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Abstract: Normaldistribution mappingis an extensionof
traditional texture mapping methodsto normal and shading
information. The surfacenormal direction and shadingfor a
patchof surfacearerepresentedby a statisticaldistribution of
normal directions.The normal distribution map is a map of
these distributions as they vary over the surface. Normal

Sometimeswe will also usea color and normal at each
vertexto reconstructthe color and shading of the smooth
surface. However,the sampling that is most appropriatefor
the surfacegeometryis not necessarilythe best choice for
reconstructing the surface color, athe bestrate for the color
is not bestfor the geometry.Texturemapping addresseshis

distribution mapping admits considerable freedom in the choidafoblem by divorcing the sampling of the color from the

of probability density function. We propose using a
distribution basedon a 3D Gaussianfor this purpose.This
distribution can be easily filtered for map antialiasing and
cheaply evaluated for surface shading.

In the same way thaexture mappingprovidesseparation
betweenthe sampling of the surface color and the surface
geometry, normal distribution mapping separatesstrapling
of the surfacenormalsand surfacegeometry.With a normal
distribution MIP-map, the normal and shading informatan

be appropriately filtered and resampled based on pixel coverage.

Thesetwo propertiesmeanthat normal distribution mapping
can improve the sampling and filterinng shadinginformation
on polygonal approximations surface#ther polygonalization
of smooth surfaces or coarse level of detail surfaces.

Since the normal distribution map uses a single
representatiorthat combinespropertiesof bump maps with
surface shading information, it also provides continuous
transitions between these domains. In fact, calling it a
“transition” is notaccuratesince normal distribution mapping
uses a single unified representation for both domains.

CR Categories and Keywords: G.3 Probability and
statistics; 1.3.3 Picture/lmage Generation; 1.3.7 Three-
Dimensional Graphics and Realism; Surf&teding; BRDF,;
texture mapping; bump mapping; multiresolution analysis

1. Introduction

One wayto think about polygonal representationsof
smoothsurfacess in terms of sampling and reconstruction.
Each vertex is a sample of tkenooth surface.We reconstruct
an approximationto that surface from the vertex sample
locations. The quality of the polygonapproximationdepends
on the sampling rate and distribution — how many vertices
were used and where they were placed.

sampling of the geometry.

a) b)

Figure 1. Color and normal distribution map textures
a simple object, with filtering on both done using a M
map. a) color and normal distribution map textures ¢
simple object. b) same textures at a different MIP-me
scale (under-sampled for this image size). Note how
specular highlight blurs and elongates in the directic
the ripples.

While texturing solvesthe problemsof color sampling,
we still sample surfaceormalsat the vertices(seeFigure 1).
Gouraud shading andhong shadingprovide different schemes
for reconstructingthe smooth surface shading from the
sampled normals. We have observed in reeenk in level of
detail and multiresolution surface approximation, that
appropriate sampling for the surface geometry does not
necessarily provide appropriate sampling for the normals
either. For example,simplification envelopesCohen96]can
guaranteethat the polygonal approximationto a surfaceis
correctto within one pixel. Yet the surfacehighlights may
change drastically between one level of detad the next (see
Figure 2). We are awareof work in progressto incorporate
surface normal and curvatuirgformationin the simplification
process, but this will result iaxcesgpolygons,not necessary
to representhe geometryfaithfully. If we can separatethe
normal sampling from the geometry sampling, it will be
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possibleto do modelsimplification basedonly on geometric
constraints, without introducing extra polygons.

c) )
Figure 2. a) and b) Two images of the same smooth
object using different numbers of polygons. Notice t
changes in the specular highlights. c) and d) The sai
polygonalized objects with normal distribution

mapping.

Williams also noticed problems sampling the surface
highlights in image space which he called highlight aliasing
[Williams83]. One form of highlight aliasing occurs when
geometrynormals changerapidly with respectto the image
samplingfrequency.This is particularly apparentfor regular
bumps, where the bump highlights beat againstthe image
samples. The second form of highlight aliasing occursery
shiny surfaces when thaghlight sizeis closeto the spacing
betweenimage samples.His solution used an illumination
MIP-map for the specular component of the surface
illumination, though this solutiois only applicablefor non-
local lighting.

Some of thesesampling problemscould be avoided by
using a normal map. We will be referringto a number of
different maps on the surfacEheseare functionsdefinedover
the surface,usually through some texture coordinatesystem.
For example, a texture map gives a color at every mirthe
surface;a normal map gives a normal at every point on the
surface;a bump map gives a perturbationof the normal at
every pointon the surface.In general,unlessthereis another
already commoterm for a map, we will namethe mapafter
the thing being mapped.

