
Rough Proposal, Marc Olano — 1 — Printed July 13, 1995, 2:29 PM

PhD Dissertation Proposal
Marc Olano
30 August 1994

Thesis Statement

The decomposition of the graphics pipeline into a coherent set of programmable

functions provides greater flexibility and valuable new tools to the graphics programmer.

Furthermore, this enhanced flexibility can be implemented efficiently to yield systems

that maintain interactive frame rates.

Abstract

It has been recognized that given the wealth of shading possibilities, no single

parameter-based shading model could ever be sufficient [Hanrahan90]. In response to

this, procedural shading and shading languages have arisen to give the graphics

programmer full access to the range of shading algorithms. However, the existence of

this kind of flexibility at other points in the graphics pipeline is in its infancy. I intend to

show that it is worthwhile to allow programmability throughout the graphics process. I

will show this by first implementing programmable hooks for the PixelFlow graphics

library [Molnar92], and then finding one or two people to use the added capabilities or

solving a couple of suitable problems proposed by the committee.

Contributions

• A new decomposition of the rendering process into a framework and a logical and

orthogonal set of functions.

• The idea that such a system can and should be designed for use by the graphics

programmer/user.

• The idea that such a system can be implemented efficiently enough to be interactive on

near-term graphics hardware.

• The design and demonstration of such a system.

• Separation into rasterizers and interpolators to decouple scan conversion from the

interpolation of shading parameters.

• Data structure for efficient caching of composited linear transformations while still

allowing general programmable transformations.

PhD Proposal, Marc Olano — 2 — Printed July 13, 1995, 2:29 PM

Motivation

Examples

All current graphics machines are designed as essentially closed systems. It is

difficult, if possible at all, to do tasks not originally envisioned and programmed in by the

system designers. Yet there are tasks that could run efficiently within the graphics

pipeline architecture if there were only a way to modify the behavior of the right piece of

the system. The purpose of this dissertation is to design a rendering system providing

this kind of power, and to show that it can be done efficiently enough to use in an

interactive system. What follows are some examples of what could be done with this

capability in a graphics system. For each I will briefly discuss how it might be

implemented with a typical closed architecture graphics pipeline and with a

programmable pipeline.

• Many current head mounted displays (HMDs) introduce significant optical distortion in

order to create a wide field of view. Images created assuming a rectangular array of

pixels will be warped in the HMD. To present undistorted images, it is necessary to

produce an image with the inverse warping.

• Frameless rendering is another task that does not fit well within closed graphics

pipelines. If updating pixels is a limiting factor for graphics speed, a randomized subset

of the pixels can be updated. This can allow a faster frame rate (zero in the limit) at the

cost of some image quality during motion.

• Most real-time animation of hands, faces, or figures use intersecting rigid parts. Yet the

intersections do not look very natural. But figures seen in production animation for

commercials and film usually don’t have these seams. One way they avoid the

intersections is to use a single connected model which they manipulate using

deformations.

• Another method to solve the same problem (not as widely used) is to use an implicit

surface shell around an articulated skeleton.

• In the flight simulator Trey Greer wrote on Pixel-Planes 5 for IVEX, he had a

interesting landing light primitive. The light is rendered as a single pixel. As the

intensity of the light increases, so does the intensity of the pixel. Once the single pixel

is at full intensity, the size increases to keep the aggregate intensity correct.

• John Alspaugh used his access to the Pixel-Planes 5 graphics library source to add a

new primitive to the system. He added featured polygons, convex polygons with

convex holes. Featured polygons are based heavily on the existing polygon rendering

code and are a full-fledged addition to the system.

PhD Proposal, Marc Olano — 3 — Printed July 13, 1995, 2:29 PM

• David Banks used the Pixel-Planes 5 GP callback facility (designed to provide some

degree of immediate mode graphics on a retained mode graphics system) to run his own

version of the polygon rendering code. His Phong shaded polygons could find and

mark their intersections and silhouettes.

HMD warp

Closed pipeline

To produce an image that will end up undistorted in the HMD, it is necessary to

produce an image with the inverse warping. The graphics pipeline system will produce

an image with a rectangular pixel grid. If an image large enough to cover the field of

view of the HMD is rendered, it can be warped by a post process into the image that will

be undistorted in the HMD. The HMD optics will probably have the highest pixel

density in the center of the image. The original pixel grid will need to be of a fine

enough resolution to adequately cover this region. The warp will take extra processing

power, so to remain interactive it will need to either be done on multiple application

processors or in some way take advantage of the graphics hardware. If image texturing is

supported (and loading texture memory is cheap enough), the warp could be done with a

textured polygonal grid. Of course if some graphics power is used for the warp, less will

be available for the graphics.

Programmable pipeline

A programmable pipeline can use the same attack with the image warp as a final stage

in the pipeline. As a stage in the pipeline, excess image copies may be avoided. Being in

the pipeline, the warping can happen before anti-aliasing. The rendered image is stored

as a texture map, then the texture coordinate of each pixel in the final image is computed

from the warp function (more likely it will have been precomputed since it never

changes), so each pixel determines its color from the texture map.

If the HMD optics also introduce variations in intensity across the image, each pixel

can have an intensity modifier as well as a texture location. By warping each color

seperately, it is even possible to do some compensation for chromatic aberration in the

optics where a slight prism effect spreads the colors.

Alternate programmable pipeline solution

Another way to approach the same problem is to warp the pixel locations during scan

conversion. This can be easily accomplished with a new scan conversion function that

uses these warped locations instead of the pixel locations from the rectangular grid.

Since the pixel to pixel coherency will be lost (or at least much harder to take advantage

of), the scan conversion will be slower than standard scan conversion for almost any

graphics system. However, for a wide field of view rectangular image, some pixels land

PhD Proposal, Marc Olano — 4 — Printed July 13, 1995, 2:29 PM

entirely outside the warped image and many of the peripheral pixels have only minor

effects image in the HMD. The additional resampling also complicates anti-aliasing.

Using warped pixel locations has neither of these problems. Which solution is superior

will depend on the graphics hardware and the type and degree of image warping.

