
4 SURFACE SHADING

Surface shading is the most heavily explored procedural graphics technique. There are

several reasons for this.

� Procedural shading makes it easy to add the noise and random variability to a surface

that make it look more realistic.

� It can be easier to create a procedural shader for a complicated surface than to try to

eliminate the distortions caused by wrapping a flat scanned texture over the surface.

� If a procedural shader does not produce quite the right effect, it is easier to tweak it

than to rescan or repaint an image texture.

� It is often easier to create detail on an object using a procedural shader instead of try-

ing to modify the object geometry.

� A procedural surface shader can change with time, distance, or viewing angle.

As was explained in Chapter 2, the job of a surface shader is to produce a color for

each point on a surface, taking into account the color variations of the surface itself and

the lighting effects. We have created a language named pfman for writing these surface

shaders (pf for PixelFlow, man for its similarity to Pixar’s RenderMan shading language).

Our language is close, in syntax and purpose, to the RenderMan shading language

[Hanrahan90][Upstill90], and consequently to the C programming language. As in the

RenderMan shading language, we include several constructs (not found in C) intended to

make shading easier. Pfman is described in Section 4.1.

Section 4.1.5 covers the interface used by the graphics application to control the pro-

cedural shaders. The remaining sections of this chapter describe the optimizations that

make pfman shaders better able to run on the graphics hardware (or in some cases that
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enable the shaders to run at all). The optimizations for PixelFlow cover one of the follow-

ing key areas: memory usage (Section 4.3), communication bandwidth (Section 4.4), or

execution speed (Section 4.5).

4.1. Pfman language

The PixelFlow shading language is a special purpose C-like language for describing the

shading of surfaces on the PixelFlow graphics system. On PixelFlow, a shading function is

associated with every primitive. The shading function is executed for each visible pixel (or

each sample for antialiasing) to determine its color. This section describes the pfman lan-

guage and points out where it differs from the RenderMan shading language

4.1.1. Data

Variable declarations in pfman follow this basic form:

type_specification[array_dimensions] identifier[array_dimensions]

Where type_specification is

[type_modifier|basic_type] type_specification

Only one basic_type can appear in any type_specification.

Basic types

Only a few simple data types are supported: void, float, and fixed. The simplest

type is void. It is only used as a return type for functions that have no return value.

Where RenderMan has a single floating point type used for all scalar values, we have two

types, float and fixed. The floating point type is easier to use, but fixed point is more

efficient. Unlike RenderMan, a string type is not used as an identifier for texture maps;

instead a scalar ID is used.

The fixed type has two parameters: the size in bits and an exponent. So it is really a

class of types, given as fixed<size,exponent>. For exponents between zero and

the bit size, the exponent can also be thought of as the number of fractional binary digits.

A two byte integer would be fixed<16,0>, while a two byte pure fraction would be

fixed<16,16>. An exponent larger than the size of the fixed point number or less than
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zero is also perfectly legal. Conversion between the real value and stored value uses these

equations:

represented_value = stored_value * 2-exponent

stored_value = represented_value * 2exponent

It is much less confusing to always work with the real value. For example, a

fixed<8,8>, representing 0.5 is not “128”, any more than a floating point number rep-

resenting 0.5 is “2,113,929,216”.

Variables of the fixed type may be declared signed or unsigned. The size of a

fixed point type does not include the extra sign bit added by signed. So a signed

fixed<15,0> takes 16 bits. If not specified, all fixed point variables default to

signed.

Arrays

Pfman supports arrays of the basic types, declared in a C-like syntax. For example, the

declaration float color[3] declares color to be a 1D array of three floats,

color[0], color[1], and color[2].