While the normal map decouplesgeometry sampling
density fromnormal samplingdensity, it is still necessaryo
properly filter it to avoid aliasing. For color textures, pre-

filtering techniquesare commonly used speedthe filtering
process during rendering. For example, MIP-mapping
computes a pyramidf pre-filteredversions[Williams83]. We
can consider creating a hierarchy of maps formap, and can
apply standardMIP-mappingand signal processingechniques
on any map which behaves linearly.

While normalsmay be linearly combinedand averaged,
directly filtering the normal map doesnot yield the expected
results.Considerthe exampleof sheetof aluminumfoil that
has been crumpled then flattened again. When examined
closely, itappeargo be a shiny surfacewith surfacenormals
pointing in many directions.From a sufficient distance,the
wrinkles areno longerapparentandit appeargo be a single
flat surface with a common normal. Howeverttds scalethe
sheetno longer producesa cleanreflection— it appearsess
shiny. A filtered versionof the normal map correctly shows
the new common normal direction, but doesnot reflect the
changes in surface shading.

The solution is to incorporate information about the
distribution of normalsin the closerview into the shading
computationsin the more distant view. We need an
approximationto the bidirectional reflectance distribution
function (BRDF) of the surfaceat the distant scale that is
derivedfrom a combinationof the BRDF andnormals at the
close scale.

2. Changing scales

Cabral et al. produceda BRDF for a distantview of a
bump mapped surface using Monte Carlo ray tracing
techniqguegCabral87]. The closeview of the bump map was
modeledas a height field, andrandomrays (modulatedby the
close scale BRDF) were traced to produce a histogram
representatiomf the distantscaleBRDF for the entire bump
map. This distant BRDF could be fit by an appropriate
approximationfunction for computation.Westin et al. used
similar methodsto producea milliscale BRDF from surface
geometry and microscale BRDF [Westin92].

Both of theseproducedBRDFs at discrete scales.In a
follow-on to the Cabral et alvork, Beckerand Max addressed
the transition between representationsat different scales
[Becker93]. To blend between bump mapping and BRDF
representationghey blendedbetweenthe color producedby
each.They also allowed a hierarchyof scales,with Perlin’s
technique of band-limiting the frequency of the bumps
[Perlin84]. This technique uses a frequency cut-off at each sc
to decomposehe bumpsinto a partto be renderedusing the
BRDF and a part to be rendered using bump-mapping.

Fournier eliminated the problem of blending between
bump mapping and BRDF by combining both into an
approximationto the BRDF, which varied over the surface
[Fournier92]. He could alshandlea hierarchyof scalesusing
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a pyramid of theseapproximations,similar to a MIP-map.

transitioning betweenthese effects when they are modeled

This is the approach we use for our normal distribution mapsseparately. We approximate this BRDF map a normal

A common approach to approximating a BRDF ispdit
it into separate componenfsr diffuse and specularreflection.
The diffuse component can be representedas simple
Lambertian shading. The specular component can be
representeds a probability distribution of normals. This is
usually derived by imagining the surface as composed of
millions of perfectly reflective microfacets, randomly
distributedaboutthe averagenormal direction (see Figure 3).
Thesefacetsare too small to see,but can be modeledwith
geometricoptics. For any particularlight andview direction,
thereis some probability of having facetswith the normal
direction that reflects thight to the viewer. This probability
can be found by looking directly at the value of giebability
density function, and can be used directly to determinethe
percentage of light that reflects from the light to viewer.
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Figure 3. Surface microfacets. a) The surface is assu
to be made of millions of tiny facets. The facets are L
to find a probability distribution of facet normal
directions. b) The surface is rendered as a geometrit
flat surface with the normal distribution used to repro
the shading effects of the facets.

The Blinn [Blinn77] model addsa term for geometric
attenuation(from shadowingand masking occlusion effects).
Shadowing,of course,is whenone part of the object blocks
the path between the light asdrface. Maskingis when part
of the object blocks the path betweenviewer and surface.
Dealingwith theseeffectscanbe troublesomeand expensive.

distribution map, basically approximatingeachBRDF by a
statisticaldistribution of surfacenormaldirections.The main
choice thatremainsto be madeis the probability distribution
to use. In searching for a distribution, we are interested in thr
key properties. First, it should be able to reproduce a
Gaussian-likedistribution of normals. Second,it must be
cheapto evaluate duringhading.Third, it shouldbe easyto
filter for producing a MIP-map. If possibleje would like the
parameters of the distributido combinelinearly, so standard
filtering and MIP-map lookup techniques carbe applied
directly.

