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Abstract: Normal distribution mapping is an extension of
traditional texture mapping methods to normal and shading
information. The surface normal direction and shading for a
patch of surface are represented by a statistical distribution of
normal directions. The normal distribution map is a map of
these distributions as they vary over the surface. Normal
distribution mapping admits considerable freedom in the choice
of probability density function. We propose using a
distribution based on a 3D Gaussian for this purpose. This
distribution can be easily filtered for map antialiasing and
cheaply evaluated for surface shading.

In the same way that texture mapping provides separation
between the sampling of the surface color and the surface
geometry, normal distribution mapping separates the sampling
of the surface normals and surface geometry. With a normal
distribution MIP-map, the normal and shading information can
be appropriately filtered and resampled based on pixel coverage.
These two properties mean that normal distribution mapping
can improve the sampling and filtering of shading information
on polygonal approximations surfaces, either polygonalization
of smooth surfaces or coarse level of detail surfaces.

Since the normal distribution map uses a single
representation that combines properties of bump maps with
surface shading information, it also provides continuous
transitions between these domains. In fact, calling it a
“transition” is not accurate since normal distribution mapping
uses a single unified representation for both domains.

CR Categories and Keywords: G.3 Probability and
statistics; I.3.3 Picture/Image Generation; I.3.7 Three-
Dimensional Graphics and Realism; Surface Shading;  BRDF;
texture mapping; bump mapping; multiresolution analysis

1 .  Introduction

One way to think about polygonal representations of
smooth surfaces is in terms of sampling and reconstruction.
Each vertex is a sample of the smooth surface. We reconstruct
an approximation to that surface from the vertex sample
locations. The quality of the polygonal approximation depends
on the sampling rate and distribution – how many vertices
were used and where they were placed.

Sometimes we will also use a color and normal at each
vertex to reconstruct the color and shading of the smooth
surface. However, the sampling that is most appropriate for
the surface geometry is not necessarily the best choice for
reconstructing the surface color, and the best rate for the color
is not best for the geometry. Texture mapping addresses this
problem by divorcing the sampling of the color from the
sampling of the geometry.

While texturing solves the problems of color sampling,
we still sample surface normals at the vertices (see Figure 1).
Gouraud shading and Phong shading provide different schemes
for reconstructing the smooth surface shading from the
sampled normals. We have observed in recent work in level of
detail and multiresolution surface approximation, that
appropriate sampling for the surface geometry does not
necessarily provide appropriate sampling for the normals
either. For example, simplification envelopes [Cohen96] can
guarantee that the polygonal approximation to a surface is
correct to within one pixel. Yet the surface highlights may
change drastically between one level of detail and the next (see
Figure 2). We are aware of work in progress to incorporate
surface normal and curvature information in the simplification
process, but this will result in excess polygons, not necessary
to represent the geometry faithfully. If we can separate the
normal sampling from the geometry sampling, it will be
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a) b)
Figure 1. Color and normal distribution map textures on
a simple object, with filtering on both done using a MIP-
map.  a) color and normal distribution map textures on a
simple object. b) same textures at a different MIP-map
scale (under-sampled for this image size).  Note how the
specular highlight blurs and elongates in the direction of
the ripples.
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possible to do model simplification based only on geometric
constraints, without introducing extra polygons.

Williams also noticed problems sampling the surface
highlights in image space, which he called highlight aliasing
[Williams83]. One form of highlight aliasing occurs when
geometry normals change rapidly with respect to the image
sampling frequency. This is particularly apparent for regular
bumps, where the bump highlights beat against the image
samples. The second form of highlight aliasing occurs on very
shiny surfaces when the highlight size is close to the spacing
between image samples. His solution used an illumination
MIP-map for the specular component of the surface
illumination, though this solution is only applicable for non-
local lighting.

Some of these sampling problems could be avoided by
using a normal map. We will be referring to a number of
different maps on the surface. These are functions defined over
the surface, usually through some texture coordinate system.
For example, a texture map gives a color at every point on the
surface; a normal map gives a normal at every point on the
surface; a bump map gives a perturbation of the normal at
every point on the surface. In general, unless there is another
already common term for a map, we will name the map after
the thing being mapped.