Arrays can be multi-dimensional, for example float color_list[2][3]. As

with C, it is not necessary to give all of the indices for an array at once. While color_-

list[1][1] is a float, color_list[0] and color_list[1] are each

float[3] 1D arrays. In this case, color_list in interpreted as two three-element

vectors. Pfman allows the array sizes to be specified with the type or with the variable, so

color_list could also have been declared as float[2][3] color_list or

float[3] color_list[2]. The last version makes explicit the idea that

color_list is two three-element vectors.

RenderMan uses separate types for points, vectors, normals, and colors. Pfman uses

arrays. This allows us to declare any of these quantities to be either floating point or fixed

point as appropriate. Arrays also make matrices and lists of points easy to represent. Re-

cent versions of the RenderMan shading language have added a new matrix type and ar-

rays of the basic types (float, point, vector, normal, color) for just this purpose.
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Uniform and varying

As with RenderMan, pfman includes the uniform or varying type modifiers. A

varying variable is one that might vary from pixel to pixel, similar to plural in Mas-

Par’s MPL [MasPar90] or poly in Thinking Machines’ C* [ThinkingMachines89]. For

example, the texture coordinates across a surface would be varying.

A uniform variable is one that will not vary from pixel to pixel, similar to

singular in MPL or mono in C*. For the brick shader presented in Figure 1.3, the

uniform parameters are the width, height and color of the bricks and the thickness and

color of the mortar. These control the appearance of the brick, and allow us to use the

same brick shader for a variety of different brick styles.

Declaring a variable to be varying does not imply that it will vary, only that it

might. If not specified, shader parameters default to uniform and local variables default

to varying.

Other type modifiers

There are a number of additional modifiers for pfman shader parameters. These affect

what happens to the parameter before it is passed to the shader. For example, the unit

modifier indicates that the parameter should be normalized before it is passed to the shad-

ing function. This does not imply that a unit parameter will remain unit length if it is

changed within the shader.

The remaining modifiers each declare a type of transformation to be applied to a pa-

rameter before it is passed to the shading function. The first four of these transformation

types are discussed in more detail on page 2.4.2. The transform_as_point modifier

applies the current geometric transformation to a point in homogeneous coordinates. The

inverse of this is given by transform_as_plane (so named because, for the perspec-

tive transformations prevalent in graphics, plane coefficients transform by the inverse of

the homogeneous point transform). The transform_as_vector and

transform_as_normal modifiers apply the correct transformations for vectors or

surface normals [ONeill66][Koenderink90]. For example, you might declare a parameter

unit transform_as_vector float v[3]
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The final transformation modifier is transform_as_texture. This transforma-

tion allows translation, scaling, or various other effects between the original texture coor-

dinates and the coordinates used by the shader [Segal92].

The RenderMan shading language does not include any similar form of type modifica-

tion. The transformations are implicit in the basic RenderMan types, and RenderMan has

no equivalent of unit or transform_as_texture.

User-defined types

Pfman also supports aliases for types with a C-like typedef statement. typedef is

only legal outside function definitions, and no distinction is made between equivalent types

with different names. The statement

typedef float Point[3], Normal[3];

declares Point and Normal to both be types that can be used completely interchangea-

bly with float[3]. A number of such type definitions can be found in the pfman include

file, pftypes.h. Pfman does not allow any function, parameter, or variable to have the

same name as a user-defined type.

4.1.2. Functions

Overloading

Function overloading, similar to that in C++, is supported by both pfman and Render-

Man. Functions of the same name that can be distinguished by their input parameters are

considered distinct. This provides the ability to have separate versions of functions for

uniform and varying parameters, float and fixed, or different fixed point types.

Note that functions cannot be overloaded based on their return types and operator over-

loading is not supported.

Definition

A function definition specifies the return type, name, parameters, and body that define

the function. These function definitions cannot be nested. A simple function definition is



47

float factorial(float n) {

if (n > 1)

return n * factorial(n);

else

return 1;

}

Shading functions

There are several special pseudo-return-types that indicate that a function is actually a

procedure for some procedural stage (Section 2.3). For the procedure types discussed in

this chapter, these are surface and light. Chapter 5 covers primitive and

interpolator functions. Instead of returning the result of the procedural stage, these

functions place their results in special output parameters. For surface procedures,

the output color is declared

output varying Color px_rc_co[3]

Where Color is a typedef alias for unsigned fixed<8,8>. We restrict varying

surface shader parameters to only use fixed point types. This is an implementation restric-

tion that may be relaxed in the future.

