
Graphics Hardware (2005)

M. Meissner, B.- O. Schneider (Editors)

Modified Noise for Evaluation on Graphics Hardware

Marc Olano†

UMBC

Abstract

Perlin noise is one of the primary tools responsible for the success of procedural shading in production rendering.

It breaks the crisp computer generated look by adding apparent randomness that is controllable and repeatable.

Both Perlin’s original noise algorithm and his later improved noise were designed to run efficiently on a CPU.

These algorithms do not map as well to the design and resource limits of the typical GPU. We propose two

modifications to Perlin’s improved noise that make it much more suitable for GPU implementation, allowing

faster direct computation. The modified noise can be totally evaluated on the GPU without resorting to texture

accesses or “baked” into a texture with consistent appearance between textured and computed noise. However,

it is most useful for 3D and 4D noise, which cannot easily be stored in reasonably-sized textures. We present one

implementation of our modified noise using computation or direct texturing for 1D and 2D noise, and a procedural

combination of 2D textures for the 3D noise.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image genera-

tion; Display algorithms; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism; Color, shading,

shadowing and texture

1. INTRODUCTION

Procedural shading allows a programmer or technical artist

to write short procedures called shaders in a shading lan-

guage to define how surfaces will appear. This general tech-

nique has proved hugely successful in production rendering,

appearing in almost every CGI film and effects shots, from

Toy Story [Pix95] to Lord of the Rings [New01].

Arguably, one of the main reasons for the realism associ-

ated with procedural shading, and its popularity in produc-

tion rendering, is the Perlin noise function. Noise was intro-

duced as part of Perlin’s Image Synthesizer [Per85]. In 1997

he received a Technical Achievement Academy Award for

its development and the impact it has had on movie effects.

The Perlin noise function adds randomness to procedural

shaders, and is commonly used both as a surface appearance

modeling tool and as a means to add dust, scuffs, or other

imperfections to otherwise pristine surfaces [EMP∗02].

The key aspects of Perlin noise are that it is determin-
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istic and frequency band-limited. Determinism allows it to

be reliably used in animation. Thus, the appearance of an

object will not change unexpectedly from frame to frame.

The frequency band limits allow it to be used in a control-

lable fashion. Perlin’s noise function has most of its energy

between .5 and 1 cycles per input unit. A shader-writer de-

siring higher or lower frequencies simply scales the noise

inputs to produce the desired frequency profile. More com-

plex frequency profiles can be synthesized by adding several

octaves, as with the fractional Brownian motion (fBm) and

turbulence functions [Per85].

A number of noise variants are used, with varying input

dimension (usually 1D-4D), and varying output dimension

(usually 1D or 3D). 3D-output noise can be built from three

offset 1D-output noise functions. Consequently, as Perlin

did, we concern ourselves with 1D (single float) output. In

the remainder of this paper, n-D noise refers to a noise func-

tion with n-dimensional input and 1D output.

Perlin’s formulation uses several chained table lookups,

operations that are relatively fast on a CPU, but can be a

bottleneck on a GPU [Wei04]. We present a modified noise
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oNoise1@xD oNoise2@x, 0D

(a) Original Perlin noise

iNoise1@xD iNoise2@x, 0D

(b) Perlin improved noise

cNoise1@xD cNoise2@x, 0D

(c) Corner-gradient noise

mNoise1@xD mNoise2@x, 0D

(d) Modified noise

Figure 1: Plots of 1D noise functions and a 1D slice through

their 2D counterparts. Note that the dimension reducible

property, makes noise1[x] and noise2[x,0] match

for (c) and (d)

function with no table lookups. It may be accelerated with

textures to hold evaluated results of 2D subexpressions, but

unlike the original noise formulation, they are neither re-

quired, nor do they form a dependent chain.

Section 2 explores prior work in noise construction. Sec-

tion 3 introduces our modifications and compare them to

Perlin’s noise functions. As is seen in Figure 1(b), Perlin’s

improved noise sometimes exhibits artifacts that the original

did not, so we compare our modified noise to both (in fact,

these artifacts were the original inspiration for this work).

2. PRIOR WORK

Peachy [EMP∗02] created a useful taxonomy for noise func-

tions. The most common choice in production rendering is

gradient noise: a repeatable function is used to choose a ran-

dom gradient at each point on an integer lattice. Between the

lattice points, polynomial interpolation produces a smooth

noise function with the desired gradient at each lattice point.

Perlin’s original noise was of this form [Per85], using a hash

of the lattice point locations to choose random gradients

from a pre-computed table.