3. Microfacets on large sections of surface

Microfacetshadingmodelsare of interestsincethey also
model the statistical distribution of surface normals, albiet
locally. These models generally assume thabtiig variation
is due to the microfacetrientations.Otherwise the surfaceis
flat. This is reasonable fahe contextwherethesemodelsare
used. To understand what it means to representdiraalsfor
a larger sectionof surface,we use a tool from differential
geometry, th&auss magKoenderink90].Every point on the
surface has a unit normassociatedvith it. That unit normal
can be interepretedas a point on a unit sphere.Thus, the
normalsof the surfacedefinea mapping betweenthe surface
andthe unit sphere.This mappingis called the Gaussmap.
When the mapping is applied tgparticularsurface the result
is called the Gauss map of the surface (see Figure 4).
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Many rendering systems do not deal with the shadowing effects

(they do deal with masking since this is the visibility

problem). Bump maps, generallydo not accountfor either
shadowing or masking. The béstown techniguefor dealing
with occlusioneffectsin the context of bump mappingand
shadingis the work of Max and Becker [Becker93]. Their
techniquecould be adaptedto our normal distribution maps.
We have electednot to do this in an attemptto keep the
computationakost of the methodlow. Note also that Ward,
while he was addressirgydifferent problem, achievedgood fit

to measuredBRDFs without any geometric attenuation
[Ward92].

So far, we have a BRDF map over the surface. By
allowing the BRDF to vary overthe surface,we combine
bump mapping and surface shading effects into a single
representation, avoiding problems that occur when

Figure 4. 2D example of a Gauss map for a section o
curve. This is the mapping of the curve onto the unit
circle based on curve normal direction. It is analogot
the 3D Gauss map, which maps a surface onto the u
sphere. Compare this figure tigure 3.

For our purposeswe are not interestedin the shapeor
connectivity of the Gauss map, htg density.We canmodel
the density of the Gaussmap with a probability density
function on the sphere Eachtexelin the normal distribution
map models the distribution of nhormals the Gaussmap for
a section of surfacé he texelsin a normaldistribution MIP-
map covermprogressivelylarger piecesof surfaceat eachMIP-
map level.
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4. Distributions on the sphere

Microfacetmodelsgenerallyuse probability distributions
over a hemisphereof the Gaussmap, pointing outward from
the local surface direction. Even if we start with these
hemisphericaldistributions, as we combinethem at coarser
MIP-map levels, the probability of normals below the
“horizon” increases.As a result, we are interested in
probability distributions over the entire Gauss méipat is to
say, probability distributions on a sphere.

Any distribution on the hemispherecan be usedon the
sphere by using a zero probability for any normals inother
hemisphere. This is the approach takerFburnier,who used
distributions based on mixtures of Gaussians,which he
approximated as “Phong Peaks” for cheaper shading
[Fournier92]. If wewant our densityfunction to representhe
normals on the other side of the sphere we need a diffiypnt

of distribution. Also, where Fournier placed more emphasis oY

the accuracyof the approximationto the BRDF, we place
more emphasion speedWe want a way to achievemost of
the visual improvementwithout havingto computemixtures
of up to fifty Gaussianslf possible,we would also like to
avoid the hours non-linear optimization to fit the
approximations in the pre-processing stages.

Microfacet models are created by applying geometric
optics to simple shapes.Blinn used V' shapedgrooves
[Blinn77] for one shading model and spheresfor another
[Blinn82]. Poulin used parallel cylindricgirooves[Poulin90].
Neyretusedthis geometrictechniqueto derive a distribution
for usein volume shadingthat coveredthe full Gaussmap
[Neyret95]. He used a single randomly sized and oriented
ellipsoid to produce his distribution of nhormaldeyret’s work
is interesting because, when producing an octtree

the center of the sphere, through the point, onto the plane (:
Figure 5 a). The value of the Gaussian density function on t
plane defines a density for the point on the sphere.

Mean vectorpi
Covariance matrixz

Gaussian densityi(x,{i,£) 0 ez x -1 Z* (<=1’
Gaussian projected to hemisphen(e.xzM ,;I,E)

Oneof the first probability distributionswe tried wasan
extension of this to the fubphere Insteadof projectingfrom
the center of the spherae tried projectingfrom the opposite
pole (a stereographic projection).