Light procedures produce both a color and direction, which are declared

output varying Short px_rc_l[3]

output varying Color px_rc_cl[3],

Short is a typedef alias for signed fixed<11,8>. These type names are defined

for convenience in the pfman_types.h header file, included by most pfman proce-

dures. The parameter names are defined by other portions of the PixelFlow system soft-

ware. One of the biggest complaints of our users is that the names of these parameters do

not match those of RenderMan (Ci, L, and Cl). In future efforts, even if we kept the

pfman language, we would choose to convert these names within the pfman compiler to

match the user’s expectations.

The procedural stage functions are not called explicitly. Their parameters are set by

name from a global state kept by the graphics library (discussed in more detail in Section

4.1.5). It is possible that an application program will never set the value for some of the

parameters of a shader. As is done in RenderMan, we allow default values for the pa-
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rameters of these functions. These are given in the parameter list as parameter =

value (just like variable initialization). e.g.

float brick_width = 0.05

These default values must be compile-time constants. As with RenderMan, if no default

value is given, it is assumed to be zero.

These ideas are demonstrated in the code for a simple light that uses the same color

and light direction for all pixels (Figure 4.1).

light simple_light(

uniform float px_light_diffuse[3] = {0.99, 0.99, 0.99},

uniform float px_light_position[3] = {.408, -.408, .816},

output varying Color px_rc_cl[3],

output varying Short px_rc_l[3])

{

px_rc_cl = px_light_diffuse;

px_rc_l = px_light_position;

}

Figure 4.1. Code for a simple light.

Prototypes

Any function that is to be used before it is defined, or that is defined in a different

source file, must have a prototype, for example

float factorial(float n);

Prototypes for the common math and shading functions (as defined for RenderMan in

[Upstill90]) are defined in the standard pfman include file pfman.h.

External linkage

As mentioned in Section 3.3.1, The pfman shading language compiler turns shading

language source code into C++ source code that must be further compiled with a C++

compiler. The function definitions and function calls created by the compiler correspond

directly to C++ function definitions and function calls. It is possible (and supported) to call

C++ functions from shading language functions and to call shading language functions

from C++. This facility is limited to functions using pfman’s types. For example, the ability

to call C++ functions from shading code is used to allow access to the standard math

functions for uniform float variables. The ability to call shading language code from
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C++ allows shaders written with the testbed interface to call functions that have been cre-

ated in pfman.

The pfman compiler adds some additional arguments to most functions when creating

the corresponding C++ function. To create and call ordinary C++ functions, we use

extern  directives similar to the C++ extern  directive:

extern “C++” uniform float factorial(float x);

These directives appear immediately before a function definition or declaration, and mod-

ify the C++ code generated for that function. Legal strings for the extern  are “C” ,

“C++” , “inline”  or “static” . The extern “C++”  and extern “C”  direc-

tives indicate that the function should be compiled as a regular C++ or C function without

the extra arguments normally added by pfman. Functions of either of these types cannot

include any varying parameters or variables. The extern “inline”  directive indicates

that the function should be compiled as a C++ inline function. The extern “static”

directive indicates that the function should be visible only in the file where it is defined.

Combinations of these are also acceptable (e.g. extern “static C++” ), as long as C

and C++ do not both appear. Thus the extern  specification is

extern “ [inline ] [static ] [C|C++]”

4.1.3. Expressions

Operators

The set of operators and operator precedence is similar to that of C (it was based on a

grammar for ANSI C). The full list of operators and their precedence is given in Figure

4.2.