Lewis [Lew89] instead used sparse convolution to con-

struct a noise function. Sparse convolution noise avoids

grid artifacts common with grid-based noise synthesis ap-

proaches, but is more computationally expensive to evaluate

on the fly. Van Wijk’s Spot Noise is similar, but modifies the

noise by changing the spot shapes [vW91].

Perlin’s simplex noise variant also reduces grid artifacts

by using an n-simplex as the basic grid (i.e. triangle rather

than square, tetrahedron rather than cube) [Per01]. There is a

GPU implementation by Gustavson [Gus05]. Simplex noise

has the advantage of only combining n + 1 gradients rather

than 2n for n-D noise, but is otherwise independent of any

modifications we propose here.

Most real-time systems have elected to use the inferior

Figure 2: Comparison of computed (light) and sampled

(dark) noise for different texture sizes: 2 samples/unit = tex-

ture size 2×period; 3 samples/unit = texture size 3×period;

or 4 samples/unit = texture size 4×period.

value noise [LMOW95, Har01]. Value noise interpolates be-

tween random noise values defined at each lattice point The

maximum frequency of value noise is 1/2 Hz, but contains

significant lower-frequency energy. Combined with the more

prevalent grid artifacts, this makes value noise a poor visual

choice. It is, however, exceptionally easy to compute.

Recently, Perlin [Per02] introduced an improvement to his

original noise. The improved version is still a lattice gradient

noise, with two changes. It uses a higher order interpolant

for a smoother look, and rather than hashing lattice points

into a table of gradients, one of a fixed set of gradients is

computed from the hash value itself. There is an optimized

GPU implementation by Green [Gre05].

One common optimization for hardware is baking the

noise function into a texture. Close viewing requires a tex-

ture at least 3-4 times the noise period (Figure 2). Traditional

Perlin noise has a period of 256, requiring 7682 or 10242 tex-

tures to accurately represent the 2D noise or 7683 − 10243

for 3D noise!

Perlin has also presented a technique to greatly re-

duce these memory requirements for one 3D noise [Per04]

(though the method could apply for 1D-3D noise). He gener-

ates a small 3D complex-number noise texture, then extends

the period of this repeating texture by rotating the com-

plex output according to a second, low-frequency, 3D noise

(which can use the same texture). The final noise value is the

real component of the output. His version uses a 253 texture

with a base period of 8 to achieve noise with a period of 72.

The noise created through this method does not match any of

the previous computed noises, though its statistical charac-

ter is similar. The complex rotation uses trigonometric func-

tions, and computing a matching noise is problematic, but

the memory compression is excellent.

3. MODIFYING NOISE

As our first modification, we would like the lower-

dimensional noise functions to be a direct slice from their

higher-dimensional counterpart. We will refer to noise with

this property as dimension reducible. Textured implemen-

tations of a dimension-reducible noise can make particularly

efficient use of the available texture memory. In our final im-

plementation, we use single 2562 texture for 2D noise with a

period of 61. 1D noise is just one line from the same texture

(see Figure 1).
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Second, while the noise function derived here may be used

directly from a texture, we feel it is important that it also be

computable without textures or table lookups. We will re-

fer to noise with this property as purely computable. In our

implementation, the noise textures are generated by direct

GPU computation into a texture. In addition, purely com-

putable noise allows a partial precomputation into textures,

as presented in Section 3.4.

Finally, even if textures are to be used in the implementa-

tion, we would like to avoid dependent texturing. Hardware

limiting the number of dependent lookups does still exist, so

it is good shader citizenship not to use all of them in imple-

menting the noise function. Even on hardware that does not

limit the number of dependent lookups, chains of lookups

make it more difficult to hide the texture fetch latency.

We present our modifications along with an overview of

Perlin’s original and improved noise. We will refer to these

as oNoise and iNoise respectively. This comparison will

serve to highlight the areas of flexibility in defining a noise

with the same general characteristics as oNoise and iNoise.

