
Procedural Haptic Texture
Jeremy Shopf

University of Maryland
Baltimore County

Marc Olano
University of Maryland

Baltimore County

ABSTRACT
We present the Haptic Shading Framework (HSF), a
framework for procedurally defining haptic texture. HSF
haptic texture shaders are short procedures allowing an
application-programmer to easily define interesting hap-
tic surface interaction and the parameters that control
the surface properties. These shaders provide the illu-
sion of surface characteristics by altering previously cal-
culated forces from object collision in the haptic pipeline.

HSF can be used in an existing haptic application with
few modifications. The framework consists of
user-programmable modules that are dynamically loaded.
This framework and all user-defined procedures are writ-
ten in C++, with a provided library of useful math
and geometry functions. These functions are meant
to mimic RenderMan functionality, creating a familiar
shading environment. As we demonstrate, many proce-
dural shading methods and algorithms can be directly
adopted for haptic shading.

ACM Classification: H.5.2 [Information Interfaces and
Presentation]: User Interfaces–Haptic I/O I.3.7 [Com-
puter Graphics]: Three-Dimensional Graphics and Re-
alism – Virtual reality.

General terms: Algorithms, Languages

Keywords: Haptics, Haptic Texture, Haptic Interac-
tion, Texturing, Interface, Virtual Reality, Shading

INTRODUCTION
Haptic devices, such as the SensAble PHANTOM [14],
provide force feedback interaction, with the goal of al-
lowing the user to touch, feel and manipulate virtual ob-
jects. Haptic interaction has been used in surgical sim-
ulation, with particular success for laparoscopic surgery
[2, 3, 27]. It has been used to aid in identifying bonding
sites for proteins [23]. In general, it can provide a more
convincing interaction with any virtual object, combin-
ing the senses of touch and vision in an overall expe-
rience. Most haptic devices permit interaction using a
single Haptic Interaction Point (HIP), or end-effector.
McNeely et al. demonstrated more complex haptic tool

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland..
Copyright 2006 ACM 1-59593-313-1/06/0010 ...$5.00.

Figure 1: Haptic plaque removal application

interaction through line segments, groups of points, and
polygons using voxel sampling [16]. The HIP serves as
a probe, with which the user can poke, prod or rub a
surface.

The haptic interface can be divided into three types of
forces. Collision response forces provide “poking” inter-
actions, pushing back normal to the surface when the
user pokes into an object. This simulates the solid na-
ture of objects, and works to push the haptic device out
of any virtual object. Collision response forces change
for hard and soft objects. Friction forces simulate the
friction felt when rubbing across a surface. Friction
forces are tangential to the surface and oppose the direc-
tion of motion. Finally, texture forces are also tangential
to the surface, and can simulate various other texture
features.

Unlike visual rendering, where convincing interaction
can be achieved at 30Hz or less, realistic haptic response
requires a refresh rate of 1000Hz or better [25]. Thus,
haptic response computations are quite time critical.
Though some researchers have borrowed ideas from pro-
cedural surface shading to create more interesting haptic
textures, they are typically “baked” into precomputed
textures, saving runtime computation but removing the
possibility of runtime changes to the interaction.

This paper proposes a procedurally-based dynamic hap-
tic surface. A dynamic haptic surface can change its
characteristics based on interaction in the virtual envi-
ronment, passing of time, or user keyboard/mouse in-
teraction. We show that such a haptic model can be
efficient and meet the computational limits imposed by
haptic interaction. Since the model is computed, it al-
lows simple procedural definition. It is also computed at
runtime, allowing changes with time or user interaction.

PREVIOUS WORK
We present prior work in four areas: general haptic in-
teraction, haptic interaction for haptic texturing, visual
procedural shading, and procedural haptic texturing.

Haptic Interaction
Haptic collision and haptic response are the two tradi-
tional parts of haptic interaction. Haptic collision en-
tails determining when the Haptic Interaction Point has
intersected the virtual object. This is relatively simple
for geometric primitives such as spheres and cones, but
becomes more difficult with more complicated objects
such as polygonal models.

