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Glimmer: Multilevel MDS on the GPU
Stephen Ingram, Tamara Munzner, Member, IEEE, and Marc Olano, Member, IEEE

Abstract— We present Glimmer, a new multilevel algorithm for
multidimensional scaling designed to exploit modern graphics
processing unit (GPU) hardware. We also present GPU-SF,
a parallel, force-based subsystem used by Glimmer. Glimmer
organizes input into a hierarchy of levels and recursively applies
GPU-SF to combine and refine the levels. The multilevel nature
of the algorithm makes local minima less likely while the
GPU parallelism improves speed of computation. We propose
a robust termination condition for GPU-SF based on a filtered
approximation of the normalized stress function. We demonstrate
the benefits of Glimmer in terms of speed, normalized stress, and
visual quality against several previous algorithms for a range of
synthetic and real benchmark datasets. We also show that the
performance of Glimmer on GPUs is substantially faster than a
CPU implementation of the same algorithm.

Index Terms— Multidimensional scaling, multilevel algorithms,
optimization, GPGPU.

I. INTRODUCTION

MULTIDIMENSIONAL scaling, or MDS, is a technique for
dimensionality reduction, where data in a measured high-

dimensional space is mapped into some lower-dimensional target
space while minimizing spatial distortion. MDS is used when the
dimensionality of the dataset is conjectured to be smaller than
dimensionality of the measurements. When dimensionality reduc-
tion is used for information visualization applications, the low-
dimensional target space is 2D or 3D and the points in that space
are drawn directly, in hopes of helping people understand dataset
structure in terms of clusters or other proximity relationships of
interest [4].

In MDS, the goal is to find coordinates for N points in a
low-dimensional space, where the low-dimensional distance di j
between points i and j is as close as possible to the corresponding
high-dimensional distance, or dissimilarity, δi j. Input can consist
of high-dimensional points, with δi j computed from coordinates,
or of an N×N distance matrix, ∆, allowing an arbitrarily complex
distance metric.

MDS algorithms work by minimizing an objective function based
on the discrepancy of these distances. A standard stress error
metric is the the normalized stress metric between D, the matrix
of low-dimensional distances di j, and ∆, the matrix of high-
dimensional distances δi j:

stress(D,∆) =

√√√√∑i j (di j −δi j)
2

∑i j δ 2
i j

(1)

which has a significant cost of O(N2) to compute for the N
points of the dataset. If the embedded distances match the original
distances of the data, then stress = 0. Stress becomes larger as
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the spatial distortion between the embedding and the original data
increases.

MDS algorithms vary in precisely what form the stress function
takes and in how they minimize the stress function. Some are
approximate while others are exact, some are iterative while
others are completely analytical. Such diversity in algorithms
leads to diversity in the quality of the results and the speed at
which they are computed. Section II gives a brief overview of
various relevant classes of existing MDS algorithms and their
underlying characteristics.

One class of MDS algorithms that has had significant influence
in information visualization is the class of iterative, force directed
algorithms. In such algorithms, data points are modeled as par-
ticles in space attached to other particles with springs with an
ideal length proportional to the original distance δ . The algorithm
computes a simulation by integrating forces until the physical
system settles down into a state of minimal energy. At this point
computation halts and the final positions of the particles are
assigned the resulting coordinates of the data. Naı̈ve implemen-
tations of such algorithms can be computationally expensive and
prone to converge to local minima.

We present three substantial improvements to the iterative class
of MDS algorithms based on simulated forces. First, we improve
algorithm speed by exploiting the modern PC graphics processing
unit (GPU) as a computational engine. Second, we introduce a
cheap and reliable linear-time termination condition based on the
convergence of an approximation of stress. Finally, we devise a
simple multilevel strategy that demonstrably reduces convergence
to local minima. We compare the resulting algorithm, called
Glimmer, to a wide variety of MDS algorithms showing the
advantages of our approach in terms of speed and accuracy.

Below, we discuss the rich previous work in Section II, and then
present the core ideas of the Glimmer multilevel algorithm and
GPU-SF algorithm in Section III. We cover GPU considerations in
Section IV, providing the details of our GPU-based algorithms. In
Section V we compare Glimmer to several other MDS algorithms
in terms of complexity, speed, quantitative accuracy with respect
to the stress error metric, and qualitative accuracy of layouts for
datasets where ground truth is known for shape or clustering.

II. PREVIOUS WORK

The foundational ideas behind multidimensional scaling were first
proposed by Young and Householder [25], then further developed
by Torgerson [24] and given the name of MDS. Considerable
research has gone into devising faster and more robust solutions.
In the interests of space we focus on the foundational work and
the three most commonly employed categories of current tech-
niques: classical scaling methods, distance scaling by nonlinear
optimization, and distance scaling by force-directed approaches.
In the descriptions below, N is the number of points, and L is



2

the dimensionality of the low-dimensional target space, while H
is the dimensionality of the high-dimensional input space.

A. Classical Scaling

Classical scaling methods compute exact or approximate analyt-
ical solutions to the minimum of the strain function. Although
strain is closely related to stress, it may have a very different
minimum. These spectral methods find embedding coordinates by
computing the top eigenvectors of a “double-centered” transfor-
mation of the distance matrix sorted by decreasing eigenvalue.
The original algorithm, Classic MDS [24], [25] computed a
costly O(N3) singular value decomposition of this matrix. Modern
classical scaling methods quickly estimate the eigenvectors using
the power method or other more sophisticated iterative methods
that employ O(N2) matrix-vector products.

A host of Nyström methods [20] have recently been proposed
to avoid the O(N2) computation of ∆ altogether, using a subset
of that matrix to approximate the eigenvectors. These include
FastMap [7], LLE [23], Landmark MDS [6], and PivotMDS [2].
We use PivotMDS as an exemplar in the Glimmer performance
comparison of section V, since it was shown to be a fast and ac-
curate classical scaling approximation algorithm [2]. All of these
techniques achieve dramatic speed improvements by reducing the
complexity to essentially O(N). However, in Section V we discuss
the limitations of these approaches in handling sparse datasets.
The Glimmer approach of distance scaling yields higher quality
layouts in these cases, and has competitive speeds whenever the
visual quality is equal.

