a single trans-
fer, every pixel could potentially be part of a different surface.
Rather than use atransfer that is the union of all the parameters
nealed by all of those surface shaders, we dlow eech to have its
own tail ored transfer map. The first two bytes in every map con-
tain the shader 1D, which indicates what transfer map was used
and which surface shader to run.

6.2.2 Bound Parameters

The bound marameters of any shader instance cannot change from
pixel to pixel (Section 4.3), so they are sent over the geometry
network directly to the shading nodes. Since the shader nodes
ded with visible pixels without any indication of when duing
the frame they were rendered, we must restrict bound garameters
to only change between frames. Bound urnform parameters are
used drectly by the shading function runnng on the microproc-
esr. Any bound varying parameters must be loaded into pixel
memory. Based on the shader ID stored in each pixel, we identify
which pixels use ea@h shader instance and load their bound
varying parameters into pixel memory before the shader exe-
cutes.

Any parameter that is bound in every instance of a shader
should probably be uniform, since this gives other memory and
execution time gains. However, it is occasionally helpful to have
bound values for varying shading parameters. For example, our
brick shader may include adi rt i ness parameter. Some brick
walls will be equally dirty everywhere. Others will be dirtiest
nea the ground and clean nea the top. The instance used in one
wall may have di rti ness as a bound parameter, while the
instance used in a second wall allows di rti ness to be set
usinggl Mat eri al with a different value at each vertex.

However, the set of parameters that should logcally be bound
in some instances and rot in others is small. Allowing bound
values for varying parameters would be only a minor bandwidth
savings, were it not for another implication of deferred shading.
Since bound garameters can only change once per frame, we find
parameters that would otherwise be uniform are being declared
as varying solely to alow them to be changed with
gl Mat eri al from primitive to primitive (instead of requiring
hundeds of instances). This means that someone writing a Pix-
elFlow shader may make aparameter varying for flexibility even
though it will never actually vary acrossany primitives. Allowing
instances to have bound values for al parameters helps counter
the resulting explosion of pseudo-varying parameters.

6.3 Memory Optimizations

The most limited resource when writing shaders on PixelFlow is
pixel memory. The texture memory size (64 megabytes) affects
the size of image textures a shader can use in its computations,
but does not affect the shader complexity. The microprocessor
memory (128 megabytes), is designed to be sufficient to hold
large geometric databases. For shading purposes it is effectively
unlimited. However, the pixel memory, at only 256 hytes, is
quite limited. From those 256 kytes, we further subtract the
shader inpu parameters and an area used for communication
between the light shaders and surface shaders. What is left is
barely enough to support a full-fledged shading language. The
memory limitations of Pixel-Planes 5 were one of the reasons
that, whil e it supported aform of procedural shading, it could not
hande atrue shading language. In this sction we highlight some
of the pfman feaures and optimizations made by the pfman com-
piler to make this thited memory work for real shaders.

6.3.1 Uniform vs. Varying

We previously mentioned uriform and varying parameters in
the context of execution optimizations. Bigger gains come from
the storage savings. uniform values are stored in the large main
memory instead of the much more limited pixel memory.

6.3.2 Fixed-point

PixelFlow can only alocate and operate on multiples of single
bytes, yet we specify the size of our fixed-point numbers in hits.
This is because we can do a much better job of limiting the sizes
of intermediate results in expressons with a more acaurate idea
of the true range of the values involved. For example, if we add
two two-byte integers, we neeal three bytes for the result. How-
ever, if we know the integers redly only use 14 fts, the result is
only 15 bits, which still fits into two bytes.

A two-pass analysis determines the sizes of intermediate
fixed-point results. A bottom-up passdetermines the sizes neces-
sary to keep al available precision. It starts with the sizes it
knows (e.g. from a variable reference) and combines them ac-
cording to simple rules. A top-down pass limits the fixed-point
sizes of the interetliate results to only what is necessary.

6.3.3 Memory Allocation

The primary feaure that alows daders to have awy hope of
working on PixelFlow is the memory allocation done by the
compiler. Since every surface shader is running different code,
we use adifferent memory map for each. We spend considerable
compile-time effort creating these memory maps.

Whereas even the simplest of shaders may define more than
256 bytes of varying variables, most shaders do not use that
many variables at once. We dfectively trea pixel memory as one
giant register pod, and perform register all ocation on it during
compilation. This is one of the most compelli ng reasons to use a
compil er when writing surface shaders to run on graphics hard-
ware. It is posgble to manually analyze which variables can co-
exist in the same place in memory, but it is not easy. One of the
authors did just such an analysis for the Pixel-Planes 5 shading
code. It took about a month. With automatic all ocation, it sud-
denly becomes posshble to prototype and change shaders in min-
utes instead of months.

The pfman memory all ocator performs variable lifetime analy-
sis by converting the code to a static single assgnment (SSA)
form [Muchnick97][Briggs92] (Figure 10). First, we go through
the shader, creaing a new temporary variable for the result of
every asggnment. This is where the method gets its name: we do
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i=1; i1=1; i1=1;
i=i+1; i2=i1+1; i2_3=il+1;
if (i >]) if (i2 > 1) if (i2_3>j1)
i=5; i3 =05; i2_3=5;
=i j2 =9(i2,i3); j2=1i2_3;
a b c

Figure10: Example of lifetime analysis using SSA. a)
original code fragment. b) code fragment in SSA form.
Note the new variables used for every assignment and
the use of thé-function for the ambiguous assignment.
c) final code fragment with-functions merged.

a static analysis, resulting in one and only one assgnment for
every variable. In some places, a variable reference will be am-
biguous, potentially referring to ane of several of these new tem-
poraries. During the analysis, we perform these references using
a ¢-function. The ¢-function is a pseudo-function-call indicating
that, depending on the control flow, one of severa variables
could be referenced. For example, the value of i in the last line
of Figure 10b, could have come from either i 2 or i 3. In these
cases, we merge the separate temporaries back together into a
single variable. What results is a program with many more vari-
ables, but each having as short a lifetime asipte.