Often, algorithmic interference detection techniques such
as oriented bounding box (OBB) trees, [7, 11], are re-
quired to speed intersection detection by the haptic de-
vice. Ray-polygon collision is needed to detect the inter-
section between the moving interaction point and object
polygons. OBBs narrow the number of ray-polygon col-
lision tests [1].

For a point interaction system such as the PHANTOM
used in our work, collision response is the calculation
of a reactionary force to be applied to the haptic device
once collision is detected. Typically, this force is applied
to return the interaction point to the corresponding sur-
face position, preventing the user from penetrating the
object. This force is calculated as a spring returning the
HIP to the surface (using Hooke’s Law):

~F = k∆~x (1)

Where k is the stiffness and ∆x is the depth of penetra-
tion into the object. Spring stiffness controls the hard
or soft feel of the object. Since it is still possible for
the HIP to penetrate the virtual surface, either due to
device force limits or motion between haptic updates,
total haptic experience is improved by showing a visual
proxy effector that does not penetrate the rendered sur-
face [28].

Haptic Texturing
By applying additional forces to the haptic interaction
device when in contact with the surface, it is possible to
simulate surface texture and friction. The total response
can be calculated as:

~Fresult = ~Fc + ~Ft + ~Ff (2)

Fritz and Barner described this equation, where Fc is the
contact force described above, Ft is the force determined
by the haptic texture and Ff is the force due to surface
friction [6].

A lateral force applied in the opposite direction of device
movement provides dynamic and static surface friction
[21]. Perturbing the surface normal or displacing the
surface according to some function provides a sensation
of roughness. Fritz and Barner determined that alter-
ing the surface position is significantly more effective
than perturbing of the surface normal for haptic textures
[6], though Robles-De-La-Torre determined perturbing

the surface normal by the addition of surface tangential
forces provides a perceptually accurate virtual haptic
surface [20].

Minsky and colleagues provided the first virtual tex-
tures via 2 degree-of-freedom haptic joysticks in what
was dubbed the Sandpaper system [17]. Minsky used a
tangential force-gradient algorithm for 2D texture ren-
dering, where the displayed force is in the plane of the
textured surface and proportional to the gradient of the
surface-height profile. Hayward and Dingrong later ex-
tended this method to devices with three or more de-
grees of freedom [9].

Human perception of haptic texture has been studied
extensively. In one study described by McGee et al.,
it was determined that participants had no difficulty
in distinguishing that two textures were different, but
when presented with several textures, they were unable
to determine which of the textures was the roughest
[15]. Sachtler et al. determined through a series of trials
that a haptic device user’s perception of a surface can
be reliably altered by adding or subtracting tangential
surface forces [22].

Procedural Shading
Procedural shading has been a mainstay of computer
graphics for over two decades. Cook’s Shade Trees [5]
showed that a procedurally based description of a sur-
face could result in increased realism and provide the
programmer with a new level of control over the ap-
pearance of an object.

Shade trees replaced fixed surface shading with expres-
sions parsed into a tree structure. Appearance parame-
ters such as surface normal or diffuse shading coefficient
form the leaves of the tree, combined by operators and
functions to produce a final color at the root. One im-
portant aspect of Shade Trees was its use of precompiled
libraries containing useful functions, such as mix and
specular. This made shaders easier to write and allowed
them to execute more efficiently.

Perlin extended shading from expressions to a full lan-
guage, and also introduced the noise function for adding
controlled randomness to shaders [19]. Many of these
ideas were combined into the RenderMan shading lan-
guage [8], which remains the most commonly used shad-
ing language for offline production rendering.

Shaders for all of these are written from a single surface
sample’s point of view, answering the question “How
does a single sample on the surface compute its color?”.
This sample-based organization is key to the efficiency of
HSF. Recently, it has become possible to perform some
visual shading in graphics hardware. This is primarily
made possible through independent execution of shading
samples in parallel on graphics hardware [12, 13, 18].

Procedural Haptic Texturing
It is not hard to envision how procedural shading could
be extended into the realm of haptics. Just as procedu-
ral shading adds realism and flexibility to the appear-

ance of an object, a procedural texture can provide hap-
tic interaction with an interesting and dynamic surface.