While the normal map decouples geometry sampling
density from normal sampling density, it is still necessary to
properly filter it to avoid aliasing. For color textures, pre-

filtering techniques are commonly used speed the filtering
process during rendering. For example, MIP-mapping
computes a pyramid of pre-filtered versions [Williams83]. We
can consider creating a hierarchy of maps for any map, and can
apply standard MIP-mapping and signal processing techniques
on any map which behaves linearly.

While normals may be linearly combined and averaged,
directly filtering the normal map does not yield the expected
results. Consider the example of sheet of aluminum foil that
has been crumpled then flattened again. When examined
closely, it appears to be a shiny surface with surface normals
pointing in many directions. From a sufficient distance, the
wrinkles are no longer apparent, and it appears to be a single
flat surface with a common normal. However, at this scale the
sheet no longer produces a clean reflection — it appears less
shiny. A filtered version of the normal map correctly shows
the new common normal direction, but does not reflect the
changes in surface shading.

The solution is to incorporate information about the
distribution of normals in the closer view into the shading
computations in the more distant view. We need an
approximation to the bidirectional reflectance distribution
function (BRDF) of the surface at the distant scale that is
derived from a combination of the BRDF and normals at the
close scale.

2 .  Changing scales

Cabral et al. produced a BRDF for a distant view of a
bump mapped surface using Monte Carlo ray tracing
techniques [Cabral87]. The close view of the bump map was
modeled as a height field, and random rays (modulated by the
close scale BRDF) were traced to produce a histogram
representation of the distant scale BRDF for the entire bump
map. This distant BRDF could be fit by an appropriate
approximation function for computation. Westin et al. used
similar methods to produce a milliscale BRDF from surface
geometry and microscale BRDF [Westin92].

Both of these produced BRDFs at discrete scales. In a
follow-on to the Cabral et al. work, Becker and Max addressed
the transition between representations at different scales
[Becker93]. To blend between bump mapping and BRDF
representations, they blended between the color produced by
each. They also allowed a hierarchy of scales, with Perlin’s
technique of band-limiting the frequency of the bumps
[Perlin84]. This technique uses a frequency cut-off at each scale
to decompose the bumps into a part to be rendered using the
BRDF and a part to be rendered using bump-mapping.

Fournier eliminated the problem of blending between
bump mapping and BRDF by combining both into an
approximation to the BRDF, which varied over the surface
[Fournier92]. He could also handle a hierarchy of scales using

a) b)

c) d)
Figure 2. a)  and b) Two images of the same smooth
object using different numbers of polygons. Notice the
changes in the specular highlights. c) and d) The same
polygonalized objects with normal distribution
mapping.
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a pyramid of these approximations, similar to a MIP-map.
This is the approach we use for our normal distribution maps.

A common approach to approximating a BRDF is to split
it into separate components for diffuse and specular reflection.
The diffuse component can be represented as simple
Lambertian shading.  The specular component can be
represented as a probability distribution of normals. This is
usually derived by imagining the surface as composed of
millions of perfectly reflective microfacets, randomly
distributed about the average normal direction (see Figure 3).
These facets are too small to see, but can be modeled with
geometric optics. For any particular light and view direction,
there is some probability of having facets with the normal
direction that reflects the light to the viewer. This probability
can be found by looking directly at the value of the probability
density function, and can be used directly to determine the
percentage of light that reflects from the light to viewer.

The Blinn [Blinn77] model adds a term for geometric
attenuation (from shadowing and masking occlusion effects).
Shadowing, of course, is when one part of the object blocks
the path between the light and surface.  Masking is when part
of the object blocks the path between viewer and surface.
Dealing with these effects can be troublesome and expensive.
Many rendering systems do not deal with the shadowing effects
(they do deal with masking since this is the visibility
problem).  Bump maps, generally do not account for either
shadowing or masking.  The best known technique for dealing
with occlusion effects in the context of bump mapping and
shading is the work of Max and Becker [Becker93]. Their
technique could be adapted to our normal distribution maps.
We have elected not to do this in an attempt to keep the
computational cost of the method low. Note also that Ward,
while he was addressing a different problem, achieved good fit
to measured BRDFs without any geometric attenuation
[Ward92].