3.1. Commonalities

Given an input point, both algorithms locate the 2n surround-

ing lattice points. For 2D, the points surrounding ~p are

~pi; jk =

(

⌊~px⌋+ j

⌊~py⌋+ k

)

; j,k ∈ {0,1}

Through some method (differing for each noise), a gradi-

ent vector is computed at each ~pi, and a function with the

desired gradient constructed

~p f = ~p−~pi

grad(~pi,~p f ) = gradient(~pi)•~p f

The nearest lattice gradient functions are blended using a

smooth interpolation. The most common method factors a

smooth fade function into the interpolation parameter of a

linear, bilinear or trilinear interpolation.

fade(t) =

{

3t2 −2t3 for oNoise

10t3 −15t4 +6t5 for iNoise

flerp(t,a,b) = (1− fade(t)) a+ fade(t) b

We can choose either fade function (or even a linear fade)

to balance computation and appearance. Except where indi-

cated, images here were produced using the cubic fade func-

tion. oNoise, iNoise and our modifications all differ only in

the choice of fade function and gradient vectors. Thus, the

2D noise equation for all is

noise2(~p) = flerp(~p
y
f ;00,flerp(~px

f ;00,grad(~pi;00,~p f ;00),

grad(~pi;10,~p f ;10)
flerp(~px

f ;00,grad(~pi;01,~p f ;01),

grad(~pi;11,~p f ;11))

(a) 3D (b) 2D

(c) 3D→2D

(d) 2D→1D

Figure 3: Noise gradients. a,b) direct; c,d) from a slice of

higher-dimensional noise. Small/Black: oNoise gradients on

a unit n-sphere; Large/Medium: iNoise gradients at the edge

centers of a unit n-cube; Small/Light: cNoise and mNoise

gradients at the corners of a unit n-cube

iNoise cNoise

3D: (±x,±y,0),(±x,0,±z),(0,±y,±z) (±x,±y,±z)
3D→2D: (±x,±y),(±x,0),(0,±y) (±x,±y) ]2D: (±x,±y),(±x,0),(0,±y) (±x,±y)
2D→1D: (±x),(0) (±x) ]1D: (±x),(0) (±x)

Table 1: grad functions for Perlin’s improved noise (iNoise)

and our cNoise. Notice that the projection to a lower di-

mension produces spurious gradients in iNoise, but projects

cleanly in cNoise

3.2. Gradients

The noise functions begin to differ with their selection of

random gradients. oNoise chooses lattice gradient values

from a unit n-sphere, while iNoise instead chooses gradients

at the center of the edges of a unit n-cube. The values of these

gradients are shown in Figure 3 and (for iNoise) Table 1. Fig-

ures 3(c) and 3(d) show the effective gradient distribution for

a 2D or 1D slice of a higher dimensional noise.

Figure 1 shows that these gradient distributions result in

noise functions that look similar at the intended dimension-

ality, but appear quite different for lower-dimensional slices.

From Figure 3 and Table 1, we observe that the problem

arises when a gradient vector in one noise does not project

down to the gradient that would be chosen in the lower-D

noise. iNoise is closer to resolving the problem, with only a

few problem gradients preventing degree reducibility. These

problem gradients result in the flat stretches in Figure 1(b)

(which will average one out of every four unit intervals!).

We solve the problem by changing the gradient selection

rules. Rather than choose gradients on the edge centers as

iNoise does, we choose gradients on at the cube corners.
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(a) Original Perlin (b) Perlin Improved

(c) cNoise (d) mNoise

Figure 4: Comparison of 2D noise functions

This new noise will be referred to as cNoise. Perlin notes

the possibility of axis-aligned clumping with this distribu-

tion [Per02], but as can be seen in Figure 3, iNoise still ends

up using these same corner gradients in lower-dimensional

slices of the noise. Comparing the noise results (Figure 4),

we see that the clumping artifacts are not severe. We feel the

dimension reducibility far outweighs any minor artifacts.

Note that the gradient vectors will differ for 3D, 2D,

and 1D, but the grad function will produce identical re-

sults. For example, gradient vectors (1,1,1), (1,1), 1 are not

even the same dimensonality. But the 3D grad function is

~px
f +~p

y
f +~pz

f . In any integer-z plane (including z=0), this

becomes ~px
f +~p

y
f +0, which is exactly equal to the 2D grad

function, ~px
f +~p

y
f . Similarly, for integer-z and integer-y, the

3D grad is ~px
f +0+0.

3.3. Hashing

Gradients for oNoise and iNoise are both chosen using the

same hashing function; oNoise from a table of unit gradient

vectors, and iNoise from bits of the hash. Each lattice point

~pi is hashed using repeated applications of a small permu-

tation table. This table is precomputed to map each integer

from 0-255 to a unique new integer between 0 and 255. The

final single hash value is

hash3(~pi) = permute(permute(permute(~px
i )+~p

y
i )+~pz

i )

Note that the lower-dimensional hash functions are just

a slice out of the higher dimensional hash, offset by

permute−1(0):

hash2(~pi) = permute(permute(~px
i )+~p

y
i )

= hash3(permute−1(0),~px
i ,~p

y
i )

hash1(~px) = permute(~px)

= hash2(permute−1(0),~px)

cNoise uses this same hash function as well — the only dif-

ference from iNoise is in the gradient vector selection. Com-

puted gradients eliminate one possible lookup into precom-

puted values, but the hash itself is a major bottleneck for

GPU computation [Wei04]. The permutation table must be

computed in advance and stored, either into large 2D and

3D textures, or needing multiple chained lookups.