Stochastic methods, which enjoy widespread use in pro-
cedural shading, have already been extensively applied
in the realm of haptics. Siira and Pai were among
the first to apply stochastic methods, using Gaussian
white noise to provide a rough surface [24]. Fritz and
Barner extend the use of stochastic methods to Frac-
tional Brownian Motion (fBm) [6]. Methods of cellular
texture, reaction-diffusion and spot noise have also been
applied to haptic textures [10].

Though researchers have used procedural methods to
generate interesting static surfaces, their focus has been
on constructing or extending surface textures over a new
novel surface in a preprocess.

HAPTIC SHADING FRAMEWORK
One key observation makes the Haptic Shading Frame-
work feasible. Visual shaders run at least once per image
pixel, with potentially millions of shader executions per
frame. Some of that computation can be shared across
samples, but visual shading requires huge computational
resources. In contrast, a haptic shader need only be run
once, at the haptic interaction point. Even a visual up-
date rate of only 10 frames per second at 1280x1024,
leads to approximately 13 million visual shader execu-
tions per second. A haptic update rate of 1000 Hz is
just 1000 haptic shader executions per second.

Given this relatively modest computational requirement,
we do not need parallel hardware to achieve real-time
haptic shading. In order to achieve the 1kHz update
rate, the HSF shader should execute in well under 1ms,
leaving time for the necessary collision detection and
force computation. Using high resolution cycle count-
ing timing methods, we determined over a large sample
of executions that the wood shader (our most inten-
sive shader) executes in less than 79 µs on a Pentium 4
3.6GHz system.

Figure 2: Data flow into and out of the haptic shader

The shader can be viewed as a black box through which
information is passed after a haptic collision. Like the
interface for visual shaders, we specify the haptic shader
by its inputs and outputs. The inputs are values the sys-
tem promises to have available if necessary. The outputs
are values the haptic shader computes and delivers back
to the system.

Inputs to the haptic shader come from two sources, as
indicated in Figure 2. Inputs from the haptic colli-
sion model vary depending on the collision point, and
are analogous to varying parameters in a visual shader.
Haptic material property inputs are fixed across the ob-
ject, and are analogous to uniform parameters in a visual
shader.

The haptic collision model provides surface normal, sur-
face position, surface parameters (u, v), and direction of
tool tip movement. Direction of tool tip movement al-
lows the programmer to generate direction-specific hap-
tic forces.

Because haptic shaders execute after haptic collision,
they can only be used to model small-scale surface dis-
placements. Large displacements will cause inconsistent
collision results and will disrupt the impression of the
shaded surface structure. Each object will have its own
base haptic material properties from which the haptic
shader will calculate its results. These include static
and dynamic friction, stiffness and damping.

Haptic texture inputs Haptic texture outputs
Surface position Displaced surface position

Normal Perturbed surface normal
Binormal
Tangent

Collision force Collision + texture force
Static friction Static friction

Dynamic friction Dynamic friction
Persistent Texture Data Persistent Texture Data

Stiffness Stiffness
Damping Damping

Proxy direction
Proxy acceleration

Proxy velocity
Surface parameters
Figure 3: Haptic shader inputs and outputs

Static and dynamic friction are important in defining the
“stick-slip” properties of the surface. Stiffness defines
how hard or soft a surface feels through the coefficient
of the spring force calculated between the tool tip and
the corresponding surface proxy.

Persistent texture data is a two dimensional array of
floating point values used to maintain information about
the surface. Use of the texture requires that the model
have surface parameters available. The persistent tex-
ture is dynamically allocated, allowing for a user-defined
size. This texture is required to store information result-
ing from user interaction.