So far, we have a BRDF map over the surface. By
allowing the BRDF to vary over the surface, we combine
bump mapping and surface shading effects into a single
representation, avoiding problems that occur when

transitioning between these effects when they are modeled
separately. We approximate this BRDF map a normal
distribution map, basically approximating each BRDF by a
statistical distribution of surface normal directions. The main
choice that remains to be made is the probability distribution
to use. In searching for a distribution, we are interested in three
key properties. First, it should be able to reproduce a
Gaussian-like distribution of normals. Second, it must be
cheap to evaluate during shading. Third, it should be easy to
filter for producing a MIP-map. If possible, we would like the
parameters of the distribution to combine linearly, so standard
filtering and MIP-map lookup techniques can be applied
directly.

3 .  Microfacets on large sections of surface

Microfacet shading models are of interest since they also
model the statistical distribution of surface normals, albiet
locally. These models generally assume that the only variation
is due to the microfacet orientations. Otherwise, the surface is
flat. This is reasonable for the context where these models are
used. To understand what it means to represent the normals for
a larger section of surface, we use a tool from differential
geometry, the Gauss map [Koenderink90]. Every point on the
surface has a unit normal associated with it. That unit normal
can be interepreted as a point on a unit sphere. Thus, the
normals of the surface define a mapping between the surface
and the unit sphere. This mapping is called the Gauss map.
When the mapping is applied to a particular surface, the result
is called the Gauss map of the surface (see Figure 4).

For our purposes, we are not interested in the shape or
connectivity of the Gauss map, but its density. We can model
the density of the Gauss map with a probability density
function on the sphere. Each texel in the normal distribution
map models the distribution of normals on the Gauss map for
a section of surface. The texels in a normal distribution MIP-
map cover progressively larger pieces of surface at each MIP-
map level.

a)

b)

Figure 3. Surface microfacets.  a) The surface is assumed
to be made of millions of tiny facets. The facets are used
to find a probability distribution of facet normal
directions.  b) The surface is rendered as a geometrically
flat surface with the normal distribution used to reproduce
the shading effects of the facets.

Figure 4. 2D example of a Gauss map for a section of a
curve. This is the mapping of the curve onto the unit
circle based on curve normal direction. It is analogous to
the 3D Gauss map, which maps a surface onto the unit
sphere.  Compare this figure to figure 3.
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4 .  Distributions on the sphere

Microfacet models generally use probability distributions
over a hemisphere of the Gauss map, pointing outward from
the local surface direction. Even if we start with these
hemispherical distributions, as we combine them at coarser
MIP-map levels, the probability of normals below the
“horizon” increases. As a result, we are interested in
probability distributions over the entire Gauss map. That is to
say, probability distributions on a sphere.

Any distribution on the hemisphere can be used on the
sphere by using a zero probability for any normals in the other
hemisphere. This is the approach taken by Fournier, who used
distributions based on mixtures of Gaussians, which he
approximated as “Phong Peaks” for cheaper shading
[Fournier92]. If we want our density function to represent the
normals on the other side of the sphere we need a different type
of distribution. Also, where Fournier placed more emphasis on
the accuracy of the approximation to the BRDF, we place
more emphasis on speed. We want a way to achieve most of
the visual improvement without having to compute mixtures
of up to fifty Gaussians. If possible, we would also like to
avoid the hours non-linear optimization to fit the
approximations in the pre-processing stages.

Microfacet models are created by applying geometric
optics to simple shapes. Blinn used ‘V’ shaped grooves
[Blinn77] for one shading model and spheres for another
[Blinn82]. Poulin used parallel cylindrical grooves [Poulin90].
Neyret used this geometric technique to derive a distribution
for use in volume shading that covered the full Gauss map
[Neyret95]. He used a single randomly sized and oriented
ellipsoid to produce his distribution of normals. Neyret’s work
is interesting because, when producing an octtree
representation of the volume, parent cells were represented by a
single ellipsoid that approximated all of the ellipsoids in the
children cells. This allows basic filtering operations to always
result in an approximation of the same form. We will come
back to this idea later.

The real result of any geometric microfacet model is a
distribution of normals.  Other shading models have used
distributions without any reference to geometry, based only on
the distribution’s ability to approximate the BRDF [Ward92].
So we may consider other distributions if they have the right
Gaussian character and are easier to compute or filter.