If we instead had a hash function that could be computed

on the fly, we could achieve the goal of a purely computable

noise. The requirements for a computed hash function are

that it take few instructions, be repeatable, and that there be

no noticeable correlation between nearby values. Note that,

while the permutation table hash is one-to-one for values be-

tween 0 and 255, this is not a necessity.

Quasi-random number generators, such as Sobel or Hal-

ton sequences, are common for jittered sampling in Monte-

Carlo methods [MC95]. They are easy to compute, but prove

far too correlated for our purposes. Pseudo-random number

generators have many of the features we desire, but tend

to be designed to have little correlation between successive

values [Cov60], so random number n is uncorrelated to ran-

dom number n+1. To use as a good hash function, we need

a way to jump to step 50 without having to call the random

number generator 50 times, or we need it to be uncorrelated

relative to successive seeds. These constraints rule out many

of the common generators.

Linear congruential generators [Knu81] appear too cor-

related when using successive seeds. The high-order bits of

successive values would work, and a closed form to jump

to value n does exist, but is expensive to compute robustly

due to the large exponents involved. Lagged Fibonicci gen-

erators [Knu81] have similar characteristics, but the closed

form to jump to value n involves a matrix exponentiation.

We observed better success with a modification of

the Blum Blum Shub (BBS) pseudo-random generator

[BBS86]. The BBS generator computes

xi+1 = x
2
i mod M

Where M = pq, for large primes p and q. The low order bit

or bits form the random output, and are all we need to gen-

erate gradients by the same method as cNoise. The period of

the resulting noise would be M. In CPU applications, BBS

is generally regarded as cryptographically secure, but too ex-

pensive for non-cryptographic use [Jun99]. We observe ex-

cellent results in CPU simulation when using the lattice lo-

cation as the seed and performing only one or two steps of

the generator, achievable in 4-5 low-level shading instruc-

tions per step. Note that GPU color-channel parallelism al-

lows computation of hash values for four lattice points si-

multaneously.

The five instruction version implements i mod M as i−
floor(i/M) ∗M. The four instruction version implements it
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as frac(i/M) ∗M, but suffers from precision problems. The

latter version produces visually acceptable noise results, but

numerical inaccuracies result in a noise that does not repeat

at M as it should. We can use the first, exact, mod to compute

2D noise (where matching along texture seams is desirable),

but the latter, inexact, mod for 3D noise, where the noise

repeat factor is less of an issue.

Since current GPUs perform even integer computation in

floating point, reasonable values for M are simply too large

for small-format floating point numbers to hold without loss

of precision in intermediate computation. While it removes

any claim to cryptographic quality, we found a sufficient lack

of correlation for several prime M of a size small enough to

prevent the chance of overflow. All examples shown here use

M = 61. The maximum intermediate value of 612 = 3721 is

well within the range exactly representable as an integer on

these machines. This choice is a tradeoff between portability

(to small floats) and quality.

Like the Perlin noise functions, we construct a multidi-

mensional hash as follows.

hash3(~pi) = hash(~px
i +hash(~p

y
i +hash(~pz

i )))

hash(x) = x2 mod M

We call the resulting modified noise, combining corner-

based gradients and the computed hash, mNoise. An exam-

ple of mNoise is shown in Figure 5. mNoise is compared to

several other noise functions in Table 2.

3.4. Separable Computation

While the modified noise can be computed totally in a GPU

vertex or fragment shader, our low-level OpenGL shading

code for 2D noise is 45 instructions. That is simply too

many for many applications, especially for a function typ-

ically used several times in a single shader. Instead, we pre-

fer to use texture lookup for 1D and 2D noise. Results for 2D

mNoise for both a 1282 and 2562 texture are shown in Fig-

ure 2. Note that, while 1282 is above the Nyquist limit, it is

not sufficient to capture the character of the noise function.