The output of the function is the resulting haptic force
vector calculated from the inputs. Alternately, the
shader can compute static and dynamic friction, stiff-
ness and damping. The function may also return a
displaced surface position and/or a perturbed surface
normal.

surface wood
float ringscale = 10;
color lightwood = color (0.3, 0.12, 0.03),
darkwood = color (0.05, 0.01, 0.005);
float Ka = 0.2,
Kd = 0.4,
Ks = 0.6,
roughness = 0.1)

{
point NN, V;
point PP;
float y, z, r;

NN = faceforward(normalize (N), I);
V = -normalize(I);

PP = transform("shader", P);
PP += noise(PP);

y = ycomp (PP);
z = zcomp (PP);
r = sqrt (y*y + z*z);

/* map radial distance r into ring position [0, 1] */
r *= ringscale;
r += abs (noise(r));
r -= floor (r); /* == mod (r, 1) */

/* use ring position r to select wood color */
Ci = mix(lightwood, darkwood, r);
/* shade using r to vary shininess */
Oi = Os;
Ci = Oi * Ci * (Ka * ambient()

+ Kd * diffuse(NN))
+ (0.3 * r + 0.7)
* Ks * specular(NN, V, roughness);

}

Figure 4: Visual wood shader (compare to Figure 5)

The dynamic haptic texture allows the programmer to
define additional parameters to the texture function that
can be adjusted by the user during execution. This func-
tionality is much like RenderMan, in that the number
and names of parameters are variable, defined by the
shader.

As with all visual shading languages, a library of useful
functions is provided to make the shader-writing task
easier. The list of functions should be familiar to anyone
who has written visual shaders, including such functions
as mix, step, smoothstep, transform, min, max, clamp,
distance, normalize, reflect and noise.

IMPLEMENTATION
We have created a Haptic Shading Framework imple-
mentation on top of the SensAble PHANTOM 3D Touch
SDK with OpenHaptics version 1.0. Haptic shaders are
written in C++ and compiled into a DLL that can be
loaded at run-time into the application. This run-time
loading allows shader changes without requiring a re-
compile of the full application. This saves time, and in
production use could allow haptic shaders to be changed
without requiring users to have the application source
at all. The common shading functions are provided
through a C++ library.

In order to achieve seamless plug-in replacement of
shaders, each haptic shader DLL must have one func-
tion named GetHapticTexture that is the external entry
point. This function has two arguments, one structure
containing all collision model parameters and one class
object containing all haptic material property parame-

HapticTextureOut GetHapticTexture(HapticTextureIn before,
DLLparams params)

{
float ringscale = params.GetValue("ringscale", 5.0);
float lightwood_staticF = params.GetValue("lightwood_staticF", 0.02);
float lightwood_dynF = params.GetValue("lightwood_dynF", 0.02);
float darkwood_staticF = params.GetValue("darkwood_staticF", 0.5);
float darkwood_dynF = params.GetValue("darkwood_dynF", 0.5);

HapticTextureOut after;
vector3 PP;
float y, z, r;

/* ----- Shader Body ------ */
PP = before.p;
PP += noise(before.p);

y = ycomp(PP);
z = zcomp(PP);
r = sqrt(y*y + z*z);

/* map radial distance r into ring position [0, 1] */
r *= ringscale;
r += abs(noise1(r,r,r));
r -= floor (r); /* == mod (r, 1) */

/* use ring position r to select wood friction */
after.staticF = mix(lightwood_staticF, darkwood_staticF, r);
after.dynamicF = mix(lightwood_dynF, darkwood_dynF, r);
after.f = before.f;
/* ----- End Shader Body ------ */

return after;

}

Figure 5: Haptic wood shader (compare to Figure 4)

ters. The function returns a class object containing the
requisite haptic texture outputs.

Since the haptic material properties include user-defined
parameters that the application may or may not have
set, we access them through a GetValue method that
returns the value (if set), or a default value (as demon-
strated in Figure 5).

The Haptic Shading Framework is designed to fit on top
of an existing haptic interaction environment. In this re-
spect, the haptic texturing is limited by the information
that the existing model can provide.

A comparison of RenderMan wood and HSF wood shaders
One goal of HSF was to provide an interface similar to
the RenderMan shading language. Figure 4 is the Ren-
derMan wood shader found in the RenderMan Com-
panion [26]. Figure 5 is a corresponding haptic wood
shader providing varying surface friction based on the
wood grain pattern.

Obviously there are some differences in the details of
the computation, since the haptic shader isn’t concerned
with calculating lighting. However, the similarity of
structure between the two shaders is quite evident.

The ycomp and zcomp functions in the haptic wood
shader are equivalent to PP[1] and PP[2]. Their use is
purely aesthetic and furthers the RenderMan analogy.