Frameless rendering

Closed pipeline

I can think of no possible solution for a closed pipeline. The effects can be simulated,

as they were on Pixel-Planes 5. The Pixel-Planes simulation of frameless rendering

generated multiple frames and discarded all but a random subset of the pixels. With the

full frame computed anyway, there is no frame performance gain to showing only some

of the pixels. I have overheard people familiar with only closed pipelines say that

frameless rendering is only a useful method for ray tracing and volume rendering.

Programmable pipeline

Frameless rendering can be realized in a programmable pipeline with two cooperating

procedures. A new rendering procedure scan converts random pixels instead of the

normal rectangular frame, and a warping procedure descrambles them into their correct

positions in the image. Since the rendering procedure throws away the advantages of

pixel to pixel coherence, it will run more slowly. Descrambling the pixels may take some

processing as well. But factored over a quarter million pixel NTSC screen or a couple

million pixel HDTV screen, it can still achieve its purpose of higher frame rates at the

cost of degraded images.

Deformation of a rigid object

Closed pipeline

To handle deformations in a closed pipeline, each vertex or control point of the model

must be transformed by the application code. The deformed object can then be sent

through the normal rendering system. This does not take advantage of any of the

rendering system to do the deformation.

Programmable pipeline

Deformations are just a form of non-linear transformation. As a programmable

transformation, they are trivially incorporated into a programmable pipeline.

Implicit skin around a rigid skeleton

Closed pipeline

First, the skeleton is transformed by the application code. Then a polygonal mesh is

found for the implicit skin. Methods for this are marching cubes, shrink wrapping, or

point repulsion, all of which involve quite a bit of computation. Finally the resulting

polygonal mesh is sent through the rendering system.

PhD Proposal, Marc Olano — 5 — Printed July 13, 1995, 2:29 PM

Programmable pipeline

What is needed is an implicit surface primitive. But even this may be hard to create

interactively. For all of the algorithms I can think of, the entire skeleton needs to be one

primitive which the primitive procedure transforms. One option for rendering is to have

each pixel run a ray casting to find if and where it intersects the model. Another option is

to use a Newton iteration based root finder to take advantage of the pixel coherence.

Landing lights

Closed pipeline

If the rendering system has a point primitive, the light can be rendered as a point as

long as the intensity remains low enough. However, as soon as it gets bright enough to

start expanding (or if no point primitive is available), more work is required. One method

would be to have the application first transform the light into screen space, then knowing

where the light needs to end up on the screen, use the inverse transform to find out what

object coordinates to give the rendering process.

Programmable pipeline

In a programmable pipeline, it is simple to create a new primitive whose position is

based on an object location but whose size is purely screen space. The code for the

primitive takes in the location of the light, transforms it to screen space, then draws a disk

around that screen space point.

Featured polygons

Closed pipeline

About the only alternative on a closed pipeline that only supports convex polygons is

to break the featured polygon up into several convex pieces. Unfortunately, doing that

optimally is hard (Hard enough to make the UNC Walkthrough project decide to modify

the graphics library rather than do it as part of their database conversion). A naive

procedure that splits into trapezoidal segments at each vertex should be relatively easy,

though it may produce an excessive number of polygons. These polygons can then be

passed to the rendering system.

Programmable pipeline

It is surprisingly easy to extend the standard polygon scan conversion code to handle

convex and complex polygons. The scan converter just keeps track of the number of

edge crossings as it crosses the span to know if it is inside or outside the polygon. Even

Pixel-Planes style scan conversion can cut out a convex piece about as easily as it can

draw another convex polygon. So a new scan conversion function in a programmable

pipeline can easily handle featured polygons.

PhD Proposal, Marc Olano — 6 — Printed July 13, 1995, 2:29 PM

Surface intersection and silhouette

Closed pipeline

This is very difficult in a closed pipeline. Polygons with silhouettes will be the ones

with some normals with a positive Z in screen space and some with a negative Z. To find

these, the application must transform every polygon’s normals into screen space. The

silhouette curve will be where the Z component of the normal is 0. To find intersections,

the application must check every polygon against every other (though it need not

transform into screen space for that step). After all of this, the polygons and markings

must be sent to the graphics system (which will do all of those transformations over

again).

Programmable pipeline

A new primitive can be used to find both intersections and silhouettes. To find

silhouettes, it is possible to look at the normal on a pixel by pixel basis as it is scan

converted. The normal needs to be computed anyway, so marking it is just a matter of

watching when it gets near zero. A fancy procedure could also look at the rate of change

of the normal to make even width markings. To find silhouettes, the primitive compares

not just whether its Z is in front or behind what is already drawn, but also how close. If

the pixel is just in front it is marked as being on an intersection; if it is just behind, the

pixel that is already there is marked as an intersection (with appropriate checks to make

sure it also came from the right kind of polygon). Once again, a fancy procedure could

also look at the rate of change of Z to make even width markings.

Procedure points

Maps

Procedural maps can provide one or two parameter functions. They are the

programmable version of the common image maps used for textures, shadow maps,

reflection maps, and bump maps. At some point the shading process uses the map to look

up a color, number, or vector.

Transformation

Procedural transformation allows deformations and other nonlinear transforms. There

is a progression of shading complexity from hard-coded simple shading models through

bump and reflection mapping to full programmable shading. There is a similar

progression for transformations from the standard affine transformations through free

form deformations to full programmable transformations.

There are some problems presented by the warping of space caused by non-linear

transformations, for example flat polygons remain flat only under projective

transformations. However, they are still a powerful tool that should not be ignored.

PhD Proposal, Marc Olano — 7 — Printed July 13, 1995, 2:29 PM

Modeling

Procedural models use object parameters to generate a lower level description of the

model. Most polygon based systems implement spline patches in this way, but do not

allow users to write their own modeling procedures. A few possibilities are particle

systems, fractals, L-systems, graftals, hypertextures, spline patches, and generative

models.