B. Distance Scaling by Nonlinear Optimization

Optimizing the stress function using gradient descent to find
a low-error embedding was pioneered by Kruskal [15]. Opti-
mization approaches can easily incorporate weights to emphasize
certain types of distances over others, or handle missing values
gracefully, in a way that is difficult using spectral methods. De
Leeuw’s accurate SMACOF [5] monotonically converges to a
stationary point by minimizing a quadratic approximation at each
iteration, resulting in provably linear convergence but at a large
cost of O(N2L) per iteration. Gansner et al. [10] use a SMACOF-
based approach to stress majorization for graphs, but the sparsi-
fication and edge-weighting modifications they propose are not
suitable for general MDS because in general, data topology is
unknown. Computing the nearest-neighbor topology of general
datasets is an O(N2) pre-processing procedure. Accelerations of
this technique are not straightforward to apply in high dimensions.

The recent Multigrid MDS [3] algorithm employs the multigrid
method for discretized optimization problems, using SMACOF as
a relaxation operator and terminating in a small, constant number
of iterations. The hierarchical approach reduces convergence to
local minima and makes substantial speed improvements over
SMACOF alone, but the scalability is still limited, with a layout
of 2048 points taking 117 seconds and requiring precomputation
of the data topology. We were inspired by the power of a
hierarchical multigrid approach in the design of Glimmer, but
use very different operators for the three multigrid operations of
restriction, relaxation, and interpolation (described in more detail
in Section III-A).

C. Distance Scaling by Force Simulation

Force-based MDS algorithms use a mass-spring simulation to
optimize the stress function, generating forces in proportion to
the residual between low and high-dimensional distances. They
can be considered a type of gradient descent with local linear
gradients. These methods are intuitive to understand, easy to
program, can support weights and interactivity, and typically
produce lower-stress results than Classic MDS. Their drawbacks
include numerous parameters to the physical system such as
damping constants and time-step size, the introduction of oscil-
latory minima, and the possibility of local minima.

The basic force-directed approach has a complexity of O(N3),
with an O(N2) cost per iteration for N iterations. The CPU-based
stochastic force approach introduced by Chalmers [4] reduces the
per-iteration cost to O(N), for a total O(N2) cost. This stochastic
algorithm is used as a subsystem to two further refinements,
with complexity O(N5/4) [16] and O(N logN) [11]. Glimmer
uses a GPU variant of the stochastic approach (GPU-SF) with
an improved termination condition as a subsystem. We discuss
its limitations with respect to accuracy and convergence below.
We compare Glimmer against three of these approaches in Section
V.

D. Graph Layout Algorithms

MDS has strong a connection to graph drawing. In fact, per-
forming MDS on a dataset is equivalent to performing Kamada
and Kawai’s energy-based graph layout on a complete graph
whose vertices correspond to points in the dataset and whose
edges are weighted by the high-dimensional distance between the
corresponding points.

Many fast graph drawing algorithms such as ACE and Subspace
Optimization [13], [12] have been proposed that make order of
magnitude speed gains with quality results by leveraging the
sparseness of the graph Laplacian matrix. The sparseness of the
Laplacian matrix depends on the distribution of edges in the
graph. When you consider the problem of a fully connected graph
as we do in MDS, these algorithms become O(N2) or worse.

One may argue that nearest-neighbor strategies may be used to
build a graph over the original vertices with a sparse Laplacian,
thus permitting fast graph layout algorithms to compute layouts
for the data. In practice, such graph-building techniques always
make potentially faulty assumptions regarding the underlying
topology of the data. First, nearest neighbor search algorithms
that are not computationally exhaustive degrade as a function of
the dimension of the data. For example, the popular Approximate-
Nearest-Neighbor algorithm [1] computes a (1+ ε)-approximate
nearest neighbor of a point in O((Hd1+6H/ε)H logN) time. This
approach is far too expensive for high-dimensional data where
H = 28,374 as it is in one of our test datasets in section V.
Second, measurement noise can destabilize the topology of such
graphs making the results sensitive to the parameters of the
algorithm used to construct the graph. Finally, care must be taken
to ensure the resulting graph is fully connected. Due to the number
of complications involved with this strategy, we do not consider
graph layout algorithms that rely on a sparse topology to be
examples of MDS algorithms.
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These arguments do not imply that MDS algorithms cannot
employ subsampling strategies for sparse iterations. For example,
the stochastic force algorithm uses a different random sampling
of distances at each iteration. We further discuss the advantages
of the constant-size random selection strategy in section IV-B.

E. GPU Layout Approaches

GPUs have been shown to improve the speed of many general
purpose algorithms including graph layout and classical scaling,
but have not been previously applied to minimizing the stress
function directly.

Reina and Ertl [21] proposed a GPU version of the FastMap
algorithm, a classical scaling approximation algorithm, achieving
considerable speedup over a CPU implementation. However, the
technique only accelerates the mapping into low dimensional
space. The initial computation of the high dimensional distances,
the costliest part of the Nyström algorithms, is not sped up.

Frishman and Tal [9], [8] take advantage of GPU parallelism to in-
crease the speed of graph layout algorithms. As mentioned above,
force-directed graph layout does have deep similarities to force-
directed MDS. However both algorithms’ acceleration strategies
break down in the case of weighted complete graphs. In the
dynamic algorithm, an edge collapsing step requires computing
O(N2) edge weights. In the static algorithm their initial partition-
ing strategy uses graph Laplacian which is O(N2) in the case of
a complete graph. As with other fast graph algorithms, they are
able to make productive use of graph-topology assumptions that
may not hold for the full MDS problem. Furthermore, the energy
function they minimize on the GPU ignores pairwise distances,
and thus does not minimize stress. Finally, they use the CPU for
initial placement and for spatial partitioning, whereas Glimmer
runs all stages entirely on the GPU.

We further discuss the suitability of previous algorithms for
speedup using GPU parallelism in Section IV-A.

III. GLIMMER MULTILEVEL ALGORITHM

Glimmer is a force-based MDS algorithm which uses a recursive
hierarchical framework to improve accuracy and to reduce com-
putation. Unlike other hierarchical MDS algorithms, Glimmer is
specifically designed to exploit GPU parallelism at every stage of
the algorithm. We use the multigrid vocabulary, because we were
inspired by those methods, but we call our algorithm multilevel
because our final formulation differs from the strict definition of
multigrid algorithms. Simliarly, our multilevel heuristic is justified
empirically, rather than analytically.

