
6 USER EXPERIENCES

We have had several users of the procedural shading capabilities of PixelFlow. This

chapter will present some of their results and experiences.

6.1. Results

Our first and most tolerant user is Arthur Gregory. He began writing shaders well be-

fore the hardware or pfman compiler were complete. He did most of his development on

the PixelFlow simulator. This simulator was an effective tool for early software develop-

ment. It was also incredibly slow. Through his extraordinary patience, we were able to

find and remove many bugs in the pfman compiler. Over the course of a year and a half, he

wrote a number of pfman shaders, including two for an animated version of the bowling

image on the cover of [Upstill90] (Figure 6.1). ��

Figure 6.1. Bowling images by Arthur Gregory.

Our second major set of users are members of the UNC nanoManipulator Project. The

nanoManipulator project, in collaboration with physicists from UNC, provides a virtual

reality interface for an atomic force microscope. This microscope can resolve surface de-

tails down to individual atoms and, with interactive control, allows the physicist to make

nanometer-scale modifications to the surface. In addition to the surface height measured

107

by the microscope, the physicists would like to see other measured attributes like friction

and surface adhesion. The UNC nanoManipulator Project has been experimenting with

procedural shaders to show these extra surface attributes.

Chun-Fa Chang wrote the initial nanoManipulator shaders. His shaders show surface

attributes using a checkerboard pattern, texture map, or bump map. All three are modu-

lated by per-vertex shader parameters. An example of the checker board shader is shown

in Figure 6.2a. Sang-Uok Kum continued this work with shaders that replace the per-

vertex shader parameters with a texture map.

Renee Maheshwari created another shader using a spot noise function [vanWijk91].

Spot noise places spots of varying shapes on the surface in some random but even distri-

bution (a Poisson or pseudo-Poisson distribution). She is also working on a line-integral

convolution shader [Cabral93]. Alexandra Bokinsky created a shader using a bi-directional

reflectance density function (BRDF) instead of the more common, but less accurate shad-

ing approximations. Aron Helser is combining these to create a large shader that will use

multiple shading effects to visualize several surface attributes at the same time. ��

a b

Figure 6.2. nanoManipulator shaders.

a) Atomic force microscope scan of a CD-ROM, checker pattern fades in and out
with surface adhesion. b) Surface with three layers, bottom layer has a different ad-

hesion and friction.

108

 ��

a b

Figure 6.3. More nanoManipulator shaders.

a) Scanning electron microscope image of a set of copper-gold alloy samples. Each is
rendered using an appropriate BRDF. b) Combined shader using color, fading

checkerboard, and spot noise.

Our newest user is Chris Wynn. All of our other users have used only one or two

shaders at a time. He will be applying procedural shaders to a larger architectural model.

6.2. Lessons

We were fortunate to have these users to exercise the PixelFlow shading system. Their

needs and problems helped to focus our efforts in developing and extending pfman. In this

section, we look at some of the lessons we learned from our users. We were able to act on

some of these, while others will have to stand as guides for future systems.

6.2.1. Early users

Having a friendly user of the system early in the development is enormously helpful.

Arthur Gregory wrote and tested shaders using the PixelFlow simulator. He wrote com-

plex shaders that stretched the capabilities of the early system. He was forced to contort

his code to use less memory before the pfman memory allocation was done, proving that

automatic memory allocation was going to be a necessity. He did array manipulations ele-

ment-by-element before either array operations or non-constant array indices were work-

ing. Without his efforts, pfman would have probably remained as difficult to use as the

testbed interface it replaces.

109

6.2.2. Research project

While Arthur Gregory did help us to focus our pfman development, it is still a research

project. This fact is manifest by missing features, like the derivative operators or a uniform

fixed-point type. Our users have also learned to consider the possibility that problems they

experience are the result of undiscovered compiler bugs instead of bugs in their own

shader code. We also lack the documentation of a more polished commercial product.

Documentation for pfman consists of [Upstill90] for information on RenderMan, a pfman

language definition document, and a handful of network news postings to a local news-

group highlighting the differences between RenderMan and pfman. The API on PixelFlow

is documented by the OpenGL reference manual [Neider93] and a technical report on the

extensions and differences on PixelFlow [Leech98]. To fill in the absence, our users have

started to collect and share their own experiences. Using this information, Chris Wynn, the

user who has most recently started to use pfman, was able to write and run a simple pro-

cedural checker board shader in half an hour.