Primitives

Procedural primitives differ from procedural models in that they are directly rendered

instead of being converted into simpler primitives. There is consequently a good deal of

overlap between the objects which can be created as procedural primitives and those that

can be supported as procedural models.

The Pixel-Planes 5 graphics system provides good anecdotal support for the need for

procedural primitives. No user-level support is provided for writing primitives, yet a

number of users have gone through the trouble to write their own custom primitives.

Given the number of primitive types currently available, the chances are good that

any given rendering system will have missed several of them. A few possibilities are

polygons, spline patches, spheres, quadrics, superquadrics, metaballs and other implicit

models, generative models, smart points, and volume elements. Some of the more

interesting candidates can be found in [Lane80], [Max81], [Blinn82], and [Kajiya83].

Volume and Atmospheric Effects

Procedural volume and atmospheric shaders handle the behavior of light as it passes

through a medium. A few examples are fog, haze, atmospheric color shift, and density

thresholding.

Shading

Procedural shading describes the shading of a surface by the code used to turn the

surface attributes and shading parameters into a color. Over the past several years there

has been a trend among high-quality rendering programs to include shading languages

and procedural shading capabilities.

Lighting

Procedural lighting functions determine the intensity and color of light that hits a

surface point from a light source. They can be used for a variety of shadow and slide

projector techniques.

Image Warping

Procedural warping can be used to support a host of video warping special effects as

well as non-rectangular pixel grids as commonly seen in head mounted displays.

PhD Proposal, Marc Olano — 8 — Printed July 13, 1995, 2:29 PM

light

primitive assembly

modeling transform

clip

perspective transform

viewport transform

scan convert

texture

fog

antialias

3d geometry

image pixels

Figure 1. A typical
rendering pipeline

Image Filtering

Image filtering is similar to image warping in that it may require non-local access to

pixel samples. The main filtering effect of interest in graphics is anti-aliasing.

1.10. Application to a Typical Rendering Pipeline

Figure 1, a typical rendering pipeline, was based on the OpenGL software architecture

[OpenGL92]. The lighting and texturing stages are covered by what I have called

procedural shading and lighting; the primitive assembly stage by procedural modeling;

the modeling, perspective, and view transform stages by procedural transformation; the

clip and scan convert stages are covered by procedural primitives; the fog stage is

covered by procedural volume and atmospheric affects; And the anti-aliasing stage is

covered by procedural image filtering.

Research Plan

Thesis Statement Revisited

A traditional graphics pipeline with programmable hooks throughout the process can

be implemented efficiently and provides the graphics programmer an easier and faster

way to do tasks that would otherwise be difficult or impossible.

Demonstration of Thesis

I plan to demonstrate that the graphics pipeline with programmable hooks mentioned

above are practical, can be implemented efficiently, and are

powerful.

Practicality and Efficiency

To show practicality and efficiency, I will add programmable

hooks to the PixelFlow graphics system. There are some

limitations caused by this decision: I will not be able to support

displacement mapping; most transparency will have to be screen

door transparency; any multipass algorithm (transparency,

reflection maps, shadow maps) will probably have a weird

interface caused by the PixelFlow architecture; and most of the

procedures will have to be programmed in a special purpose

language.

The special purpose language is modeled after the RenderMan

shading language. This is a matter of convenience and the use of

special purpose languages for these procedures are not really part

of my thesis. RenderMan uses a special purpose language for

portability and to allow unusual optimizations. I also have unusual

PhD Proposal, Marc Olano — 9 — Printed July 13, 1995, 2:29 PM

optimizations in mind for my special purpose language, but I am not interested in

portability. There is no compiler for C or any other high level language for the PixelFlow

renderers. If I want to provide any interface above assembly language level, I must write

my own compiler. So I have somewhat selfishly decided to go for a simpler compiler

instead of spending my time implementing a full C compiler.

Points where I will provide procedural hooks in the PixelFlow implementation are

transformation, primitive creation, shading, lighting, atmospheric effects, and image

warping and filtering.

Power

To show the increased capabilities and ease of use, I would like to find one or two

people in the department to use the procedural capability on PixelFlow. I do not have

anyone in mind yet, but I believe that the chances are good that I will be able to find

people. Several people have made modifications directly to the Pixel-Planes 5 software

who would have been perfect candidates. I do not imagine that the need for these tools

will disappear.

Test users will have to be fairly committed to learning and using the system. While I

am optimistic, I have no assurance that I will be able to find any. If I fail to find willing

participants, I think it should be sufficient for me to solve a couple of reasonably difficult

problems posed by the committee.

Background

Varying degrees of programmability have been previously provided at points in the

graphics process. The examples range from high level shading languages down to

graphics systems that are designed to be reprogrammed only by the original author.

Maps

The procedural shading capability described in [Rhoades92] are really just an instance

of procedural maps in a fixed Phong shader.

Transformations

Two different kinds of nonlinear deformations have been proposed [Barr84],

[Sederberg86]. Barr defines deformations based on linear transformations where the

transformation parameters are a function of position. Sederberg defines free form

deformations as spline warping of the space around an object. The full range of

deformations is much larger than the subset covered by these two types, and they do not

even provide very intuitive control. In practice, simplified parameterization of their

controls are preferred [Watt92], [Reeves90].

PhD Proposal, Marc Olano — 10 — Printed July 13, 1995, 2:29 PM

Some definitions and implementations of procedural transformation have been made.

Fleischer and Witkin [Fleischer88] defined true user-accessible programmable

transformations as point, normal, and inverse transform functions. The RenderMan

specification defines transformation shaders, though they are not implemented in

PIXAR’s PhotoRealistic RenderMan. Displacement mapping can be used as a form of

procedural transformation. And PIXAR’s MENV system allows procedural definitions

of deformation parameters [Reeves90].

Modeling

Examples of some procedural models can be found in [Lane80], [Kajiya83],

[Blinn85]. I have not yet seen a standardized procedural model description language

(unless you count graphics libraries like OpenGL), but several systems supporting

procedural models have been created [Hedelman84], [Amburn86], [Upstill90],

[Green88], [Perlin89].