Gaussian projected to full sphenQ.IZXTyl] ,;I,Z)

The result is a Gaussian-like distributiaiefinedover the
hole Gaussmap (see Figure 5 b). Unfortunately, this
distribution is quite difficult to combineand filter, and the
approximationwe get when we combinea mixture of two
distributions into a single one is not a good one.

Figure 5. Creating a distribution on the sphere by
projection. a) The density function for a Gaussian
distribution of microfacet slopes can also be created
projection from the center of the sphere. b) A similar
density function over the full sphere.

representation of the volume, parent cells were represented by a Thefinal classof distributionswe considerare not based

single ellipsoid that approximatedall of the ellipsoidsin the
children cells. This allows basfdtering operationgo always
resultin an approximationof the sameform. We will come
back to this idea later.

The real result of any geometricmicrofacetmodelis a
distribution of normals. Other shading models have used
distributions without any reference to geometry, basdg on
the distribution’sability to approximatethe BRDF [Ward92].
So wemay considerother distributionsif they havethe right
Gaussian character and are easier to compute or filter.

One wayto createnew distributionsis to a way to
generalize existing ones. For example, the V' shaped
microfacetgroovesare usually assumedo havea Gaussian
distribution of slopes.The resulting distribution can also be
seenas a projection of a Gaussianonto the hemisphereas
follows: definea Gaussiandistribution on a plane and place
this planetangentto the top of the hemisphere.To find the
probability density at a poirdan the hemisphereprojectfrom

on microfacet models at all. Johnsongives a number of

probability distributions on theircle and sphere[Johnson87].
Thesedistributionsare formed by startingwith a distribution
in Euclidean3-spaceand using the conditional probability of

the distribution when restrictedto the surfaceof the sphere.
This opensup the possibility of working in Euclideanspace,
where distributions tend to be better behaved, instéaxh the

sphere.

5. Distribution induced by a 3D Gaussian

A requirementfor any distribution is that it be able to
reproduce the tight 2D Gaussian-like cluster of normal
directions on shiny surfaces.If we consider possible 3D
distributions to produce Gaussian behavior, the first
distribution that comesto mind is the 3D GaussianA low-
variance Gaussian centered on the surface of the Gauss map
certainly create a Gaussian-likecluster of normals on the
surface of the Gauss map. The mean of the 3D Gauisstha
averagenormal direction for that point on the shiny surface.
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The distribution defines a small Gaussian blopacearound
that average normal direction (see Figure 6).

Figure 6. 2D example of a distribution on a circle cre:i
by restricting a 2D Gaussian to the circle. This can |
extended to create a distribution on a sphere from a:
Gaussian.

Further, simple 3D Gaussiansare easy to combine
linearly. The best Gaussianfit to a mixture of two 3D
Gaussiandasa meanthat is an averageof the meansof the
two original Gaussians.The variances do not combine
linearly, but the second moments about the origin do
[Johnson87].

Distributions:fi(x) = n(x,Hi,Zi)
with mean vectori; and covariance matrix
Second central momemx2=3 +puT i
Mixture: fmix(X) = NX,H mix, Zmix) = pOf1(X) + (1—-p)Dfa(X)
Mean:pimix = pOp1 + (1-p)JH2
Second central momem)(rznix = IODExf + (1-p)d EX%

Covariance matrixZmix = E><$1ix —uTu

To clarify the mixture of these 3D Gaussians, considghniny
bump on a surface. Two nearby locations will both be
characterizedby low-variance distributions with slightly
different means. Low-variancebecausethe surfaceis shiny,
differing meansbecausethe normal directions on different
points onthe bump are different. Whenwe combinean equal
mixture of thesetwo distributions, the new mean is the
averageof the two original means.This meansthat the total
averagenormal direction is the averageof the original two
normal directions. The variance increasesalong the axis
between the two original meansghile remainingthe samein

the other directions. The variation in original normal direction
turns into additional uncertainty in the distribution of normals

b)

)

Figure 7. Mixture of 2D Gaussians: a) A shiny bumg
sampled at two points, each with a different normal.
The concentric circles are contours of the 2D Gaussi
on the Gauss map for each sample point. The thick
of the circles indicates indicates the actual probabili
density induced on each Gauss map. ¢) The two 2D
Gaussians from (b) are combined into a single 2D
Gaussian. Note the increase in variance.