A. Multigrid/Multilevel Terminology

In our description of the multilevel hierarchy, we consider the
highest level to be the input data, with lower levels being nested
subsets of that data reduced in size by a fixed decimation factor.
Multigrid methods use three operators at each level: restriction,
relaxation, and interpolation, as shown in Figure 1. Loosely
speaking, restriction performs the decimation to build the hier-
archy, relaxation is the core computation operator that reduces

Restrict

Interpolate

Relax

(a) Multigrid algorithms

Reuse
GPU-SF

Restrict
Relax

Relax

Interpolate

(b) Glimmer algorithm

Fig. 1. a) The multigrid v-cycle. b) The Glimmer multilevel algorithm. The
restriction operator builds the hierarchy by sampling points. GPU-SF is used
as the relaxation operator at each level, with all points allowed to move, and
as the interpolation operator, with only new points allowed to move. Lower
levels untwist complex layouts while higher levels converge quickly because
of computation at the lower levels.

the error at a specific level, and interpolation passes the benefit
of the latest relaxation computation up to the next level. In typical
multigrid methods, a so-called v-cycle of restriction, relaxation,
and interpolation is repeated several times. However, the Glimmer
operators were designed to converge in a single cycle.

B. Multilevel Algorithm

Figure 1 shows a diagram of the Glimmer multilevel algorithm
as a single v-cycle. The pseudocode is given in Figure 3. The
restriction operator we use to construct the multilevel hierarchy
simply extracts a random subset of points from the current level.
In Glimmer, we use a decimation factor of 8 between each level,
and stop when the size of the lowest level is less than 1000
points. These parameter choices were empirically chosen after
analyzing the speed/quality behavior for decimation factors of
several powers of 2 and a variety of minimum set sizes above
and below our final choices. Then, we traverse upwards to the
top, alternating runs of the relaxer for the current level with
interpolating the results up to the next level. In this traversal,
we use stochastic force as our relaxation operator; that is, we
perform iterations of a stochastic force MDS algorithm (GPU-SF)
for all the points at a particular level until the system converges.
Perhaps surprisingly, we also use the stochastic force algorithm
as our interpolation operator. We fix the locations of previously
relaxed points, moving just the newly added points to fit the
current configuration. Again, we stop the interpolation step when
the stochastic force subsystem converges. We continue with the
traversal, freeing the formerly fixed points for the relaxation step.
We halt after running the relaxation operator on the highest level
that contains all points.

At the low levels, only a small subset of the points are involved
in the computation, so the system converges quickly. The higher
levels converge in few iterations because the points placed at
lower levels are likely to be close to their final positions. In
particular, although the relaxation step at the highest level involves
running stochastic force on all the points in the input dataset, the
system converges more quickly than it would if the stochastic
force algorithm were run with the points at random initial
positions.

The major difference between Glimmer and the GPU-SF sub-
system alone is accuracy and convergence. Figure 2 illustrates
the convergence problems of GPU-SF compared to Glimmer.
After a threshold of approximately 12,000 points, the gray GPU-
SF algorithm consistently converges to a much higher stress
configuration than the purple Glimmer line. The existence of
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Fig. 2. Graph of final stress of single-level GPU-SF versus multilevel Glim-
mer on a large range of input dataset cardinalities. After approximately 12,000
points, GPU-SF terminates too soon. Consistent problems with convergence
on large datasets disqualifies GPU-SF as a scalable MDS algorithm.

restrict ( p o i n t s ) :
i f ( s i z e ( p o i n t s ) < t h r e s h o l d )

re turn e m p t y s e t ;
re turn r a n d o m s u b s e t ( p o i n t s ) ;

runGPUSF ( f i x e d , f r e e ) :
whi le ( ! conve rged )

s t o c h a s t i c f o r c e ( p o i n t s i n f r e e )
glimmer ( p o i n t s ) :

i f ( p o i n t s == e m p t y s e t )
re turn ;

s u b s e t = r e s t r i c t ( p o i n t s ) ; / / r e s t r i c t
gl immer ( s u b s e t ) ;
runGPUSF ( s u b s e t , p o i n t s − s u b s e t ) ; / / i n t e r p o l a t e
runGPUSF ( emptyse t , p o i n t s ) ; / / r e l a x

Fig. 3. Pseudocode for the Glimmer algorithm.

some purple spikes in the figure also provides evidence that
Glimmer is not immune to these local minima, but is much less
likely than GPU-SF to converge to them. Local minima, can give
rise to twisted manifolds in the low-dimensional placement, as
shown in Figure 4. Susceptibility to local minima is often cited
as a weakness of the force-based methods, but using a multilevel
approach atop a force-based subsystem allows the accurate global
structure of the point set to be found during the cheap iterations at
the lower levels. At the higher levels, the local structure is refined
within the global context inherited from lower levels through
interpolation.

a) b)

Fig. 4. Visual quality differences between a) Glimmer and b) GPU-SF
for grid instance with cardinality 8000. Glimmer exhibits more stable
convergence behavior than GPU-SF, which more frequently yields a twisted
layout when it is caught in a local minimum and terminates with a high stress
value. This layout corresponds to the spike at 8000 for GPU-SF in Figure 2.

C. GPU Considerations

The Glimmer algorithm can run on a CPU, and we have imple-
mented an optimized C prototype to allow direct timing com-
parisons. However, our restriction, relaxation, and interpolation
operators are all carefully designed to exploit GPU parallelism.
Our use of the GPU does not affect convergence or accuracy,
but brings a dramatic speed improvement over previous MDS
approaches.

Modern GPUs have a user-programmable pipeline of highly
parallel processing stages, called shaders. The first stage operates
on a stream of vertices, the second stage operates on a stream of
geometry, and the final stage operates on a stream of pixels. The
GPU pixel processors can be considered as a single-instruction
multiple-data (SIMD) unit operating in parallel on a subset of
pixels in the stream, where the SIMD batch size varies from
16 to 1024 in recent GPUs. These units have random read/write
access to data stored in texture memory, so textures can be used
in place of arrays. Computation occurs when a textured polygon
is rendered using a shader. Typical computations take multiple
rendering passes, where the only communication channel between
processing units is writing a texture in one pass, then reading from
it in a later pass. We refer the reader to Owens et al. [18] for a
good survey on the use of GPUs for general purpose computation.

Glimmer and GPU-SF are general approaches that do not depend
on specific hardware features of a particular GPU. The most
recent nVidia GPUs (G80 and later) handle all three shader types
with a shared set of SIMD clusters that can be programmed with a
general-purpose parallel languaged called CUDA [17]. Although
our algorithms could be implemented on CUDA, we can operate
across several generations of GPUs by using a more generic
model of GPU processing. Our algorithms run on any card that
supports pixel shaders, and we compare speeds on two different
generations of cards in Section V.