Primitives

Procedural primitives are easily supported in ray tracers and examples can be found in

[Rubin80], [Hall83], [Wyvill85], [Kuchkuda88], and [Kolb92]. Examples are much

harder to find for non-ray traced renderers. A handful of “testbed” systems have

provided some degree of primitive programmability: [Whitted82], [Crow82], [Hall83],

[Fleischer87], [Nadas87]. The key shortcoming of these testbed systems seems to be that

they are designed either for testing out new primitive algorithms or for use only by the

original author.

Volume and Atmospheric Effects

Cook [Cook84] defines atmospheric shade trees to handle fog and similar color

effects between the surfaces and the viewer. RenderMan [Hanrahan90] extends this to

two types of shaders, volume and atmospheric, to handle the passage of light through and

outside of objects in the scene.

Shading

In the earliest systems, programmability was supported by rewriting the shading code

for the renderer [Max81]. Sometimes this was specifically allowed by the design of a

testbed system [Whitted81], [Hall83]. More recently easier access to procedural shading

capability has been provided to the graphics programmer [Cook84], [Perlin85],

[Abram90], [Hanrahan90]. The RenderMan shading language [Hanrahan90] is even

presented as a standard so shaders can be portable to any conforming implementation

(though the rush to write conforming renderers has yet to happen).

PhD Proposal, Marc Olano — 11 — Printed July 13, 1995, 2:29 PM

Lighting

RenderMan [Hanrahan90] and Cook’s shade trees [Cook84] make an important

conceptual distinction between lighting and shading. The same light procedure may be

used by all of the shading procedure. A prime example of the power of lighting

procedures is the window pane light in PIXAR’s Tin Toy [Upstill90]

Image Warping and Filtering

Image filtering is incorporated in the RenderMan image shaders. Both filtering and

warping are provided by Adobe Photoshop’s plug in capability [Knoll90] (though this is

not part of a rendering system).

Systems

Most of the programmable systems were mentioned in the primitives section since

fully programmable systems are pretty much the only context in which procedural

primitives have been explored. [Whitted82] allowed programmable primitives and

shaders. [Crow82] used a separate process for each primitive. [Hall83] and

[Trumbore93] were systems designed for Cornell’s global illumination research.

[Hedelman84] was a data flow based system allowing procedural models,

transformations, and shaders to be connected together. [Fleischer87] was a conceptually

elegant LISP system. It has a nice generalization for transformations, but can only deal

with surfaces with both implicit and parametric formulations and is clumsy for shading.

[Nadas87] was a data flow based system allowing C functions to be hooked together in a

directed acyclic graph. [Glassner93] was a similar system based on C++. [Reeves90]

and [Hanrahan90] describe most of PIXAR’s internal rendering system which supports

procedural modeling and shading. [Kolb92] is a ray tracer based on [Kuchkuda88], both

of which are designed to be easily modified.

Implementation

I have already begun implementation of the demonstration system. It will be part of

the standard PixelFlow graphics library.

PixelFlow

PixelFlow consists of a host, a number of renderer boards, a number of shader boards,

and one or a small number of frame buffer boards (Figure 2a). The hardware and lower

level software handle the details of scheduling primitives for the renderer boards,

compositing pixel samples, assigning them to shader boards, and moving the shaded pixel

information to the appropriate frame buffer. Consequently, it is possible to take the

simplified view of PixelFlow as a simple pipeline (Figure 2b).

PhD Proposal, Marc Olano — 12 — Printed July 13, 1995, 2:29 PM

pi
xe

l n
et

w
or

k

ge
om

et
ry

 n
et

w
or

k renderer
board
renderer
board
renderer
board
renderer
board
shader
board
shader
board
shader
board
frame buffer
board

shader
board

renderer
board

frame buffer
board

RISC
processor

SIMD
array

texture/frame buffer
memory

ge
om

et
ry

 n
et

w
or

k

pi
xe

l n
et

w
or

k

a b c
Figure 2. Three views of PixelFlow: a) hardware system block diagram. b) simplified

view of the system. c) simplified view of a single board.

The boards on PixelFlow all look quite similar. Each board of the PixelFlow system

has two RISC processors, a SIMD array of pixel processors, and a texture memory store

(Figure 2c). Part of the implementation is a compiler for a simple C or RenderMan like

language that produces C++ for one of the RISC processors with embedded commands to

the SIMD processors. This will remove many of the hardware specific quirks, making

the demonstration system more generally applicable.

Pixel information can easily be passed from board to board in the SIMD processor

memory and frame information can easily be passed from RISC processor to RISC

processor.

Pipeline
3d geometry

image pixels

transform scan convert

interpolate
renderer
board

light shade

atmosphere
shader
board

filter

warp

frame buffer
board

Figure 3. procedure
pipeline

PixelFlow will have an API based on OpenGL, though

our pipeline differs from the OpenGL pipeline presented

earlier. It differs to better fit the PixelFlow architecture and

to make the procedural hooks make more sense. Figure 3

shows the processor pipeline and one of our proposed

procedure organizations. To summarize the points in the

pipeline:

• Procedural modeling is not covered since it can be done

effectively with the API.

• The scan conversion procedure turns 3D geometry data

from the API into a set of enabled samples to participate

in the later processing.

• Each transformation has a set of functions to transform points, planes, normals, and

tangents which are called as needed by the scan converter.

• The interpolator procedure interpolates arbitrary parameters across the primitive for the

later stages. (Separation of the interpolation from scan conversion makes handling of

arbitrary parameters easier and allows reuse of a number of standard interpolators for

multiple primitive types.)

PhD Proposal, Marc Olano — 13 — Printed July 13, 1995, 2:29 PM

• Shading, lighting, and atmosphere act in fairly standard ways.

• The warp procedure can access data from other samples in the image to determine the

new sample contents.

• The filter procedure combines samples for a pixel into the final pixel value.

Procedures will communicate through a shared parameter space. This is similar to the

shared memory “blackboard” idea used by MENV [Reeves90]. Procedures will have

their own default parameters. These may be overridden by the parameters given in the

OpenGL code which may be overridden by replacement values from earlier procedures.