Operations on arrays

Operations on arrays are defined as the corresponding vector, matrix, or tensor opera-

tion. The unary operations act on all elements of the array. Addition, subtraction, and as-

signment require arrays of equal dimension and perform the operation between corre-

sponding elements (i.e. a + b  gives the standard matrix addition of a and b). The com-

parison operations also require arrays of equal dimension, though only == and !=  are

permitted.
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Operation Associativity Purpose
( ) — expression grouping

++ –– [] — postfix increment and decrement, array index
++ –– – ! — prefix increment and decrement, arithmetic

and logical negation
( ) — type cast

^ left xor / cross product / wedge product
* / % left multiplication, division, mod

+ – left addition, subtraction
& left bitwise and
| left bitwise or

<< >> left shift
< <= >= > left comparison

== != left comparison
&& left logical and
|| left logical or
?: right conditional expression

= += -= *= /=
^=

right assignment

, — expression list

Figure 4.2. Pfman operator precedence

Multiplication between vectors gives a dot product, between vector and matrix, matrix

and vector, or matrix and matrix gives the appropriate matrix multiplication. More gener-

ally, multiplication between any two arrays gives the tensor contraction of the last index of

the first array against the first index of the second array (e.g. a generalized inner product).

In other words, for float a[3][3][3] , float b[3][3][3]  and float

c[3][3][3][3] ,

c = a * b;

computes

c[i][j][k][l] = 
�

m=0

3
 a[i][j][m]*b[m][k][l]  

The /  and ̂  operators have special meaning for certain array types. 1/a  is the inverse

of a square matrix a,  and b/a  multiplies b by the inverse of square matrix a. The ̂  op-

erator gives the cross product between two 3D vectors.
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Inline arrays

C-style array initializers are allowed in any expression as an anonymous array. A 3x3

identity matrix might be coded as {{1,0,0},{0,1,0},{0,0,1}}, while the com-

puted elements of a point on a paraboloid might be filled in with {x, y, x*x+y*y}.

As a variable initializer, this would be

float v[3] = {0,0,0};

In an expression, it would be

v = p - {1,1,1};

4.1.4. Statements

As in C, anywhere a statement is legal, a compound statement is legal as well. A com-

pound statement is just a list of statements delimited by { and }. Any expression followed

by a ; is also a legal statement. The remaining types of statements closely mimic C or the

RenderMan shading language.

Standard control statements

Most of the control statements are borrowed directly from C.

if (condition_expression) statement_for_true

if (condition_expression) statement_for_true

else statement_for_false

while (condition_expression) loop_statement

do loop_statement until (condition_expression);

for (initial_expression; condition_expr; increment_expression)

 loop_statement

break;

continue;

return;

return return_value_expression;

In addition, the illuminance statement is taken from RenderMan, to aid in shad-

ing. This statement,

illuminance () statement

illuminance (position_expression) statement

illuminance (position_expression, axis_expression,

angle_expression) statement



52

can be thought of as an integral over the incoming light. For our implementation (as well

as Pixar’s RenderMan implementation), illuminance acts as a loop over the available

light sources. Since the lights are also procedural, this means the function for each light

source is run, producing a light color and intensity. A group at the University of Erlangen

has produced a RenderMan implementation that computes a global illumination render-

ing, including all of the inter-reflections between different surfaces [Slusallek94]. In their

implementation, the illuminance statement really does numerically compute the inte-

gral over all incoming light.