6.2.3. Machine details

One of the key advantages of writing shaders with a special purpose language is that

the language hides details of the machine architecture. This does not always work. Aron

Helser of the nanoManipulator project said, “Pfman successfully hides nearly all of the

details of programming the EMCs. But we still have to be acutely aware of the machine

and its strengths and limitations.”

Despite our memory allocation efforts, the nanoManipulator users have run into pixel

memory limitations, and were forced to change from floating point to fixed point for many

computations. They have hit memory limits on the number of times a loop can execute.

Each time through the loop creates another copy of the SIMD instructions for the body of

the loop, eventually creating too many. They have had to adapt their shader code to avoid

using varying expressions to control the number of times a loop executes. Many of our

users have found that if the correct set of options have not been set in the application,

some quantities (like surface position) will not be computed even if they are required.

110

Some of these machine-specific details could be masked, or better masked, by the

compiler. For example, the limitation on how many times a loop can execute would be re-

duced if the compiler moved loop-invariant code out of the loop, and the computation of

surface position could be automatically forced whenever a shader needs it. Other problems

are caused because the PixelFlow machine does not precisely fit the model presented by

the shading language. For example, no matter how good the compiler is, the amount of

pixel memory will never increase.

6.2.4. Similarity to RenderMan

Most of our users knew or learned RenderMan before trying pfman. In general, this

was helpful since RenderMan and pfman are similar. Arrays are the most popular added

feature, although two users also said that they liked the way that pfman made all of the

parameters to a shader explicit. However, the universal opinion is that the parameters

should have kept the same names as the RenderMan equivalents (e.g. E instead of

px_rc_eye). These sentiments were well summarized by Chun-Fa Chang, who said,

“It’s like learning Pascal helps learning C,” and, “I think the more pfman is like the Ren-

derMan shading language, the better it is.”

6.2.5. Development cycle

Another common complaint is the amount of time required to compile and run a

shader after each change. This is critical to the fast development and prototyping time tra-

ditionally associated with shading languages. The RenderMan shading language is com-

piled to an intermediate form which is interpreted during rendering [Hanrahan90].

For interactive performance on a machine using current technology, an interpreter is

not practical. Fortunately, it is probably not necessary. In five trials compiling a directory

of 20 shaders, the average time to compile an individual shader was 11 seconds. The

shortest time was 8 seconds and the longest was 23 seconds. In comparison, linking these

into executables to run on the PixelFlow nodes took about a minute and a half (the aver-

age time was 1:31 with times ranging from 1:26 to 1:35). The time to get the first frame

after starting an application averaged ranged from 1:16 to 1:21 over five trials, with an

average of one minute and 22 seconds.

111

Most of the time is spent linking and starting the PixelFlow machine, not compiling the

shader. By pre-linking everything but the changing shaders and reducing the object size by

stripping all unnecessary symbols, the linking time was reduced to an average of 53 sec-

onds (from 48 to 60). Ideally, we would dynamically link shaders into a running PixelFlow

application to avoid the overhead of both the linking and running. Our OpenGL extensions

allow for dynamic linking and loading of shaders if we are later able to support it.

6.2.6. Learning curve

As the project and our users have progressed, learning to use shading on PixelFlow

has become easier. The earliest experiences on the PixelFlow simulator were slow and

painful. It took several weeks to a month to become proficient enough to generate a single

frame from the simulator. Once we moved from simulation to hardware, the time to get

started decreased significantly. Since the days of the simulator, we have also put some ef-

fort into allowing users to work without a full copy of the PixelFlow libraries. Now they

need only their application and pfman shader source code.

The ramp-up time on PixelFlow has also improved as more users have gained experi-

ence. The old users help the new ones to avoid pitfalls of the machine, and have collected

documentation for getting started and writing shaders. As a result, it can now take less

than a day to get started, instead of a month or more.

Once started, writing and using new pfman shaders becomes much easier. In an infor-

mal poll of the current user community, most estimated that they could write equivalent

shaders three times faster now than when they first started.

6.2.7. Application program interface

Most of the comments I have received from users deal with using the pfman language

for writing shaders. This capability is what drew all of them to work on PixelFlow instead

of a better-supported commercial machine. However, since the nanoManipulator project

already had a working application using OpenGL, they have shown the advantages of us-

ing an API based on OpenGL. The same application now works on Silicon Graphics ma-

chines and on PixelFlow, though the added shading capabilities are only available on Pix-

112

elFlow. As Chun-Fa Chang said, “It’s good that we have such a high-level language to

take advantage of the programmable shading in PixelFlow and it still fits in the framework

of OpenGL.”