Framework

Supporting this pipeline is a software framework that handles the details of the

rendering process and the communication between the programmable procedures. For

example, it is part of this framework that allows the procedure writer to pretend

PixelFlow is a simple pipeline instead of a large multicomputer. Of particular interest is

the collection and redistribution of procedure parameters.

Most of the details of parameter routing and distribution are handled by the host in the

extensions to the OpenGL API. Each procedure has a set of parameters with default

values. The host collects a table of these parameters and keeps track of the current value

for each. The parameters are collected through query functions provided along with the

procedures. Query functions are used to allow procedures to be added and removed on

the fly. Each parameter is accessed through an ID number so all parameter operations

reduce to table lookups.

The transformation functions provide a good example of the use of these parameter

tables. When a transformation function is called, it is linked into the list of active

transformations. The values of all of its parameters are taken from the parameter tables

and stored as well. This information on transformation state is sent to the rendering

boards over the geometry network. When a scan conversion procedure tries to transform

a point, each transformation on the list is called in turn with its parameters and the

partially transformed point.

Scan conversion and parameter interpolation operate slightly differently. When the

glBegin call is issued in the application code, the host begins to collect parameters for a

primitive. It can determine, based on the currently active procedures, what parameters

will be needed, either for scan conversion or in the pixels for later procedures. It builds

lists of these parameters, one entry in each for each vertex or control point. These, along

with any single valued parameters for scan conversion or interpolation, are packaged up

and sent to a rendering board. On the rendering board, the scan converter is called once

PhD Proposal, Marc Olano — 14 — Printed July 13, 1995, 2:29 PM

to compute the participating pixels, then an interpolator is called for each pixel parameter

needed by the later stages.

Shading procedures may have parameters that vary across the pixels. As an added

complication, their execution is not triggered directly by the application code, so all of

their parameters must be saved and delivered to them when they are run. To deal with

this, the parameters are labeled when the procedure is written as either varying or uniform

(a terminology taken from [Hanrahan90]). Varying parameters are assumed to reside in

the pixels, but uniform parameters must be sent over the geometry network to the shader

boards. To keep the assignment of uniform parameters and shaders straight, a shading

function and its uniform parameters are bound together in a manner similar to the

OpenGL display list and given a shader ID. Each pixel on the screen includes the shader

ID in pixel memory, so on the shader board its uniform parameters can be found.

Only one procedure per frame is allowed for each of atmosphere, warp, and filter.

When one of these procedures is specified, the parameters that do not vary across the

pixels are sent directly to the appropriate boards along with the procedure ID.

Information on parameters that vary across the pixels, but do so in a uniform way over

the screen are also sent to the appropriate board to be dealt with later. Parameters that

vary on a primitive by primitive basis are rasterized into the pixel memory on the

renderer boards. The same approach is used for lighting functions, but pixel parameters

for lights will be discouraged on PixelFlow if they are supported at all since they will be

quite expensive.

PixelFlow composition bandwidth is limited, so it is best to keep the amount of

information passed at a pixel level as small as possible. Several things are done to help

with this goal. Each shader has its own pixel memory map. The size of the composition

is determined by the requirements of the largest shader. To keep the memory packed, the

memory map is rearranged after each procedure to prepare for the next.

Efficiency

There are several techniques that can be used to make the system efficient and usable.

They will be briefly mentioned here:

• Time critical procedures can be replaced by versions that have been hand coded in C++

or assembly language. This is planned from the start so the output of the compiler will

be reasonable for hand generation.

• Careful choice of how to pass parameters can reduce the amount of computation that

needs to be done. Parameters which change over a primitive must be sent across the

pixel network. Parameters that are the same over many primitives are more efficiently

sent over the geometry network. Parameters which do not change across a primitive,

PhD Proposal, Marc Olano — 15 — Printed July 13, 1995, 2:29 PM

but do change often between primitives are more efficiently sent over the pixel

network. If only pixel parameters have changed, the SIMD code is still valid and

procedure does not need to be rerun on the RISC processors.

• Certain computations can be factored out from several procedures and run

simultaneously. On a large scale this could include execution of light procedures for all

shaders simultaneously. On a smaller scale, this could include common execution of

noise functions or other common expressions.

• A special case is made for affine and projective transformations since they are the most

common. It is possible to cache a composite transformation when several matrix

transformations appear in sequence without loosing the ability to have arbitrary

procedural transformations. In the case where there are no procedural transformations,

it would cost only a single comparison over the standard matrix formulation.

Schedule
1994 1995 1996

fall spring summer fall spring

oral exam

3d interactive conference
paper on shading language

SIGGRAPH paper on
programmable primitives

train users or solve problems

SIGGRAPH paper on
programmable transformations

defend

courses

implementation

write

PhD Proposal, Marc Olano — 16 — Printed July 13, 1995, 2:29 PM

Annotated Bibliography

[Abram90] Gregory D. Abram and Turner Whitted, “Building Block Shaders”, Computer
Graphics (SIGGRAPH '90 Proceedings) , volume 24(4), August 1990, 283–288
An implementation of Cook's shade trees.

[Amburn86] Phil Amburn and Eric Grant and Turner Whitted, “Managing Geometric
Complexity with Enhanced Procedural Models”, Computer Graphics
(SIGGRAPH '86 Proceedings) , volume 20(4), August 1986, 189–195
Describes two ideas for procedural modeling. First is generalized subdivision,
where a representation is subdivided until a transition test triggers a change of
representation. The new representation may undergo further subdivision or be
rendered as a primitive. Second is communication between models. Two
interacting models send messages to adjust to each other.

[Banks92] David Banks, “Interactive manipulation and display of two-dimensional
surfaces in four-dimensional space”, Computer Graphics (1992 Symposium on
Interactive 3D Graphics) , volume 25(2), March 1992, 197–207
Uses a custom primitive on Pixel-Planes to find intersection and silhouette curves.