The 3D noise is still large to store as a full texture, but

even more expensive for pure computation. Instead, we fac-

tor the 3D noise into groups of x-y expressions. The resulting

form involves two x-y terms for the integer z value below the

noise argument, and two for the integer z above. Thanks to

the dimension reducibility, one of these terms is exactly the

2D noise function! The other is the z component of the gra-

dient (missing in the 2D noise) blended in x-y according to

the flerp function.

We can store each of these x-y terms (2D noise and z-

gradient) into a single 2562 texture, accessed using:

~c0 = (~px,~py +hash(~pz
i ))

~c1 = (~px,~py +hash(~pz
i +1))

The final 3D noise using separate 2D noise and z-gradient

textures is

f lerp(~pz
f , mNoise2(~c0)+~pz

f ∗ zgrad(~c0),

mNoise2(~c1)+~pz
f ∗ zgrad(~c1))

Or, with a single combined 2-channel texture, we see com-

putation similar to computed 1D noise (Figure 6)

f lerp(~pz
f , (1,~pz

f )• tex(~c0), (1,~pz
f )• tex(~c1))

4D is similar to computed 2D noise, using a 3-channel 2D

texture containing noise, z-gradient, and w-gradient.

flerp(~pw
f ,flerp(~pz

f , (1,z,w)• tex(~c00), (1,z,w)• tex(~c01))

flerp(~pz
f , (1,z,w)• tex(~c10), (1,z,w)• tex(~c11)))

where

~c jk = (~px,~py +hash(~pz
i + k +hash(~pw

i + j)))
j,k ∈ {0,1}

4. Using mNoise

It is common to combine several octaves of noise in order to

produce a random function with a more complex spectrum.

One of the most common such compositions is turbulence

[Per85], constructed as

‖noise(~p)‖+
1

2
‖noise(

1

2
~p)‖+

1

4
‖noise(

1

4
~p)‖+ ...

While we can perform independent calls to the noise func-

tion, the common computation allows for a more efficient

single turbulence function. For a 3D turbulence built from

2D noise textures, we can compute the hash function for

up to two octaves together, and the flerp and sum for up

to four octaves together. Figure 7(a) shows 4-octave turbu-

lence. Figures 7(b) and 7(c) show examples of 3D wood and

marble shaders using the 3D turbulence function based on

a 2D noise texture. All figures and video were generated

with an ATI 9700-equipped laptop running OpenGL 1.5 us-

ing single-pass fragment shaders.

5. CONCLUSIONS AND FUTURE WORK

We have presented two modifications to Perlin’s improved

noise function that increase its potential for hardware-based

implementation. The resulting noise is simple and inex-

pensive to evaluate and produces results comparable to the

original CPU noise functions. In addition, our noise has

the advantage that the same noise function can be com-

puted without any texture, or efficiently evaluated with a

single texture usable for all dimensions of noise. Sam-

ple implementations and more details are are online at

www.umbc.edu/˜olano/noise/.

In the future, we would like to explore more fully other

factorizations for the turbulence and fBm functions. We

would also like to apply our computed hash function to

c© The Eurographics Association 2005.



M. Olano / Modified Noise for Evaluation on Graphics Hardware

noise period dimension texture sizes texture longest computation

(p) (n) (size×components) accesses chain notes

any, baked to texture any 1−3 values: ≥ (3p)n ×1 1 1 no computation

[Per85] 256 1−4+ hash: p×1; grad: p×1 2n+1 −2 n expensive

[Per02],cNoise 256 1−4+ hash: p×1 2n+1 −2 n similar to [Per85]

[Gre05] 256 3 hash: p2 ×4; grad: p×n 8 2 merge lookups to 2D textures

[Per04] 72 1−3 complex values: ≥ 25n ×2 2 1 simple (w/ trig);

kn|k = 3q+1;q · (q+1) = p to match without 3D texture,

need 4 3D noise calls

computed mNoise 61 1−4+ — — — similar to [Per85];

no lookups

mixed mNoise 61 3+ value+grad: ≥ (3p)2 × (n−1) 2 1 like (n-2)-D iNoise;

matches computed

Table 2: Comparison of texture-based noise implementations

other hash-based procedural primitives, including cellnoise

[Ups90], Worley’s n-th closest point cellular texture basis

function [Wor96], or tiled texture mapping [Wei04].
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Figure 5: 2D mNoise, mapped onto a teapot. Note the

changes in density with texture parameterization

Figure 6: 3D mNoise built from two accesses to one 2562

texture. Noise is uniform in size throughout and continuous

even across the junction between pot and spout.

(a) (b) (c)

Figure 7: 3D mNoise turbulence, and wood and marble shaders built using it
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