Example Shaders
Five shaders that have been written with the initial
demonstration application are discussed in this section.

Figure 6: The virtual stylus interfacing a model using
HSF wood shader. The object is rendered with a stan-
dard visual shading model, and also a wood haptic
shader.

For each, we show the main portion of the shader body
(as marked in Figure 5).

freq = 1.0;
for (int i = 0; i < 3; i++)
{

u += noise1(before.p * domain * freq) * range/freq;
freq *= 2;

}
after.f = before.f * (1 + u);

Figure 7: Segment of SimpleNoise shader

SimpleNoise provides a rough uneven surface determined
by summing values from several octaves of Perlin noise
(Figure 7). This function is similar to the granite dis-
placement shader found in the RenderMan Companion
[26]. Friction values in this shader are not altered, isolat-
ing the effects of scaling the magnitude of the resultant
force vector.

float dot_result = DotProduct(textureDir, before.toolDir);
dot_result = (dot_result /2.0)+ .5;
anisoStaticF = mix(minStaticF, maxStaticF, dot_result);
after.staticF = anisoStaticF;

Figure 8: Segment of Anisotropic shader

The anisotropic shader (Figure 8) illustrates the use
of the tool-tip movement direction in a shader. The
static friction is at a maximum when the tool-tip is be-
ing moved in the direction specified by textureDir, a
user-defined vector.

Figure 9: Surface interaction created by anisotropic
shader

In the anisotropic shader, the output force is not altered,
only the static friction values. These values are con-

verted to appropriate lateral forces by the haptic toolkit
outside of the texture function. Figure 9 illustrates a
surface that may generate the described forces.

The Circles HSF shader in Figure 10 simply creates a
metal inlay effect by using a varied friction on the sur-
face of the rings. The vectors c1-c3 are the user-defined
positions of the center of each circle. The innerRadius
and outerRadius control the radius of circle and the ra-
dius of the center hole. If the collision point is between
the innerRadius and outerRadius, a raised surface with
no friction is felt. Otherwise, the object feels very rough.

float d1 = Distance(c1, projectedP),
d2 = Distance(c2, projectedP),
d3 = Distance(c3, projectedP);

if ((d1 < outerRadius && d1 > innerRadius) ||
(d2 < outerRadius && d2 > innerRadius) ||
(d3 < outerRadius && d3 > innerRadius))

{
after.staticF = 0.02;
after.f = before.f * 1.4;

} else
after.staticF = 0.25;

Figure 10: Segment of Circles shader

Dentistry Application
As an application domain demonstration of the flexibil-
ity of the procedural haptic texturing method, we have
implemented a haptic plaque removal program. We have
chosen plaque removal because of the dynamic nature of
the texture of the tooth. The initial tooth surface is cov-
ered in plaque. The goal is for the user to scrape the
surface of the tooth to remove the plaque.

As plaque is removed, the tooth surface is made smooth
by reducing the static and dynamic friction properties.
This is achieved by supplying a plaque coverage texture
through the texture array input of the haptic shader.
This texture is initialized with a value of 1.0, indicating
completely covered. As force is applied to regions on
the surface, plaque is removed proportional to the mag-
nitude of the force. The same texture can be used by a
surface shader to provide the visual correspondence, as
done in Figure 1.

Dynamic alteration of haptic texture due to tool interac-
tion is a feature that has not been explored by previous
haptic texuring methods. A procedural definition of a
surface with the HSF inherently permits this.

An area that could benefit greatly from haptic shad-
ing is surgical simulation. There are many surfaces
that change properties during surgery. For example, tis-
sue becomes more slick if bleeding is occuring (or more
sticky if blood is coagulating) and bone becomes rough
if encountered with a scalpel or saw. Outside of the
tool-interaction paradigm, another application domain
is driving simulation. Road surfaces change as the driver
moves along the road, causing changes in the vibration
generated at the wheel and seat, and HSF would be
more than capable of modeling this.

VISUAL/HAPTIC CORRESPONDENCE
It was quickly apparent to the authors that the exact
intent of some haptic textures is not immediately ap-
parent without some visual cues. This observation was
noted by the authors and did not warrant a user-study.