[Barr84] Alan H. Barr, “Global and Local Deformations of Solid Primitives”, Computer
Graphics (SIGGRAPH '84 Proceedings) , volume 18, July 1984, 21–30
Basic deformations like twist, taper, bend, etc. Standard transformations
parameterized by position.

[Bentley88] Jon Bentley, “Little Languages”, More Programming Pearls , Addison-
Wesley 1988, 83-100
A definition of little languages and an argument in favor of their use.

[Blinn82] James F. Blinn, “A Generalization of Algebraic Surface Drawing”, ACM
Transactions on Graphics , volume 1(3), July 1982, 235–256
Ray tracing of blobby models. Blobs are implicit functions based on a Gaussian
density function. Uses bounding spheres to limit the number of active blobs and
solves for intersection using a hybrid Newton/regula falsi method.

[Blinn85] James F. Blinn, “The Ancient Chinese Art of Chi-Ting”, SIGGRAPH '85
Image Rendering Tricks seminar notes , 1985
A collection of rendering tricks from JPL space movies and the Mechanical
Universe. The first section has text, the rest is in outline form. Section 1.4 is titled
Specialized Primitives and describes his 2 polygon cylinders (also published as
“Jim Blinn's Corner: Optimal tubes” in CG&A, September 1989)

[Blinn89] James F. Blinn, “Jim Blinn's Corner: Optimal tubes”, IEEE Computer
Graphics and Applications , volume 9(5), September 1989, 8–13
Derives two or three polygon cylinders used in JPL space movies and the
Mechanical Universe. Previously published in “The Ancient Chinese Art of Chi-
Ting”, SIGGRAPH '85 Image Rendering Tricks seminar notes

PhD Proposal, Marc Olano — 17 — Printed July 13, 1995, 2:29 PM

[Cook84] Robert L. Cook, “Shade trees”, Computer Graphics (SIGGRAPH '84
Proceedings) , volume 18(3), July 1984, 223–231
Parses arbitrary simple expressions into a parse tree form which is interpreted for
shading. Reasonable speed is obtained though a powerful set of precompiled
library functions.

[Coquillart90] Sabine Coquillart, “Extended Free-Form Deformation: A Sculpturing Tool
for 3D Geometric Modeling”, Computer Graphics (SIGGRAPH '90 Proceedings)
, volume 24, 1990, 187–196
FFD with non-rectangular lattices.

[Coquillart91] Sabine Coquillart and Pierre Jancéne, “Animated free-form deformation:
An interactive animation technique”, Computer Graphics (SIGGRAPH '91
Proceedings) , volume 25, 1991, 23–26
Animation of objects by either animating an EFFD containing the object or
moving the object through the space of an existing EFFD.

[Crow82] F. C. Crow, “A More Flexible Image Generation Environment”, Computer
Graphics (SIGGRAPH '82 Proceedings) , volume 16(3), July 1982, 9–18
Control process does some sorting and forks off separate processes for each
primitive. These are later composited together. Lots of technical problems no
longer relevant.

[Dunlavey79] M. R. Dunlavey, “The Procedural Approach to Interactive Design
Graphics”, Computer Graphics , volume 13(2), March 1979, 110–147
Presents a language based CAD system. The user communicates through the DL
language, a simple stack based language with registers. Objects are created by
controlling a turtle with a milling tool attached.

[Fleischer87] Kurt Fleischer, “Implementation of a modeling testbed”, SIGGRAPH '87
Object-Oriented Geometric Modeling and Rendering seminar notes , volume 14,
July 1987
Much of the text of Fleischer and Witkin's Graphics Interface '88 paper with a
little more detail

[Fleischer88] K. Fleischer and A. Witkin, “A modeling testbed”, Proceedings of
Graphics Interface '88 , Canadian Inf. Process. Society 1988, 137–137
LISP based system. Transformations generalized to functions for position,
normal, and an inverse position transform. Objects generalized to functions for
parametric surface position and normal and implicit surface position. Shaders use
a function of position, normal, and parametric position to get the appearance
parameters for a reasonably standard shader definition. Also a GUI similar to
building block shaders.

[Fuchs89] Henry Fuchs and John Poulton and John Eyles and Trey Greer and Jack
Goldfeather and David Ellsworth and Steve Molnar and Greg Turk and Brice
Tebbs and Laura Israel, “Pixel-Planes 5: A Heterogeneous Multiprocessor
Graphics System Using Processor-Enhanced Memories”, Computer Graphics
(SIGGRAPH '89 Proceedings) , volume 23, 1989, 79–88
Outlines Pixel-Planes 5 hardware and software.

PhD Proposal, Marc Olano — 18 — Printed July 13, 1995, 2:29 PM

[Glassner91] Andrew S. Glassner, “Spectrum: A Proposed Image Synthesis
Architecture”, SIGGRAPH '93 Developing Large-scale Graphics Software
Toolkits seminar notes , 1991
Initial proposal for the spectrum system described more completely in
[Glassner93]. Includes code from initial MESA implementation.

[Glassner93] Andrew S. Glassner, “Spectrum: An Architecture for Image Synthesis
Research, Education, and Practice”, SIGGRAPH '93 Developing Large-scale
Graphics Software Toolkits seminar notes , 1993
This is probably my closest sibling. It defines a generic architecture for entirely
procedural graphics which is being implemented in C++ to be freely distributed.
It's designed for radiosity and ray tracing, but the modules scheduling is also
programmable so it could probably wash your shirts for you. Normal module
types: cameras, samplers, reconstructors, seeders, shaders, shapes.

[Grant86] Eric Grant and Phil Amburn and Turner Whitted, “Exploiting classes in
modeling and display software”, IEEE Computer Graphics and Applications ,
volume 6(11), November 1986, 13–20
Discusses class hierarchy for their C++ system. Not much of use to me.

[Grant87] Eric Grant, “Class Design for a Modeling Testbed”, SIGGRAPH '87 Object-
Oriented Geometric Modeling and Rendering seminar notes , volume 14, July
1987
Discussion of object-oriented approach in the Grant, Amburn, and Whitted
system. Display classes divisions exist for z-buffer, a-buffer, etc. It appears that
primitives must either reduce to polygons or use custom code for each.