Within the body of the illuminance statement, the light direction can be accessed

with the shading parameter, px_rc_l, and the light color can be accessed as px_rc_-

cl. An example of the illuminance construct implementing an approximation to

Phong shading from [Lyon93] is given in Figure 4.3.

illuminance() {

float L[3] = normalize(px_rc_l);

float n_dot_l = Nf * L; // Nf = unit surface normal

float v_dot_l = V * L; // V = unit “view” vector from surface to eye

// specular contribution

varying float spec = 1 + v_dot_l - two_n_dot_v * n_dot_l;// D.D / 2

spec = 1 - spec * px_material_shininess / 4;

if (spec < 0) spec = 0;

spec *= spec;

spec *= spec;

if (n_dot_l < 0)

n_dot_l = spec = 0;

// add in diffuse and specular contributions with appropriate colors

diffuse += px_rc_cl * n_dot_l;

specular += px_rc_cl * spec;

}

Figure 4.3. Use of the illuminance construct.

Declaration statements

As in C++, variable declarations can occur anywhere a statement can. For example,

float a[3], b=2*x, c;
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declares a as an uninitialized 1D float array with 3 elements, b as a float with an ini-

tial value twice the value of variable x at the declaration time, and c as an uninitialized

float. Each compound statement block, enclosed by { and }, defines a new scope. Vari-

ables can be redefined within a compound statement without conflicting with function or

variable names in other scopes.

4.1.5. Antialiasing

Pfman has minimal support for shader antialiasing similar what is available in the Ren-

derMan shading language. None of the automatic antialiasing techniques discussed in 2.4.5

are used. Filtered step functions are available to analytically antialias a shader. Band-

limited noise functions are also available as a creative tool for writing shaders, and these

functions can be faded by the user-written pfman code as their base frequency approaches

the pixel size. To use these tools, it is necessary to know the size of pixel being shaded.

The pixel size is available in the varying input parameter, px_shader_f_sqr, equiva-

lent to the RenderMan variable area.

4.2. Application interface

The RenderMan standard [Upstill90] defines not only the shading language, but also a

graphics application program interface (API). This is a library of graphics functions that

the graphics application can call to describe the scene to the renderer. We elected to base

our API on OpenGL [Neider93] instead of RenderMan. OpenGL is a popular API for in-

teractive graphics applications, supported on a number of graphics hardware platforms. It

provides about the same capabilities as the RenderMan API with a similar collection of

functions, but with more focus on interactive graphics. By using OpenGL as our base we

can also easily port applications written for other hardware.

We extended OpenGL to support procedural shading. We required that these proce-

dural shading extensions have no impact on applications that do not use procedural shad-

ing. We also endeavored to make them fit into the framework and philosophy of OpenGL.

The design of these extensions was a group effort. The primary contributors were Jon

Leech, Lee Westover, Anselmo Lastra, Roman Kuchkuda, Paul Layne, Rich Holloway,
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and the author. These PixelFlow extensions to OpenGL are described in much more detail

in [Leech98].

Following the OpenGL standard, all of our extensions have the suffix EXT. We will

follow that convention here to help make it clear what functions are already part of

OpenGL and which we added. OpenGL functions also usually include additional suffix

letters to indicate the operand types (f, i, s, etc.). For brevity, we will generally omit

these in the text, though we will use them in the code examples.

4.2.1. Shading parameters

Applications that do not employ procedural shading use a default OpenGL shader.

This built-in procedural shader supports the standard OpenGL shading model. Parameters

to the OpenGL shading model are set using the glMaterial call or one of a handful of

other parameter-specific calls (glColor, glNormal, and glTexCoord). The

OpenGL shading model uses a number of different color parameters (GL_AMBIENT_-

COLOR, GL_DIFFUSE_COLOR, GL_SPECULAR_COLOR or

GL_EMMISIVE_COLOR). glColor can be assigned to set any one of these or the com-

bination of ambient and diffuse. The other colors can still be set by glMaterial. Figure

4.4 shows some OpenGL code for one vertex using these calls. A triangle includes three

similar vertices.

glNormal3f(1.0, 0.0, 0.0);

glMaterialfv(GL_EMISSIVE_COLOR, white); // white is a float array

glVertex3f(0.0, 0.0, 1.0);

Figure 4.4. Typical OpenGL code for a vertex.