One way to create new distributions is to a way to
generalize existing ones. For example, the ‘V’ shaped
microfacet grooves are usually assumed to have a Gaussian
distribution of slopes. The resulting distribution can also be
seen as a projection of a Gaussian onto the hemisphere as
follows: define a Gaussian distribution on a plane and place
this plane tangent to the top of the hemisphere.  To find the
probability density at a point on the hemisphere, project from

the center of the sphere, through the point, onto the plane  (see
Figure 5 a).  The value of the Gaussian density function on the
plane defines a density for the point on the sphere.
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One of the first probability distributions we tried was an
extension of this to the full sphere. Instead of projecting from
the center of the sphere, we tried projecting from the opposite
pole (a stereographic projection).

Gaussian projected to full sphere: n( )
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The result is a Gaussian-like distribution, defined over the
whole Gauss map (see Figure 5 b). Unfortunately, this
distribution is quite difficult to combine and filter, and the
approximation we get when we combine a mixture of two
distributions into a single one is not a good one.

The final class of distributions we consider are not based
on microfacet models at all. Johnson gives a number of
probability distributions on the circle and sphere [Johnson87].
These distributions are formed by starting with a distribution
in Euclidean 3-space, and using the conditional probability of
the distribution when restricted to the surface of the sphere.
This opens up the possibility of working in Euclidean space,
where distributions tend to be better behaved, instead of on the
sphere.

5 .  Distribution induced by a 3D Gaussian

A requirement for any distribution is that it be able to
reproduce the tight 2D Gaussian-like cluster of normal
directions on shiny surfaces. If we consider possible 3D
distributions to produce Gaussian behavior, the first
distribution that comes to mind is the 3D Gaussian. A low-
variance Gaussian centered on the surface of the Gauss map can
certainly create a Gaussian-like cluster of normals on the
surface of the Gauss map. The mean of the 3D Gaussian is the
average normal direction for that point on the shiny surface.

Figure 5. Creating a distribution on the sphere by
projection. a) The density function for a Gaussian
distribution of microfacet slopes can also be created by
projection from the center of the sphere. b) A similar
density function over the full sphere.
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The distribution defines a small Gaussian blob in space around
that average normal direction (see Figure 6).

Further, simple 3D Gaussians are easy to combine
linearly. The best Gaussian fit to a mixture of two 3D
Gaussians has a mean that is an average of the means of the
two original Gaussians. The variances do not combine
linearly, but the second moments about the origin do
[Johnson87].

Distributions: f
 
i(x

→
) = n(x

→
,µ
→ 

i,Σ
 
i)

with mean vector µ
→ 

i and covariance matrix Σ
 
i

Second central moment: EX2 = Σ + µ
→T µ

→

Mixture: f
 
mix(x

→
) = n(x

→
,µ
→ 

mix,Σ
 
mix) ≈ p⋅ f

 
1(x

→
) + (1–p)⋅ f

 
2(x

→
)

Mean: µ
→ 

mix = p⋅ µ
→ 

1 + (1–p)⋅ µ
→ 

2

Second central moment: EX
2
mix = p⋅ EX

2
1 + (1–p)⋅ EX

2
2

 Covariance matrix: Σ
 
mix = EX

2
mix – µ

→T µ
→

To clarify the mixture of these 3D Gaussians, consider a shiny
bump on a surface. Two nearby locations will both be
characterized by low-variance distributions with slightly
different means.  Low-variance because the surface is shiny,
differing means because the normal directions on different
points on the bump are different. When we combine an equal
mixture of these two distributions, the new mean is the
average of the two original means. This means that the total
average normal direction is the average of the original two
normal directions. The variance increases along the axis
between the two original means, while remaining the same in

the other directions. The variation in original normal directions
turns into additional uncertainty in the distribution of normals.

We can characterize the 3D Gaussian density function with
nine numbers, all of which combine linearly. Three for the
mean and six for the matrix of second moments. We can put
these nine numbers into a MIP-map, and filtering will work as
expected. In fact, in our implementation, we treat these nine
numbers as three separate three-color MIP-maps with 16 bits
per component. No changes to either MIP-map creation or
access were necessary.

For our previous example of the sheet of aluminum foil,
in the close view we have Gaussian distributions with small
variance (corresponding to a shiny surface), but differing
means. In the distant view, all of the Gaussians have similar
means, but a larger variance (corresponding to a duller surface).
This is exactly the behavior we want. Similarly, for grooved
surfaces, the variance will increase more in one direction than
the other as the object becomes smaller, modeling the
anisotropic reflection.