D. Restriction

The restriction operator creates a multilevel hierarchy from nested
subsets of the input data, randomly sampled from the enclosing
set. We first run an O(N) preprocessing step to randomly permute
the input data on the CPU before loading it into texture memory
on the GPU. We then can easily access nested rectangles in texture
memory to solve the sampling problem. Traversing the hierarchy
from bottom to top in the second leg of our v-cycle is handled
by merely enlarging the size of the rendering polygon, with no
shader code or extra storage required to create the hierarchy of
levels. Our solution avoids the need to do random sampling on
the GPU, which would be slow.

Our restriction operator does not require any explicit extra com-
putation, and specifically does not rely on having any geometric
locality information. In contrast, the previous Multigrid MDS
approach [3] must carry out an preprocessing step to find nearest
neighbors. In our approach, neighborhoods around each point
are gradually discovered during the stochastic interpolation and
relaxation operations.
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IV. GPU STOCHASTIC FORCE

GPU-SF is our GPU-friendly stochastic force MDS solver used as
a subsystem in Glimmer, inspired by the Chalmers [4] algorithm.
Without GPU acceleration, the GPU-SF algorithm has nearly
identical runtime characteristics with the CPU-based Chalmers
one. The only differences are the new termination criteria that
we propose, and the asymmetric force calculations.

A. GPU-Friendly MDS

Glimmer’s relaxation and interpolation operators both benefit
from rapid execution of a simple MDS subsystem, so we propose
a GPU-friendly MDS algorithm. In general, algorithms whose
iterations exploit a form of sparseness perform best on graphics
hardware. By sparse, we mean a limited number of computations
and non-local accesses per point, a number far less than the
total number of points N. This restriction immediately disqualifies
most MDS algorithms because of their reliance on dense matrices
or submatrices for matrix-matrix or matrix-vector operations.
Traditional force-based MDS is also dense, since each point must
access every other point to compute its force.

On the other hand, most of the accelerated MDS algorithms
that exploit sparseness may fail to achieve accuracy on certain
datasets. For example, PivotMDS, Landmark MDS, and the
parent-finding approaches of accelerated force-directed MDS [2],
[16] achieve their speedups by only considering a subset of rows
of the input distance matrix. While distance matrices frequently
exhibit considerable redundancy, these algorithms may discard
important information in the selection of these rows.

We have identified the stochastic force algorithm [4] as especially
appropriate for our requirements. Each point only references a
small set of other points during an iteration step, and the selection
of this set changes each iteration and is not limited to any subset
of the input. Thus, in a single iteration of the stochastic force
algorithm, each point performs a constant amount of computation
and accesses only a constant number of other points, regardless
of dataset size.

B. Stochastic Force Algorithm

The stochastic force algorithm iteratively moves each point until a
stable state is reached, but the forces acting on a point are based
on stochastic sampling rather than on the sum of all pairwise
distance residuals. More specifically, two sets of a small, fixed
size are maintained for each point: a Near set, and a Random
set. The forces acting on a point are computed using only the
pairwise distances between the points in its two associated sets.
Each set initially contains random points. After each iteration, any
members of the Random set whose high-dimensional distance to
the point is less than those in the Near set are swapped into
that Near set. The Random set is then replaced with a new
set of random points. After many iterations, the Near set will
converge to the actual set of nearest neighbors. Chalmers proposes
a Random set of size 10, and a Near set of size 5. We use 4 for
the size of each set to match the 4-element vector types supported
by the GPU.

The heuristic behind the selection rules is simple: a point’s coordi-
nates are derived from both local and global position information.
The local information comes from the iteratively refined Near
set and the global information comes from the always changing
Random set. The heuristic has two advantages over preselection
and sparse-graph construction strategies. First, a fixed number of
neighbors are referenced and so GPU storage is known a priori.
This is in contrast to techniques that select all neighbors under a
given threshold because the number of neighbors cannot be known
for an arbitrary dataset. Second, it reduces the bias of global
position information. In strategies where landmark points are
randomly chosen once at the start of the algorithm, the layout of
all points biased in favor of those points. In the case of Chalmers,
the global distance information is a weighted combination of a
much larger random set.

C. Termination

Some previous iterative MDS algorithms do not have an explicit
termination criterion, and depend on the user to monitor the layout
progress and halt the computation when deemed appropriate [22].
Because we use the GPU-SF algorithm as a subsystem in Glim-
mer, we need to quickly and automatically determine the correct
time to terminate computation. In other approaches [11], [16],
the computation is run for a fixed number of iterations, usually
N. Although linear convergence was proven for the SMACOF
algorithm [5], it has been generally assumed for many force-
directed approaches. We show in Section V that this assumption is
not safe to make, frequently leading to overkill that wastes time,
or underkill that halts computation before the layout is accurate.

A standard termination criterion for nonlinear optimization is to
terminate when the gradient of the function converges to zero. In
MDS, this criterion implies that the difference between iterations
in the stress error metric given by Equation (1) converges to some
small number ε . Computing stress for a configuration requires
O(N2) computations. Producing this value at each iteration would
be far more expensive than the Glimmer algorithm itself.

We instead use an approximation of stress that we call sparse
normalized stress based on the differences in distance values
already computed. More specifically, sparse normalized stress is
defined as

sparsestress(D,∆)2 =
∑i ∑ j∈Near(i)∪Random(i) (di j −δi j)

2

∑i ∑ j∈∈Near(i)∪Random(i) δ 2
i j

(2)

Here, Near(i)∪Random(i) is the union of the index sets for point
i, requiring only O(N) computations to compute the stress for a
configuration.

Because the contents of these sets change at each iteration, the
sparse stress value is noisy, making the raw function values
inadequate as a convergence criterion. To remove this noise
we treat sparse stress as a signal and apply a low-pass filter,
a windowed sinc in our implementation. The resulting smooth
signal closely mimics the behavior of the true normalized stress
function, as shown in Figure 5. Since we are interested in the
behavior of derivative of the stress function and not the function
itself, we convolve the sparse stress signal with the derivative of
the low-pass filter. This optimization follows from the theorem
that

deriv( f ?g) = deriv( f )?g = f ?deriv(g)
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Fig. 5. GPU-SF uses a sparse approximation (green) of the normalized stress
function (orange), which converges simultaneously and requires only minimal
overhead to compute. We use a low-pass filter (red), because the noise in the
unfiltered signal is much larger than the convergence threshold of ε = .0001.

where ? is the convolution operator and deriv is the derivative.
The algorithm thus terminates by comparing the filtered signal
directly to ε .

After empirical testing across many datasets, we arrived at the
value of 50 iterations for the low-pass filter window. The ter-
mination criterion ε controls the accuracy of the layout; in our
experiments we chose ε = 1/10000. Our linear-time termination
criteria could benefit any iterative MDS algorithm relying on
the convergence of stress, including SMACOF, the Chalmers
algorithm [4], and others that use it as a subsystem [11], [16].