We can characterize the 3D Gaussian density function wi
nine numbers,all of which combinelinearly. Three for the
meanandsix for the matrix of secondmoments.We can put
these nine numbers into a MIP-map, and filtering will wask
expectedln fact, in our implementationwe treat thesenine
numbersas three separatehree-colorMIP-mapswith 16 bits
per component.No changesto either MIP-map creation or
access were necessary.

For our previousexampleof the sheetof aluminumfoil,
in the closeview we have Gaussiardistributions with small
variance (correspondingto a shiny surface), but differing
means.In the distantview, all of the Gaussianhavesimilar
means, but a larger variance (corresponding to a dulice).
This is exactly the behaviorwe want. Similarly, for grooved
surfaces, the variancill increasemorein onedirectionthan
the other as the object becomes smaller, modeling the
anisotropic reflection.

6. Shading using the 3D Gaussian

The most time criticatomputationis not the creationof
the normaldistribution MIP-map, but its useduring shading.
Since the 3D Gaussian-based norgtiatribution map behaves
linearly, the MIP-map lookup computations are
straightforward. The result issingle 3D Gaussiarto be used
as the normal distribution for an image sample. We must
computethe normalizedhalfway vector betweenthe light and
viewer and look this up in the density function. Ignoring
normalization of the density function for the moment, this jus
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involves plugging the halfway vector into the 3D Gaussian

function.

To this point, we have beenable to work with the
probability distributions without constructing their density
functions. We know the form of the density function, but it

as he did, to use the PearsonType Il distribution for its
computational simplicity.

Pearson Type Il distribution:

i) for gt =F -

the sphere and divide by the result. Unfortunately, the

eight).

Gaussian distribution does not integrate well over the sphere.

We could computetheseintegrals numerically at every

image sample, but that is far too expensive. Instead, wdacan

the numericaintegrationas a pre-procesg$or eachelementof
the normal distribution MIP-map, producinga MIP-map of
normalizationfactors. The resultingtri-linear interpolationis
only an approximation to theue normalizatiorfactor, but is
much cheaper to compute.

An alternatemethodis to usethe 3D Gaussiarfor MIP-
mappingonly, andapproximatethe resulting3D distribution
for shading. For example, since the restriction of a 3D
Gaussianto a planeis a 2D Gaussian[Johnson87].One
possible approximationis to choosea plane tangentto the
sphereor one through the mean of the 3D Gaussian,and
projectthe thedistributionon this planeonto the sphere.To

summarize, we approximate the BRDF with a 3D Gaussian fQDr

MIP-mapping, then re-approximatewith a projected 2D
Gaussian for rendering.

As a final option, we can follow th#raditional” graphics
approachand the 3D Gaussian,but use an un-normalized
density function. It is still necessaryto do a partial

normalization based on the square root of the covariance mat

to factor out changesdueto the changingvarianceof the 3D
GaussianSurprisingly, this works reasonablywell. Since it
is, by far, computationallythe least expensive,it was the
method used for all the images shown in this paper.

Even if we ignore the normalization of the density
function, the computationof the Gaussianis still rather
expensive, sincat involves an exponential. To make the
computation cheaper, we actually wseapproximationto the
3D Gaussian.Johnson discussesthe class of elliptically
contoured distributions, which include the Gaussian
distribution.

Distance functiond(x,[,%) = (x —f) T2 (x — )T
Density function (for a given g(t)):

f(X 1,%) :Lg( d(x,1,%))
NE

Gaussian distributiorf(x ,i,%) for g(t) = et2

Lyon showsthat the Phong and PearsonType Il both do a
good jobof approximatinga GaussiarfLyon93]. We choose,

7. Conclusions and Future Work

We havepresentedh new methodfor uniformly handling
sampling of surfaceaormalsand shadinginformation, andthe
interaction between thisvo at different distancesThe method
usesa probability distribution of surfacenormal directionsas
an approximationto the BRDF asit varies over the surface.
We proposeusing a probability distribution basedon a 3D
Gaussianfor this purpose.The parametersdefinining this
distribution behavelinearly, so they can be easily filtered
using standardiltering techniqguesAn approximationto this
distribution can be used that is fast to evaluate at shading tir
or severalprogressivelymore expensivealternativesexist for
normalizing the distribution if it becomes necessary.

Thoughshadowingand masking effects cannotoccur on
ump maps, they can occur if the surface model is more
complex. We would like to be able to model theseeffects.
The likely method for creating these models has been
previously proposed by Becker.

Finally, we would like to explore multi-resolution
simplification using probability density functions basedon

X

wavelets which have “nice” recombination behavior.
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