We use these same functions for other shaders. To handle arbitrary shading parame-

ters, we assign each parameter a parameter ID, which is used to identify it in the glMa-

terial call. The application can find a parameter ID using the glMaterialParame-

terNameEXT function. The glNormal, and glTexCoord functions are equivalent to

using glMaterial with specific parameters of the OpenGL shader (px_material_-

normal and px_material_texcoord). For example,

glNormalfv(normal);

glTexCoordfv(texcoord);
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is equivalent to

glMaterialfv(glMaterialParameterNameEXT(

“px_material_normal”), normal);

glMaterialfv(glMaterialParameterNameEXT(

“px_material_texcoord”), texcoord);

The various color parameters are equivalent to parameters named px_ mate ri al_ -

ambient , px_material_diffuse , px_material_specular  and px_ mate -

ri al_ emissive . By using parameters with these same names, user-written shaders can

make use of the values that were set in the application using glColor , glNormal , and

glTexCoord .

4.2.2. Shader instances

The RenderMan API allows some parameter values to be fixed when a shader function

is chosen. Our equivalent is to allow certain bound parameter values. A shading function

along with its bound parameters together make a shader instance (or sometimes just

shader) that describes a particular type of surface. Shader instances with bound parameter

values allow us to define several surface types using the same shading function, for exam-

ple fat red bricks and thin yellow bricks (Figure 4.5), both using the brick function of

Figure 1.2. We can easily choose one kind of brick or the other within the application by

referring to the right shader instance.

A shader function describes how to create a certain class of surfaces, (e.g. “bricks”).

To set bound parameter values, we add a glBoundMaterialEXT  function, equivalent

to glMaterial  for bound parameters.            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4.5. Instances of a brick surface shader
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We load a shader function by calling the new API function glLoadExtension-

Code. To create instances, we provide three new functions. The instance definition is

contained in a glNewShaderEXT, glEndShaderEXT pair. This is similar to other

OpenGL capabilities, for example display list definitions are bracketed by calls to glNew-

List and glEndList. glNewShaderEXT takes the shading function to use and re-

turns a shader ID that can be used to identify the instance later. Between the glNew-

ShaderEXT and glEndShaderEXT we allow calls to glShaderParameterBin-

dingEXT. glShaderParameterBindingEXT takes a parameter ID and one of

GL_MATERIAL_EXT or GL_BOUND_MATERIAL_EXT. This indicates that the pa-

rameter should be set by calls to glMaterial or glBoundMaterialEXT respec-

tively. Figure 4.6 shows the code to create a shader instance.

// load the shader function

GLenum phong = glLoadExtensionCodeEXT(GL_SHADER_FUNCTION_EXT, "phong");

// create a new instance called red_phong

GLenum red_phong = glNewShaderEXT(phong);

glShaderParameterBindingEXT(

        glGetMaterialParameterNameEXT("px_material_normal"),

        GL_MATERIAL_EXT);

    glShaderParameterBindingEXT(

        GL_DIFFUSE,

        GL_BOUND_MATERIAL_EXT);

glEndShaderEXT();

// set the bound value for the diffuse color parameter

float red[3] = {.4,0,0,1};

glBoundMaterialfvEXT(red_phong, GL_DIFFUSE, red);

Figure 4.6. Application code to create a shader instance.

To choose a shader instance, we use the glShaderEXT call. This function takes a

shader ID returned by glNewShaderEXT. Primitives drawn after the glShaderEXT

call will use that shader instance.

4.2.3. Lights

OpenGL normally supports up to eight lights, GL_LIGHT0 through GL_LIGHT7.

These lights are turned on and off through calls to glEnable and glDisable. Pa-
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rameters for the lights are set by calls to glLight, which takes the light ID, the parame-

ter, and the new value. We use all of these calls for our procedural lights. New light func-

tions are loaded with glLoadExtensionCodeEXT, in the same way that new shader

functions are loaded. New light IDs beyond the eight pre-loaded lights are created with

glNewLightEXT.