D. Stochastic Force on the GPU

GPU-SF is a version of the stochastic force algorithm that runs on
the GPU as a series of pixel shaders, with data storage in texture
memory. The first stage of GPU-SF updates the random index set
of each point. Next, the set of high and low dimensional distances
are computed or fetched. This information is reorganized to
update the near index set. The final series of steps uses this
information to calculate the proper force to apply to the point
and move it accordingly. Control is then shifted back to the first
step unless the termination condition is triggered.

In order to minimize GPU overhead and to work within system
constraints, GPU-SF has a quite different organization of code
and data from the original Chalmers algorithm. Each point in
the stochastic force algorithm maintains a fixed-size cache of
state information such as low-dimensional position and near-set
membership.

The per-point state information is divided into vectors and tables
which are stored in texture memory. Figure 7 lists the textures
used to store this information. The vectors are posHi and
posLo, the high- and low-dimensional position of the points.
Each element of posHi has size H, where H is the dimension-
ality of the high-dimensional space. The size of posLo elements
is L, the dimensionality of the low-dimensional space, which

Tex. Name Size Description
posHi dH/4e high-d point coords
posLo 1 low-d point coords
velocity 1 point velocity
index 2 Near & Random set indices
distHi 2 high-d distances to pts in index
distLo 2 low-d distances to pts in index
perm 1 random number resource
scratch 2dH/4e holds temporary results

Fig. 7. The GPU-SF algorithm uses textures as storage. This table lists each
texture used by the algorithm, the size in pixels of the individual elements
dedicated to each point and a brief description of the purpose of the texture.

in Glimmer is 2. The velocity texture keeps track of point
velocities in the low-dimensional space, and also has size L
elements. The tables all have 8 elements, divided into two equal
sections for points in the Near and Random sets. The distHi and
distLo textures contain the high- and low-dimensional distance
between the point in question and the items in the Near and
Random sets. The index table contains the pointers to the items
in these sets. The total size in bytes of each texture is the element
size in pixels × 4 floats per pixel × 4 bytes per float × N, the
number of points in the input dataset.

The remaining three textures are used as resources in the com-
putation. The perm texture contains a permutation of all indices
that was precomputed on the CPU, of total size N. The 2HN
scratch texture is used for intermediate storage.

Figure 6 summarizes the overall organization of GPU-SF, showing
the seven stages and which textures they update. A single iteration
step is carried out in 10 + dlog4(L ∗H ∗N)e texture rendering
passes. The number of pixels, Ni, processed in each pass is
also given in Figure 6, as an approximation of the total work
involved. When GPU-SF is invoked as a subsystem of Glimmer,
the memory footprint of these textures is always a function of the
entire dataset size N, but the number of pixels processed in each
pass changes depending on the Glimmer level.

a) Stage 1: The first step of GPU-SF is to update the Random
section of the index set using perm. We acquire new random
indices by sampling at a location in this resource determined by
P[P[x]+ iteration] where P is the permutation array, x is the car-
dinality of the point, and iteration is the overall iteration number.
This strategy is inspired by the Perlin noise algorithm [19].

b) Stages 2 & 3: We need to compute distHi, the Euclidean
distances in high-dimensional space. We indirectly reference the
points in posHi using the index set to compute the differences
between these points and the current one, storing them in the
scratch texture. We square each item in scratch, sum them
together, and put the square root of that number into distHi.
The fast approach to summing k values on the GPU is a reduction
shader that takes log4 k passes, which is far cheaper than looping
through the values. A similar computation produces distLo
from posLo, with log4 L passes.

c) Stage 4: Updating the Near set with points in Random that
are closer is slightly tricky. If we sort by distance and pick the
first 4 to be in the Near set, then an item that appears in both
Near and Random would be duplicated in the Near set. Instead,
we first sort by index, mark duplicates as having infinite high-



7

Stage Passes Pixels Input Textures Output Textures
1 Random Update 1 Ni perm index
2 HighD Distance Calc log4 H Ni posHi, index, scratch distHi, scratch
3 LowD Distance Calc log4 L Ni posLo, index, scratch distLo, scratch
4 Near Sort 6 Ni distHi, distLo, index distHi, distLo, index
5 Force Calc 1 Ni ∗L index, distHi, distLo, scratch

posLo, velocity
6 Velocity Calc 1 Ni ∗L scratch velocity
7 Position Update 1 Ni ∗L velocity postLo
8 Termination Check log4 Ni Ni/4 j ∗L distHi, distLo, scratch scratch

Fig. 6. The GPU-SF algorithm carries out a single layout iteration in eight stages. We list the number of rendering passes each stage requires, the number
of pixels affected by each pass, the textures read as input arrays, and the textures written as output arrays. These stages repeat until the termination check
succeeds.

dimensional distance, and then resort by distHi. We sort each
of the three textures index, distHi, and distLo twice, using
six rendering passes, combining the duplicate-marking operation
with the first sorting pass. All GPU sorting is done using an even-
odd sorting network.

d) Stage 5: To do the force calculation, we compute the vectors
between the point and the 8 others in the Near/Random sets using
index to look up their low-dimensional positions in posLo.
We scale these vectors by the difference between distLo and
distHi, then use the velocity texture for damping. Damping
is designed to inhibit excessive particle oscillation and improve
convergence. Our damping scheme computes the relative velocity
vector between each vertex and its indexed vertices and subtracts
it from the force vector between these vertices. We sum these
damped force vectors, and save the resulting vector into the
scratch texture.

e) Stages 6 & 7: We integrate the scratch forces into
velocity in one pass, then integrate velocity and update
posLo in another pass.

f) Stage 8: The final step of the algorithm checks the termination
condition. We can calculate the normalized sum of squared dis-
tance differences in distHi minus distLo for our termination
condition in 2log4(N) rendering passes using a reduction shader
on scratch. The 4 j factor in the pixel size indicates the size
reduction by a factor of four each pass, for a total of 4/3Ni ∗L
pixels processed.

In the Chalmers algorithm, forces are applied symmetrically
between two points, so that point i is affected not only by forces
from its own Near and Random sets, but also by any forces
from other points that contain i in their Near or Random sets.
In our GPU-SF version, forces are applied from points in the
Near/Random sets to point i, but not vice versa. We abandon
this explicit symmetry because it would require a scatter random
access write operation, which is not well supported on GPUs.
The effect of those symmetric forces emerges implicitly as the
Near sets of neighboring points gradually converge to include
each other.