[Green88] Mark Green and Hanqiu Sun, “MML: A language and system for procedural
modeling and motion”, Proceedings of Graphics Interface '88 , June 1988, 16–25
Based on C, MML is just a preprocessor. Can generate rule or grammar based
models (particle systems, L-systems, graftals, fractals). Objects have state, code
for procedural generation, code for motion verbs, and code for rendering. Their
examples render using lower-level primitives.

[Hall83] R. A. Hall and D. P. Greenberg, “A Testbed for Realistic Image Synthesis”,
IEEE Computer Graphics And Applications , volume 3, November 1983, 10–20
Ray tracing system concerned primarily with the ability to use new illumination
models. Includes spectral distributions instead of just RGB. Brief mention of the
typical ray tracing use of functions to intersect with an arbitrary ray. Claims it
could use other rendering techniques, but that has to be just for illumination
calculations, the rendering code would need to be replaced.

[Hanrahan90] Pat Hanrahan and Jim Lawson, “A Language for Shading and Lighting
Calculations”, Computer Graphics (SIGGRAPH '90 Proceedings) , volume 24,
August 1990, 289–298
Introduces and explains RenderMan. Includes some details on compilation issues

[Hedelman84] H. Hedelman, “A Data Flow Approach to Procedural Modeling”, IEEE
Computer Graphics and Applications , volume 3, January 1984, 16–26
Can hook together procedural models, transformations, and shaders into a tree.
Discusses parallel execution of nodes of the tree. Also discusses high level smart

PhD Proposal, Marc Olano — 19 — Printed July 13, 1995, 2:29 PM

culling by procedural models and multiple representations provided by one model
procedure.

[Kajiya83] J. T. Kajiya, “New techniques for ray tracing procedurally defined objects”,
ACM Transactions on Graphics , volume 2(3), July 1983, 161–181
Gives three related ray tracing techniques. Fractals are contained within
hierarchical bounding volumes. The sub-volumes (and final primitives) are only
computed when a ray intersects the parent volume. For prisms, the ray is projected
into the plane of the prism base and intersection proceeds in 2D. The 2D base is
contained by a strip tree. For surfaces of revolution, the ray is transformed to a
parabola in a squared space and intersection proceeds in 2D as for prisms.

[Kiesewetter80] H. Kiesewetter, “ALGRA, an algebraic-graphic programming language
for modeling”, Eurographics '80 , North-Holland September 1980, 249–254
ALGRA is a follow on to DIGRA 73 – algebraic description of models with some
control structures.

[Knoll90] Thomas Knoll, Filter Module Interface for Adobe Photoshop , Adobe
Photoshop Developers Kit 1990
Technical specification for writing plug-in filters for Photoshop.

[Knoll90] Thomas Knoll, Writing Plug-in Modules for Adobe Photoshop , Adobe
Photoshop Developers Kit 1990
Overview of the workings of Photoshop plug-ins.

[Kolb92] Craig E. Kolb, Rayshade User's Guide and Reference Manual , January 1992
Description of Rayshade ray tracer. Rayshade is designed to be extensible, but
new primitives or shading functions require understanding and changing the code.
Very little is said in the documentation on how to go about doing either.

[Kuchkuda88] Roman Kuchkuda, “An introduction to ray tracing”, Theoretical
Foundations of Computer Graphics and CAD , volume F40, Springer-Verlag
1988, 1039–1060
Includes C code for a simple ray tracer. The code is designed to make it simple to
add new primitives. Each primitive requires instancing, intersection, and normal
calculation functions and a small amount of extra lex/yacc code and support code.

[Lane80] J. Lane and L. Carpenter and T. Whitted and J. Blinn, “Scan line methods for
displaying parametrically defined surfaces”, Communications of the ACM ,
volume 23(1), 1980, 23–34
Three algorithms for scan converting spline surfaces. Blinn: track edges and
silhouettes with Newton's method. Whitted: approximate edges and silhouettes
with cubic curves. Subdivide when not monotonic or not accurate enough. Lane-
Carpenter: subdivide to flatness or size limit.

[Lewis89] John-Peter Lewis, “Algorithms for Solid Noise Synthesis”, Computer
Graphics (SIGGRAPH '89 Proceedings) , volume 23, July 1989, 263–270
An excellent overview of noise functions.

PhD Proposal, Marc Olano — 20 — Printed July 13, 1995, 2:29 PM

[Max81] N. L. Max, “Vectorized Procedural Models for Natural Terrain: Waves and
Islands in the Sunset”, Computer Graphics (SIGGRAPH '81 Proceedings) ,
volume 15(3), August 1981, 317–324
Gives details for creation of “Waves and Islands in the Sunset” animation. Some
color table hacks to allow frame reuse. Uses procedural models for the waves and
islands.

[Max89] Nelson Max, “Smooth appearance for polygonal surfaces”, The Visual
Computer , volume 5(3), 3 1989, 160–173
Uses polygon mesh and vertex normals to define a quadratic Beziér triangle mesh.
Uses the Beziér mesh to render c1 smooth silhouettes, normals, shadows, and
texture coordinates

[Max90] Nelson L. Max, “Cone-Spheres”, Computer Graphics (SIGGRAPH '90
Proceedings) , volume 24, 1990, 59–62
Presents a generalized cylinder primitive: two spheres and a section of cone
tangent to both connecting them.

[Middleton78] T. Middleton, “A Language for Regular Operations in Graphics”,
Computer Graphics , volume 11, March 1978, 39–57
Argues that a base language without support for graphics makes writing graphics
code unnatural and inconvenient. Presents a 2d system built on ALGOL 68 with a
handful of special data types and operations.

[Molnar92] Steven Molnar and John Eyles and John Poulton, “PixelFlow: High-speed
rendering using image composition”, Computer Graphics (SIGGRAPH '92
Proceedings) , volume 26, 1992, 231–240
Describes the PixelFlow hardware.