We attribute this absence of understanding to a lack of
intermodal integration. Feeling a surface without any
visual correspondence may not provide presence and
therefore is not convincing to the haptic device user
[4]. This was especially true of the wood shader. We
believe this is because it contains more subtle, non-
uniform features (changes in surface friction) than the
other shaders. The wood shader requires more consider-
ation of the surrounding haptic texture to decipher the
general layout of the texture.

Real-time shaders are typically written in a language
like GLSL, HLSL or Cg. To align visual and haptic fea-
tures, the shaders will have very similar code, as seen in
Figures 4 and 5. Maintaining the one-to-one relation-
ship requires extra care, especially when using stochastic
methods such as noise functions, which must be iden-
tical, not just statistically similar, to maintain consis-
tency.

For future work, we are interested in compiling a unified
language for both visual and haptic shading. Using stan-
dard compiler dependency analysis techniques, it should
be possible to automatically separate the code and in-
puts from a single unified source into a traditional visual
shader and a haptic-only shader as described here.

As an example of shared input, the normal, binormal
and tangent could be used as input to both the visual
and haptic shader. Both shaders would use these vec-
tors for transforming vectors (such as the light vector or
the vector describing the movement of HIP) to surface
tangent space. As another example, the same texture
could be use to perturb the surface normal for lighting
calculation (bump mapping) and to calculate the per-
turbed force vector for haptic interaction. This unified
shading language would provide for a greater ease of use
in authoring virtual environments.

CONCLUSION
We have presented a framework for procedurally defin-
ing haptic textures. Procedural haptic textures can
be quickly written and easily modified during develop-
ment. Previously, haptic texture was a static property.
With our framework, objects rendered in a haptic envi-
ronment can be dynamically altered according to user-
defined parameters and interaction. This work allows
significant improvement in user interaction and mate-
rial flexibility in a haptic scene.

ACKKNOWLEDGMENTS
We would like to thank Dr. Alan Liu, Alark Joshi, Dana
Wortman, and Kishalay Kundu for their constructive
comments and insights for this paper. We would also
like to thank Jason Bevins for libnoise

(http://libnoise.sourceforge.net), which we used for our
noise generation.

REFERENCES
1. Badouel, D. An efficient ray-polygon intersection.

Graphics Gems (1996).

2. Basdogan, C., De, S., Kim, J., Muniyandi, M.,
Kim, H., and Srinivasan, M. A. Haptics in mini-
mally invasive surgical simulation and training. IEEE
Computer Graphics and Applications 24:2 (2004), 56–
64.

3. Basdogan, C., Ho, C. H., and Srinivasan, M. A.
Virtual environments in medical training: Graphical
and haptic simulation of laparoscopic common bile duct
exploration. IEEE/ASME Transactions on Mechatron-
ics (2001).

4. Biocca, F., Inque, Y., Polinsky, H., Lee, A., and
Tang, A. Visual cues and virtual touch: Role of visual
stimuli and intersensory integration in cross-modal hap-
tic illusions and the sense of presence. In Proceedings of
Presence 2002 (2002).

5. Cook, R. L. Shade trees. In SIGGRAPH ’84: Proceed-
ings of the 11th annual conference on Computer graph-
ics and interactive techniques (New York, NY, 1984),
ACM Press, pp. 223–231.

6. Fritz, J., and Barner, K. Stochastic models for hap-
tic texture. In SPIE Intl. Symposium on Intelligent Sys-
tems and Advanced Manufacturing – Telemanipulator
and Telepresence Technologies III (1996).

7. Gottschalk, S., Lin, M. C., and Manocha, D.
OBBTree: a hierarchical structure for rapid interference
detection. In In Proceedings of the 23rd Annual Confer-
ence on Computer Graphics and Interactive Techniques
SIGGRAPH 96 (1996), ACM Press, pp. 171–180.

8. Hanrahan, P., and Lawson, J. A language for shad-
ing and lighting calculations. SIGGRAPH Comput.
Graph. 24, 4 (1990), 289–298.

9. Hayward, D., and Dingrong, Y. Change of height:
An approach to the haptic display of shape and texture
without surface normal. In Experimental Robotics VIII,
Springer Tracts in Advanced Robotics (2003), pp. 570–
579.