V. RESULTS AND DISCUSSION

We compare our approaches to previous work in terms of asymp-
totic complexity, speed, the quantitative metric of normalized
stress, and the qualitative visual analysis of layouts.

The MDS algorithms that we chose to compare against are a
mix of foundational algorithms and competitive exemplars of the
major approaches. The foundational algorithms are Classic MDS,
SMACOF, and Chalmers. These three foundational approaches
are known not to be speed-competitive, so measures of stress and
layout quality are more interesting than the time performance.
We terminate SMACOF when the change in the normalized stress
function falls below 1/10000, the same criterion used for GPU-SF
and Glimmer.

We use PivotMDS [2] as the classical scaling approach, using
50 landmarks except where noted. We use Jourdan’s O(N logN)
Hybrid [11] as the fastest force-directed approach. Bronstein’s
Multigrid MDS [3] is not publicly available, but we know that
it is not speed-competitive with Hybrid or PivotMDS from the
timings given in the paper.

While Classic and PivotMDS are designed to minimize strain
rather than stress, we report on the success of their layout using
the stress metric. We do so for consistency, and also because
we consider stress to be the most suitable quantitative metric
that captures our qualitative judgement about layout quality for
visualization purposes. In other MDS applications outside of
information visualization, where direct visual inspection of the
layout is not required, stress may be a less suitable metric.

We also compare against an implementation of Glimmer on the
CPU to separate the speedup achieved by the multilevel algorithm
and the subsequent GPU speedup.

All algorithms are implemented in C by the authors. Optimized
third-party, matrix-multiplication routines were used for Classic,
SMACOF, and PivotMDS. Our C implementations were tested
against Java1 and MATLAB2 versions of the algorithms where
available and verified to have between a 1% to 80% speed
improvement.

A. Complexity

The cost of one GPU-SF iteration is proportional to the number
of rendering passes multiplied by the number of pixels affected
at each pass. Multiplying these values from Figure 6 yields a per-
iteration cost of (7+ log4 H + log4 L+5.33 L)∗Ni = O(Ni log4 H).

1PivotMDS software courtesy of Christian Pich. Hybrid implementation
from www.lirmm.fr/˜fjourdan/Projets/MDS/MDSAPI.html

2Classic implementation from cobweb.ecn.purdue.edu/˜malcolm/
interval/2000-025
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The cost of a full GPU-SF invocation is O(C Ni log4 H) where C is
the number of iterations performed before the system converges.
As we discuss in Section IV-C, C is not necessarily N. We
have observed that it varies depending on dataset characteristics,
ranging from constant to O(N).

The number of points Ni supplied to GPU-SF at each Glimmer
level using decimation factor F ranges from 1000 up to N, where
Ni−1 = Ni/F , and the number of levels is logF N. The total number
Nt of points processed across all Glimmer levels is bounded
above by (F/(F − 1)) ∗N, the infinite sum of (1/F i) ∗N. The
cost of each Glimmer level is two invocations of GPU-SF, one
for interpolation and one for relaxation. The restriction stage of
Glimmer does not incur any extra costs that we need to consider
in our asymptotic analysis, because the sampling is built into the
algorithm. Thus, the total complexity of Glimmer on the CPU is
O(C N log4 H).

We now discuss the effects of GPU parallelism. Asymptotic
analysis of parallel programs is difficult to present concisely. To
oversimplify, a GPU with a SIMD size of p, where p ranges
from 16 to 1024 on current cards, speeds up computation up to a
factor of p. Since we carefully designed our shaders and render
passes to avoid conditionals and loops, our actual speedup is close
to this theoretical maximum. The computational complexity of
Glimmer on the GPU is thus approximately O(C N log4 H / p).
If we assume C to be O(N), and both log4 H and p to be a small
constants, then the complexity of Glimmer is essentially O(N2).

In contrast, the complexity of Hybrid is O(N logN), Chalmers is
O(N2), SMACOF is O(N2), and Classic MDS is O(N3). Pivot
MDS has a complexity of O(k3 + k2N + kN), and for a fixed
number k of landmarks and a large number of points N it is
typically considered linear.

B. Performance Comparison

We compare Glimmer to several MDS algorithms, across a range
of real and synthetic datasets. All benchmarks are run on an
Intel Core 2 QX6700 2.66 GHz CPU with 2 GB of memory
and an nVidia 8800GTX graphics card with 768MB of texture
memory. No timings in this paper include file loading time or
rendering time for any algorithm. However, in the accompanying
video, the timings for GPU-SF and Glimmer do include render
time for interactive display. All layout times below include
computing high-dimensional distances on the fly. Although some
algorithms use an approximation of the stress function while
finding the embedding, all stress figures reported below use the
full normalized metric given in Equation (1).

1) Datasets: We use a mix of of synthetic and real-world
benchmark datasets. The small cancer dataset from the UCI
ML Repository3 has 683 points in 9 dimensions. The ground truth
for the two major clusters of malignant versus benign tumors is
shown with color coding of orange and blue, respectively. The
shuttle small dataset, also from UCI, has 14,500 points in
9 dimensions, with shuttle big having the same structure
but 43,500 points. The ground truth for the seven clusters is
shown with color coding. We generated the well-known synthetic
swissroll benchmark, a 2D nonlinear manifold of 1089 points

3www.ics.uci.edu/˜mlearn/MLSummary.html

embedded in 3 dimensions. We generated a set of synthetic
datasets of smoothly varying cardinality, where a 2D grid is
embedded in 8 dimensions. We also tested the effects of adding
noise to those grids, specifically 1% noise in a third dimension.
The docs dataset is a real-world example of a large collection of
unordered document metadata used to study document clustering
algorithms4 [14]. These collections can be represented as highly
sparse matrices where a row represents a document and a column
represents a text feature. In Glimmer and GPU-SF, we store this
matrix compactly in texture memory as a value-index pair. There
are 28,433 points in 28,374 dimensions, with the ground truth of
six clusters again shown by color coding.

This group of datasets permit us to characterize the speed and
stress of each MDS algorithm in different dimensionality scenar-
ios. In the case of the regular grid, the true dimensionality is
equal to the embedding dimensionality and so an MDS algorithm
should produce stress results very close to zero and the regularity
should be visually apparent in the layout. For shuttle, where
the true dimensionality is conjectured to be slightly greater
than the embedding dimension, both the global structure and
the local proximity of the data may be important but neither
can be reconstructed without some distortion. However, some
cluster structure can be distinguished. For docs, because the true
dimensionality is believed to be at least an order of magnitude
greater than the embedding dimension, the global relationships
between points are less important and potentially misleading.
Again, the local cluster relationships and their distinguishability
from each other should be emphasized.