[Nadas87] Tom Nadas and Alain Fournier, “GRAPE: An Environment to Build Display
Processes”, Computer Graphics (SIGGRAPH '87 Proceedings) , volume 21, July
1987, 75–84
A data flow based C testbed system. C functions are hooked together in a directed
acyclic graph. Includes excellent overview of other systems and a good set of
references.

[Nakamae90] Eihachiro Nakamae and Kazufumi Kaneda and Takashi Okamoto and
Tomoyuki Nishita, “A Lighting Model Aiming at Drive Simulators”, Computer
Graphics (SIGGRAPH '90 Proceedings) , volume 24, 1990, 395–404
Presents a reflection model for wet roads. Also, of more interest to me, presents a
2d model for diffraction of bright light sources.

[Ostby93] Eben F. Ostby, “Implementation of MENV”, SIGGRAPH '93 Developing
Large-scale Graphics Software Toolkits seminar notes , 1993
Background and implementation details on MENV. Includes some information
not found in [Reeves90] on partial updates of models from avar changes.

PhD Proposal, Marc Olano — 21 — Printed July 13, 1995, 2:29 PM

[Perlin85] Ken Perlin, “An Image Synthesizer”, Computer Graphics (SIGGRAPH '85
Proceedings) , volume 19, July 1985, 287–296
He presents a pixel stream editor. Essentially expands shade tree work to a full
language. This is the earliest example I have of a full language for shading.
Includes Perlin noise function.

[Perlin89] Ken Perlin and Eric M. Hoffert, “Hypertexture”, Computer Graphics
(SIGGRAPH '89 Proceedings) , volume 23, July 1989, 253–262
Procedurally defined solid objects (volume rendered).

[Pixar89] Pixar, The RenderMan Interface , September 1989
Technical description of RenderMan, RIB, and the shading language

[Reeves90] William T. Reeves and Eben F. Ostby and Samuel J. Leffler, “The MENV
Modeling and Animation Environment”, Journal of Visualization and Computer
Animation , volume 1(1), August 1990, 33–40
Describes the “MENV” system in use at PIXAR. MENV provides a set of
cooperating tools that communicate through shared memory, semaphores, and
message passing. All modeling is done using a special purpose modeling language
ML. ML consists of C-like statements, calls to geometric primitives, and calls to
geometric operations. Includes distinct concepts of variable scoping hierarchy,
object hierarchy, and transformation hierarchy. Animation is accomplished
through the use of articulated variables (“avars”).

[Rhoades92] John Rhoades and Greg Turk and Andrew Bell and Andrei State and Ulrich
Neumann and Amitabh Varshney, “Real-time procedural textures”, Computer
Graphics (1992 Symposium on Interactive 3D Graphics) , volume 25(2), March
1992, 95–100
Assembler-like interpreted texture language for Pixel-Planes 5

[Rubin80] S. M. Rubin and T. Whitted, “A 3-Dimensional Representation for Fast
Rendering of Complex Scenes”, Computer Graphics , volume 14(3), July 1980,
110–116
Hierarchical bounding boxes for ray tracing. Ray intersection only done with
bounding boxes, surfaces rendered by recursive subdivision. Mentions application
to recursive subdivision of procedurally defined surfaces.

[Sabin79] M. A. Sabin and R. A. Guedj and H. Tucker, “Software Interfaces for
Graphics”, Methodology in Computer Graphics , North-Holland 1979, 49–78
Part of the proceedings of the IFIP Workshop on Methodology in Computer
Graphics, Seillac, France, 1976. Overview and comparison of picture description
languages, stream protocols, and procedure libraries. Covers languages DRAW,
ARTIST, GPDL, G439, PDL2, MONSTER, and DIGRA. The article is followed
by a critique by L. Kjelldahl, and notes taken during Sabin and Kjelldahl's
presentations and the following panel.

[Trumbore93] Ben Trumbore and Wayne Lyttle and Donald P. Greenberg, “A Testbed
for Image Synthesis”, SIGGRAPH '93 Developing Large-scale Graphics Software
Toolkits seminar notes , 1993
A collection of library routines called by user code to facilitate global illumination
research.

PhD Proposal, Marc Olano — 22 — Printed July 13, 1995, 2:29 PM

[Upstill90] Steve Upstill, The RenderMan Companion , Addison-Wesley 1990
User's guide description of the RenderMan scene description interface and
shading language.

[Watt92] Alan Watt and Mark Watt, Advanced Animation and Rendering Techniques:
Theory and Practice , Addison-Wesley Publishing Company 1992
An excellent general graphics book including coverage of just about everything.
For my purposes, chapters on procedural texture mapping and modeling, shading
languages and RenderMan, deformations, procedural animation, shadowing,
shading, and parametric surfaces. Wow.

[Whitted81] T. Whitted and D. M. Weimer, “A software test-bed for the development of
3-D raster graphics systems”, Computer Graphics (SIGGRAPH '81 Proceedings) ,
volume 15(3), August 1981, 271–277
They describe a generalized 3d scan line rendering program with support for C
coded shaders. This is the earliest example of programmable shading I have. They
can interpolate arbitrary parameters.

[Whitted82] T. Whitted and D. M. Weimer, “A Software Testbed for the Development of
3D Raster Graphics Systems”, ACM Trans. on Graphics (USA) , volume 1(1),
January 1982, 43–57
More detailed version of their SIGGRAPH 81 paper. Of particular personal
interest, it has more detail on structure for the primitive half of the testbed.
Primitives have a bounding box to determine the span when they are activated and
may deposit new primitives for processing in later spans (ideal for subdivision
algorithms).

[Wyvill85] Geoff Wyvill and Tosiyasu L. Kunii, “A Functional Model for Constructive
Solid Geometry”, The Visual Computer , volume 1(1), July 1985, 3–14
CSG system rendered with ray tracing. Primitives are defined with functional
definitions. CSG operations are done on an octree representation, and ray tracing
using the octree and arbitrary functional definitions. The CSG cells can be full,
empty, point to a single object, or “nasty” (at the octree resolution limit with more
than one object in the cell).