10. Ho, C., Basdogan, C., and Srinivasan, M. Efficient
point-based rendering techniques for haptic display of
virtual objects. Presence 8, 5 (1999), 477–491.

11. Konig, H., and Strotthotte, J. Fast collision de-
tection for haptic displays using polygonal models. In
Simulation and Visualisierung 2002 (2002), T. Schulze,
S. Schlechtweb, and V. Hinz, Eds., pp. 289–300.

12. Lindholm, E., Kligard, M. J., and Moreton, H.
A user-programmable vertex engine. In SIGGRAPH
’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (New York,
NY, 2001), ACM Press, pp. 149–158.

13. Mark, W., Glanville, R., Akeley, K., and Kil-
gard, M. Cg: A system for programming graphics
hardware in a C-like language. ACM Trans. Graph. 22,
3, 896–907.

14. Massie, T. H., and Salisbury, J. K. The PHAN-
TOM haptic interace: a device for probing virtual ob-
jects. ASME Winter Annual Meeting, Symposium on
haptic interfaces for virtual environments and teleoper-
ator systems (1994), 295–299.

15. McGee, M., Gray, P., and Brewster, S. Haptic
perception of virtual roughness. In CHI’01 Extended
Abstracts on Human Factors in Computing Systems
(2001), ACM Press, pp. 155–156.

16. McNeely W. A., Puterbaugh K. D., T. J. J. Six de-
gree of freedom haptic rendering using voxel sampling.
In Proc. ACM SIGGRAPH Int. Conf. on Computer
Graphics and Interactive Techniques (1999), pp. 401–
408.

17. Minsky, M. Computational Haptics: The Sandpaper
System for Synthesizing Texture with a Force-Feedback
Haptic Display. PhD thesis, MIT, 1995.

18. Olano, M., and Lastra, A. A shading language on
graphics hardware: the PixelFlow shading system. In
SIGGRAPH ’98: Proceedings of the 25th annual confer-
ence on Computer graphics and interactive techniques
(New York, NY, 1998), ACM Press, pp. 159–168.

19. Perlin, K. An image synthesizer. In SIGGRAPH
’85: Proceedings of the 12th annual conference on Com-
puter graphics and interactive techniques (New York,
NY, 1985), ACM Press, pp. 287–296.

20. Robles-De-La-Torre, G., and Hayward, V. Force
can overcome object geometry in the perception of
shape through active shape. Nature 412, 6845 (2001),
445–448.

21. Ruspini, D. C., Kolarov, K., and Khatib, O. Hap-
tic interaction in virtual environments. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems:IROS’97.

22. Sachtler, W. L., Pendexter, M. R., Biggs, J., and
Srinivasan, M. A. Haptically perceived orientation
of a planar surface is altered by tangential forces. In
Proceedings of Phantom User’s Group 2000 (2000).

23. Sankaranarayanan, G., Weghorst, S., Sanner,
M., Gillet, A., and Olson, A. Role of haptics in
teaching structural molecular biology. In Proceedings of
Phantom User’s Group 2003 (2003).

24. Siira, J., and Pai, D. Haptic texturing: A stochastic
approach. In International Conference on Robotics and
Automation, IEEE (1996), pp. 557–562.

25. Srinivasan, M. A., and Basdogan, C. Haptics in
virtual environments: Taxonomy, research status, and
challenges. Computer and Graphics 21 (1997), 393–404.

26. Upstill, S. The RenderMan Companion. Addison-
Wesley, 1992.

27. Webster, R., Haluck, R., Zoppetti, G., Ben-
son, A., Boyd, J., Charles, N., Reeser, J., and
Sampson, S. A haptic surgical simulator for laparo-
scopic cholecystectomy using real-time deformable or-
gans. In Proceedings of IASTED International Confer-
ence (2003).

28. Zilles, C., and Salisbury, J. A constraint based god-
object method for haptic display. In Proc. IEEE/RSJ
International Conference on Intelligent Robots and
Systems, Human Robot Interaction, and Cooperative
Robots, Vol 3 (1995), pp. 146–151.