Following the SSA lifetime analysis, we make alinea pass
through the code, mapping these new variables to freememory as
soon as they become live, and urmapping them when they are no
longer live. Variables can only become live & assgnments and
can only die & their last reference. As a result of these two
passes, variables with the same name in the user's code may
shift from memory location to memory location. We only allow
these shifts when the SSA name for the variable changes. One of
the most noticeable dfects of the this analysis is that a variable
that is used independently in two sections of code does not take
space btween execution of the sections.

Table 4 shows the performance of the memory all ocation on an
assortment of shaders. Table 1 shows the anount of memory left
after the shading parameters, shader, light, and all overheal have
been factored out.

7 CONCLUSIONS

We have demonstrated an interactive graphics platform that sup-
ports procedural shading through a shading language. With our
system, we can write shaders in a high-level shading language,
compil e them, and generate images at 30 frames per second or
more. To acoomplish this, we modified a red-time API to sup-
port procedural shading and an existing shading language to
include features beneficial for a real-time implementation.
Our API is based on OpenGL, with extensions to support the
added flexibility of procedural shading. We believe the decision
to extend OpenGL instead of using the existing RenderMan API
was a goal one. Many existing interactive graphics applications
are dready written in OpenGL, and can be ported to PixelFlow
with relative e@e. Whereas the RenderMan API has better sup-
port of curved surface primitives important for its user commu-
nity, OpenGL has better support for polygons, triangle strips and
display lists, important for interactive graphics hardware.
Our shading language is based on the RenderMan shading
language. Of the differences we introduced, only the fixed-point
data type was redly necessary. We expect that future hardware-
asssted shading language implementations may also want simi-
lar fixed-point extensions. The other changes were dther done
for implementation convenience or to fill holes in the Render-
Man shading language definition that have since been addressed
by more recent versions of RenderMan. If we were starting the

shader total varying varying
(uniform + only with
varying) allocation
simple brick 171 97 16
fancy brick 239 175 101
ripple reflection 341 193 137
wood planks 216 152 97

Table4: Shader memory usage in bytes.

project over again today, we would just add fixed-point to the
current version of the RenderMan shadingplage.

We have only addressed surface shading and procedura li ghts.
RenderMan also allows other types of procedures, al of which
could be implemented on PixelFlow, but have not been. We dso
do not have derivative functions, an important part of the Ren-
derMan shading language. Details on how these feaures could
be implemented on PixelFlow can be found@mano98]

We creaed a shading language compil er, which hides the de-
tail s of our hardware achitecture. The compil er also alows us to
invisibly do the optimizations necessary to run on our hardware.
We found the most useful optimizations to be those that happen
automatically. This is consistent with the shading language phi-
losophy of hiding system details from the shader writer.

Using a compil er and shading language to mask detail s of the
hardware achitecture has been largely successul, but the hard-
ware limitations do peek through as shaders become short on
memory. Several of our users have been forced to manually con-
vert portions of their large shaders to fixed-point to all ow them to
run. Even after such conversion, one of the shaders in Table 1
has only a single byte free If a shader exceals the memory re-
sources after it is converted to fixed-point, it cannot run on Pix-
elFlow. If this becomes a problem, we can add the capability to
spill pixel memory into texture memory, at a cost in execution
speed.

Any graphics engine capable of red-time procedural shading
will require significant pixel-level parall elism, though this par-
alelism may be ahieved through MIMD procesors instead of
SIMD as we used. For the nea future, this level of parallelism
will imply a limited per-pixel memory pod. Consequently, we
expect our memory optimization techniques to be directly useful
for at least the next severa red-time procedural-shading ma-
chines. Our bandwidth optimization techniques are somewhat
specific to the PixelFlow architecture, though should apply to
other deferred shading systems snce they need to either transmit
or store the per-pixel appeaance parameters between rendering
and shading. Deferred shading and our experience with function
approximation will be of interest for future SIMD machines. The
other execution optimizations, deding with tasks that can be
done once instead of multiple times, will be of lasting applica-
bility to anyone attempting a procedural shading machine.

There is future work to be done extending some of our optimi-
zation techniques. In particular, we have barely scratched the
surface of automatic combined execution of portions of different
shaders. We do anly the most basic of these optimizations auto-
meatically. Some others we do with hints from the shader-writer,
whereas other posgble optimizations are not done & all. For
example, we currently run every shader instance independently.
It would be relatively easy to identify and merge instances of the
same shader function that did not differ in any uniform parame-
ters. For a SIMD machine like ours, this would give linea speal
improvement with the number of instances we can execute to-
gether. Even more interesting would be to use the techniques of
[Dietz92] and [Guenter95] to combine code within a shader and
between shader instances with differing uniform parameter val-
ues.
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Creding a system that renders in red-time using a shading
language has been richly rewarding. We hope the experiences we
have outlined here will benefit others who attempt red-time
procedural shading.
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