2) Layout Quality: Figure 8 shows the visual quality, normalized
stress, and timing of Glimmer, Hybrid, and PivotMDS layouts on
four datasets with known structure. In the case of grid, the
correct shape is known. In the other three cases, the correct
partitions of the points into clusters are available with these
benchmark datasets, so the extent to which the color coding
matches the spatial grouping created by an algorithm is a measure
of its accuracy.

Qualitatively, with cancer the Glimmer and PivotMDS algo-
rithms indicate these two color-coded groups clearly with spatial
position. Quantitatively, the stress of Glimmer is an order of
magnitude lower than PivotMDS. Hybrid does separate the two
groups, but produces misleading subclusters in the orange group.

With shuttle big, Hybrid produces a readable layout separat-
ing the red cluster from the other two, but is slower by several
hundred percent. Glimmer and PivotMDS both produce useful
and qualitatively comparable layouts separating the clusters. The
PivotMDS layout is twice as fast, but has noticeable occlusion
and much higher stress than the Glimmer layout.

The 10,000-point grid is accurately embedded by Glimmer
and PivotMDS in comparable times. Hybrid is again slower but
nevertheless terminated too soon, suffering from very noticable
qualitative distortion and with a much higher quantitative stress
metric compared to the other layouts.

The Glimmer layout of the docs dataset is qualitatively better
than the other three. It shows several spatially distinguishable
clusters, color coded by blue, red, orange, and green. The green

4Data courtesy of Aaron Krowne.
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cancer N=683 H=9 shuttle big N=43,500 H=9 grid N=10,000 H=8 docs N=28,433 H=28,374

Glimmer

0.22 s stress=0.027 1.99 s stress=0.00675 0.59 s stress=1.67e-4 2.11 s stress=0.157

Hybrid

0.234 s stress=0.093 18.41 s stress=0.03 6.84 s stress=0.275 15.08 s stress=0.358

PivotMDS

0.14 s stress=0.194. 0.77 s stress=0.403 0.26 s stress=0 1.07 s stress=0.928

Fig. 8. MDS layouts showing visual quality, time, and stress for the Glimmer, Hybrid, and PivotMDS algorithms. Dataset name, number of nodes (N), and
number of dimensions (D) appear above each column. Time in seconds appears at the bottom left of each entry, with normalized stress on the bottom right.

cluster is split into three parts. It took approximately 2 seconds
with normalized stress of 0.157. Hybrid suffers from cluster
occlusion. The stress is nearly twice as high as Glimmer, and
the spatial embedding does not clearly separate any of the given
clusters. PivotMDS is very fast, but almost completely fails to
show the dataset structure. The normalized stress value of 0.928
is extremely high.

3) Speed and Stress: We use the synthetic grid dataset and
parameterized random permutations of shuttle and docs to
compare algorithm speed and accuracy across a large interval of
dataset cardinalities.

The timings in Figures 9abc all exhibit the same pattern of three
equivalence classes. The first and slowest class of algorithms are
the foundational algorithms: Classic in pink, SMACOF in blue,
and Chalmers in orange. These algorithms all show timing curves
that are quadratic or worse. Assuming enough computational
resources were present, completion time on large datasets of
100,000 points or more for these algorithms would be on the
order of many hours or even days. The second class of algorithms
are Hybrid and GlimmerCPU. These algorithms terminate in
approximately one minute on very large datasets of 100,000
points. The final and fastest class of algorithms are Glimmer

and PivotMDS. These algorithms have a much smaller slope
compared to the other classes, requiring only a handful of seconds
to compute layouts of approximately 100,000 points.

The stress measurements in Figures 9def, with log-scale vertical
axes, each exhibit a different pattern depending on the dataset.
We have placed dashed lines on the graphs to roughly delineate
the boundary where the visualization goals for each dataset are
satisfied (below) and where they are not (above). We determined
the positions of these lines empirically by computing layouts with
different stress values and making qualitative judgements about
their visual structure. We used the criteria discussed in Section V-
B.1: regularity for grid, and cluster structure for shuttle
and docs. We characterize an algorithm as outperformed by
a competitor when the algorithm’s average stress across dataset
cardinalities falls above this line, even if the competitor is slower.

All the algorithms satisfy the visual quality test for the shuttle
dataset. For grid, the Hybrid algorithm in green regularly
results in a distorted grid above the dashed line. The remaining
algorithms all regularly produce layouts with no visible distortion.
Chalmers, PivotMDS, and Classic all produce zero-stress layouts,
so are not visible on the graph because they coincide with
the horizontal axis. In the case of docs, where the intrinsic
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Fig. 9. a-c) Detailed graphs of timings for the seven measured MDS algorithms on shuttle, grid, and docs datasets of increasing cardinality. The
graphs exhibit the same three speed classes of algorithms. The Glimmer GPU algorithm is a member of the fastest speed class. d-f) Graphs of layout stress for
the seven MDS algorithms on shuttle, grid, and docs datasets of increasing cardinality. Each graph has a dashed black line demarcating unacceptable
visible distortion. Glimmer is the only algorithm in the fastest speed class to regularly fall beneath each of the visible distortion lines. j-l) Log-log scatterplots
of stress versus time for the seven measured MDS algorithms on cancer, swissroll, and grid1knoise datasets of increasing cardinality. These graphs
illustrate a stress-time tradeoff with outliers Glimmer CPU (red) and Glimmer (violet) on the side of the tradeoff with lower stress in shorter time. All timings
include distance calculations and layout and all stresses are the full normalized stress calculation.

dimensionality is very high, brown PivotMDS, pink Classic, and
green Hybrid are all well above the dashed line. Glimmer in
purple, Chalmers in orange, and SMACOF in blue all produce
results that group similar points together and separate clusters.

Figures 9g- 9i further illustrate the relationship of speed and
stress, showing log-log scatterplots of the timing and stress
of the seven algorithms on three samller datasets: cancer,
swissroll, and a grid of 1000 points with 1 percent noise.
Each algorithm is represented by a single colored dot, except
for PivotMDS where we show a brown line connecting three
runs of 50, 100 and 300 pivots. Dots closer to the lower left
corner represent algorithms outperforming those further towards
the upper right.

The plots show an almost linear relationship between the stress

and timing of Chalmers (orange), PivotMDS (brown), Hybrid
(green), Classic (pink), and SMACOF (blue), indicating a simple
speed-accuracy tradeoff for these algorithms. Glimmer (violet)
and Glimmer-CPU (red) are outliers in the overperforming lower
left quadrant, with both fast times and low stress. Our two
algorithms break the pattern by achieving higher-speed layouts
without an accuracy penalty. On these smaller datasets, the GPU
does not significantly improve speed over the Glimmer on the
CPU.