6 .  Shading using the 3D Gaussian

The most time critical computation is not the creation of
the normal distribution MIP-map, but its use during shading.
Since the 3D Gaussian-based normal distribution map behaves
linearly, the MIP-map lookup computations are
straightforward. The result is a single 3D Gaussian to be used
as the normal distribution for an image sample. We must
compute the normalized halfway vector between the light and
viewer and look this up in the density function. Ignoring
normalization of the density function for the moment, this just

Figure 6. 2D example of a distribution on a circle created
by restricting a 2D Gaussian to the circle.  This can be
extended to create a distribution on a sphere from a 3D
Gaussian.

a)

b)

c)

Figure 7.  Mixture of 2D Gaussians: a)  A shiny bump,
sampled at two points, each with a different normal.  b)
The concentric circles are contours of the 2D Gaussians
on the Gauss map for each sample point.  The thickness
of the circles indicates indicates the actual probability
density induced on each Gauss map.  c) The two 2D
Gaussians from (b) are combined into a single 2D
Gaussian.  Note the increase in variance.
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involves plugging the halfway vector into the 3D Gaussian
function.

To this point, we have been able to work with the
probability distributions without constructing their density
functions. We know the form of the density function, but it
must still be normalized so the total probability over the entire
sphere is one. To do this, we integrate the 3D distribution over
the sphere and divide by the result. Unfortunately, the
Gaussian distribution does not integrate well over the sphere.

We could compute these integrals numerically at every
image sample, but that is far too expensive. Instead, we can do
the numerical integration as a pre-process for each element of
the normal distribution MIP-map, producing a MIP-map of
normalization factors. The resulting tri-linear interpolation is
only an approximation to the true normalization factor, but is
much cheaper to compute.

An alternate method is to use the 3D Gaussian for MIP-
mapping only, and approximate the resulting 3D distribution
for shading. For example, since the restriction of a 3D
Gaussian to a plane is a 2D Gaussian [Johnson87]. One
possible approximation is to choose a plane tangent to the
sphere or one through the mean of the 3D Gaussian, and
project the the distribution on this plane onto the sphere. To
summarize, we approximate the BRDF with a 3D Gaussian for
MIP-mapping, then re-approximate with a projected 2D
Gaussian for rendering.

As a final option, we can follow the “traditional” graphics
approach and the 3D Gaussian, but use an un-normalized
density function. It is still necessary to do a partial
normalization based on the square root of the covariance matrix
to factor out changes due to the changing variance of the 3D
Gaussian. Surprisingly, this works reasonably well. Since it
is, by far, computationally the least expensive, it was the
method used for all the images shown in this paper.

Even if we ignore the normalization of the density
function, the computation of the Gaussian is still rather
expensive, since it involves an exponential. To make the
computation cheaper, we actually use an approximation to the
3D Gaussian. Johnson discusses the class of elliptically
contoured distributions, which include the Gaussian
distribution.
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Lyon shows that the Phong and Pearson Type II both do a
good job of approximating a Gaussian [Lyon93]. We choose,

as he did, to use the Pearson Type II distribution for its
computational simplicity.

Pearson Type II distribution:
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The parameter m is a constant that controls how closely the
Pearson Type II distribution matches the Gaussian (we used
eight).

7 .  Conclusions and Future Work

We have presented a new method for uniformly handling
sampling of surface normals and shading information, and the
interaction between the two at different distances. The method
uses a probability distribution of surface normal directions as
an approximation to the BRDF as it varies over the surface.
We propose using a probability distribution based on a 3D
Gaussian for this purpose. The parameters definining this
distribution behave linearly, so they can be easily filtered
using standard filtering techniques. An approximation to this
distribution can be used that is fast to evaluate at shading time,
or several progressively more expensive alternatives exist for
normalizing the distribution if it becomes necessary.

Though shadowing and masking effects cannot occur on
bump maps, they can occur if the surface model is more
complex. We would like to be able to model these effects.
The likely method for creating these models has been
previously proposed by Becker.

Finally, we would like to explore multi-resolution
simplification using probability density functions based on
wavelets which have “nice” recombination behavior.
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