Since OpenGL only supports eight lights, many applications reuse these lights within a

frame. For example, all eight lights may be used in a single room of an architectural model.

The positions and directions of the lights can be changed before rendering any polygons

for the next room, giving the effect of more than eight lights even though only eight at a

time shine on any one polygon.

PixelFlow’s use of deferred shading means that we cannot easily handle light changes

within a frame. Each light, along with its parameter settings, is effectively a light instance

in the same way that a shader with its bound shader parameters is a shader instance. This

encourages a PixelFlow application to create a large number of lights, since each change in

parameters requires a new light. To handle the enabling and disabling of a large set of

lights, we create light groups. A new light group is created by a call to glNewLight-

Group. Lights are enabled and disabled in the light group using the normal glEnable

and glDisable calls. Within the frame we use glEnable with a light group ID to

switch the active set of lights. Light groups may be a useful shorthand on other systems,

but their primary purpose is to make light changes within a frame possible on PixelFlow

4.3. Memory optimizations

The most limited resource for shaders on PixelFlow is the pixel memory. The texture

memory size (64 megabytes) affects the size of image textures a shader can use in its com-

putations, but does not affect the shader complexity. The microprocessor memory (128

megabytes), is designed to be sufficient to hold large geometric databases. For shading

purposes it is effectively unlimited. However, the pixel memory, at only 256 bytes, is quite

limited. From that 256 bytes, we further subtract the shader input parameters and an area

used for communication between the light shaders and surface shaders. In this section we
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highlight some of the pfman features and optimizations made by the pfman compiler to

make this limited amount of memory work for real shaders.

4.3.1. Paging

It would be possible to increase the available pixel memory by paging to texture mem-

ory, and even further by paging texture memory completely out of the PixelFlow machine.

Writing, then reading, four bytes of texture memory for every pixel in a 128x64 region

takes 380 � s. For a system with four shaders, a single swapping operation in each of the

40 regions of a non-antialiased NTSC video image would take over 10% of the 33 ms

available for rendering a frame at 30 frames per second. For a single swapping operation

in each of the 160 regions of a high-resolution image or an antialiased NTSC video image,

the total jumps to over 45% of the available time. Consequently, paging could help for

running arbitrary shaders at faster than off-line rendering (but slower than interactive)

speeds. Since our primary focus is interactive rendering, we have not pursued any paging

methods. Any shader we want to run interactively must fit in the 256 bytes of real pixel

memory.

4.3.2. Uniform and varying

RenderMan divides parameters into uniform, and varying in part for the efficiency of

their off-line uni-processor renderer. Uniform parameters are used to control the overall

operation and appearance of the shader while varying parameters control variations across

the surface. A single expression can use a mix of uniform and varying parameters. We de-

fine a uniform expression (or sub-expression) as one with a uniform result, and a varying

expression as one with a varying result. As Pixar’s prman renderer evaluates the shading

on a surface, it computes uniform expressions only once, sharing the results with all of the

surface samples. Then it loops over all of the surface samples to compute the varying ex-

pressions.

We can make use of a similar division of labor. We store all uniform variables in the

microprocessor memory, so operations between them can be done once, by the micro-

processor. Thus operations and storage for uniform variables are shared by all pixels.

Varying computations must be done by the pixel processors since they can potentially
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have different values at every pixel. Consequently, these variables must exist in pixel

memory. Their storage and operations are replicated across the SIMD array. This same

distinction between shared (uniform) and SIMD array (varying) memory has been made

by other SIMD compilers [MasPar90][ThinkingMachines89] (Section 4.1.1).

The division between uniform and varying provides some execution speed gain, since

computing a single math operation on the PA-RISC processor is faster than computing the

same math operation simultaneously on all of the pixel processors. However, the memory

savings is the primary motivation for our interest in this division.