4) Summary: The Glimmer algorithm satisfies the visual quality
test for each dataset and is in the fastest equivalence class. The
other algorithm in the fastest equivalence class, PivotMDS, does
not produce a usable layout for the docs dataset. The other algo-
rithms that satisfy the visual quality test for all datasets, SMACOF
and Chalmers, do not scale to large datasets, either running out
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Distance Scaling Classical Scaling

Fig. 10. Layouts of a regular 100-simplex produced by distance scaling
and classical scaling. Both methods distort the simplex. Distance scaling
algorithms like Glimmer produces less point occlusion and better preserves
the diameter of the simplex.

of memory or requiring hundreds of hours to compute.

C. Comparing Distance To Classical Scaling

It is interesting to consider the advantages and disadvantages
of distance scaling approaches that use stress such as Glim-
mer, GPU-SF, Chalmers, Hybrid, and SMACOF versus classical
scaling approaches that use strain such as PivotMDS, Landmark
MDS, and Classic.

In distance scaling, individual distances are computed in an
embedding space of specified dimension L. In contrast, classical
scaling does not specifically parameterize embedding dimension.
Layout in L dimensions occurs by simply choosing the first L
eigenvectors. If the intrinsic dimensionality of the layout is k,
then k eigenvectors will contain layout information. By intrinsic
dimensionality, we mean the number of dimensions needed to
achieve a layout where strain is zero. When k is greater than
the desired embedding dimension (L = 2 in this paper), classical
scaling implicitly uses more degrees of freedom in minimizing its
objective function than distance scaling. The resulting layout may
occlude points, clusters or other features in lower dimensions.

We illustrate this phenomenon by embedding the endpoints of a
regular simplex. A simplex is a geometric object whose endpoints
are all a distance of unit length from each other. For example,
a line segment is a regular 1-simplex and an equilateral triangle
is a regular 2-simplex. Figure 10 shows the results of embedding
a regular 100-simplex in two dimensions using classical scaling
and distance scaling. While there is no way to embed such a high
dimensional object without loss of some information, distance
scaling constructs a layout without point occlusion roughly the
diameter of the simplex while classical scaling places most of
the points in a region much smaller than the simplex diameter.

When the intrinsic dimensionality of the dataset is less or equal
than the embedding dimension, then classical scaling methods are
likely to work very well. Even if the dimensionality is greater, the
greater likelihood of occlusion may sometimes be advantageous,
because clusters may be more easily distinguished from each
other. However, we argue that for sparse, very high dimensional
datasets such as docs or for tagged datasets, distance scaling
is very likely to be a better choice than classical scaling. The

PivotMDS layout of the docs dataset shown in Figure 9i,
produced by minimization of the strain objective, demonstrates
that no two-dimensional basis in the text-feature space can be
constructed to visually separate the relevant clusters. We consider
the smearing of the ground-truth color coding into disparate
spatial regions to be evidence of the disadvantages of minimizing
strain when dealing with sparse datasets. To confirm this analysis,
we tested the PivotMDS algorithm on this dataset using 5000
landmarks, and the visual appearance was not improved. We argue
that algorithms based on distance scaling and random search
such as stochastic force, are more suited to visualizing these
datasets. Glimmer is the first such algorithm that can scale to
sparse datasets of this size and produce useful results in a matter
of a dozen seconds.

D. GPU Speedup

We now provide quantitative measurements of the GPU speedup
for Glimmer. Figure 11 shows the speed improvement Glimmer
algorithm on two different GPUs versus the completely CPU-
based implementation. The graph is was constructed by dividing
the CPU run times by the GPU times for synthetic grid dataset
over several sample sizes. Each implementation performs roughly
the same number of computations, allowing us to very directly
gauge the magnitude of the GPU speedup. The graph clearly
shows considerable speed improvements of the Glimmer GPU
algorithm. The older nVidia 7900GS card converges to a constant
speedup around 2.5. The newer nVidia 8800GTX reaches a
variable speedup factor between 10 and 15 for grids of cardinality
greater than 10,000.

The GPU speedup comes with startup and overhead costs.
These include shader compilation, shader optimization, and data
initialization-upload/download. Figure 12 shows the costs in mil-
liseconds for each of these steps on a variety of sample sizes
of the grid dataset. The GPU-SF and Glimmer layout times do
include the overhead of uploading data from the CPU to the
GPU. Shader compilation/optimization is a step required only
once for any number of subsequent layouts and thus is not
included in any performance runtimes. For both GPU-SF and
Glimmer, shader compilation and initialization requires 4 seconds
of dataset-independent startup overhead when the program begins,
which is not included in any of our timings.

VI. CONCLUSION AND FUTURE WORK

Glimmer provides dramatic speedups compared to previous dis-
tance scaling approximation algorithms by exploiting GPU paral-
lelism at every stage of their architectures. Our new termination
criterion for GPU-SF detects convergence cheaply by approximat-
ing the normalized stress function. The multilevel architecture of
Glimmer is more likely to converge to a lower stress embedding.
Glimmer avoids the speed-accuracy tradeoff of previous distance
scaling approximation algorithms, as we have shown on a mix of
synthetic and real-world datasets. It is competitive with previous
classical scaling approximations in speed, and yields readable
results for sparse datasets where these approximations fail.

It would be interesting future work to adapt the Glimmer approach
for optimized force-directed graph placement. Also, Glimmer
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Fig. 11. GPU speedup for two different cards, calculated by dividing the
time required to complete a layout using Glimmer on the CPU by the time
required on a GPU.

startup (ms) overhead (ms)
Size Shdr. Comp Shdr. Opt Init+Upload Dload
20 3922 812 16 0
200 3891 797 31 0
2000 3875 797 15 0
20000 3859 813 47 0
200000 3875 813 312 16

Fig. 12. Startup costs and texture overhead, in milliseconds. Shader compila-
tion and optimization are single-step startup costs that can be amortized over
many layouts. Texture initialization and data upload and download are costs
incurred by an individual dataset, but this overhead is very small compared
to overall runtime.

should be straightforward to generalize from the current L =
2 implementation to handling target spaces of any dimension.
The force calculation pass at stage 5 of GPU-SF might be the
main bottleneck, possibly taking more passes as dimensionality
increases.

The source code and executable for Glimmer is available at www.
cs.ubc.ca/˜sfingram/glimmer.
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