4.3.3. Fixed point

RenderMan has one representation for all numbers: floating point. Pfman also supports

floating point (32-bit IEEE single precision format) because it is such a forgiving repre-

sentation. This format can represent numbers as large as about 1038 or as small as 10–38,

with about 10–7 relative error throughout the range. Smaller numbers can be represented

but with greater relative error.            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

a b

Figure 4.7. Fixed point vs. floating point comparison.

a) Mandelbrot set computed using floating point. b) Mandelbrot set computed using
fixed point

For some quantities used in shading this range is overkill. For colors, an 8 to 16 bit

fixed point representation is sufficient [Hill97] . But floating point takes four bytes, re-

gardless of the necessary range. Worse, there are cases where floating point has too much

range but not enough precision. For example, a Mandelbrot fractal shader has an insatiable

appetite for precision, but only over the range [–2,2] (Figure 4.7). In this case, it makes

much more sense to use a 32 bit fixed point format instead of a 32 bit floating point for-
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mat, since the floating point format wastes one of the four bytes for an exponent that is

hardly used. In general, it is easiest to prototype a shader using floating point, then make

changes to fixed point as necessary for memory usage, precision, and speed (the speed ad-

vantages will be covered in more detail later in this chapter).

To help further, we specify the size of our fixed point numbers in bits. PixelFlow can

only allocate and operate on multiples of single bytes. However, we can do a much better

job of limiting the sizes of intermediate results in expressions with a more accurate idea of

the true range of the values involved. For example, if we add two arbitrary two-byte inte-

gers, we need to allocate three bytes for the result. However, if we know the integers

really only use 14 bits, the result can be at most 15 bits, which fits in two bytes instead of

three.

The analysis to determine the sizes of intermediate fixed-point results happens in two

passes. The first, bottom-up pass determines the sizes necessary to keep all available preci-

sion. It starts with the sizes it knows, variable references or the result of type casts. It

combines them according to simple rules (e.g. multiplication adds the bit sizes and adds

exponents). The second, top-down pass limits the fixed point types used for the intermedi-

ate results to only what is necessary for the assignment or type cast used for the final re-

sult of the expression.

fixed<10,10> x,y;

fixed<15,12> z,r;

r = x*y + z

fixed<20,20> t1 = x*y;

fixed<24,20> t2 = t1+z;

fixed<15,12> r = t2;

fixed<12,12> t1 = x*y;

fixed<15,12> t2 = t1+z;

fixed<15,12> r = t2;

 a b c

Figure 4.8. Example of fixed point size determination.

a) original code. b)  after bottom-up pass. c) after top-down pass

Figure 4.8 demonstrates the procedure used for determining fixed point types for in-

termediate results in a complex expression. Figure 4.8a shows the original expression and

sizes. The variables x and y are signed 10-bit pure fractions, representing numbers from –

1 to just under 1. Both z and the result, r, are 15 bits (3-bit integer part and 12-bit frac-

tional part), representing numbers from -8 to just under 8. In Figure 4.8b, we have done

the bottom-up pass. The result of x*y could be as big as 20 bits, all of which would still
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be fractional. The result of adding z to this could have 4 integer bits (e.g. adding a number

just under 8 to a number just under 1, gives a result that is almost 9), and we might want

to keep all 20 fraction bits from x*y.

Finally, Figure 4.8c demonstrates the top-down part of the algorithm. Since r only has

three integer bits and 12 fraction, there is no point in keeping t2 to any greater precision.

Since t2 has now been trimmed down to fixed<15,12>, there is no point to keeping a

full 20 bits for t1 since only 12 will be used. The result is a set of fixed point types for all

parts of the expression that are as small as possible, while still conforming to the con-

straints set by the input and output types.

Strictly speaking, since the representation of z is only accurate to 12 bits, the actual

number that z represents could be all 1’s instead of all 0’s (or any other choice of random

bits) for the extra eight bits in Figure 4.8b. However, most users expect 1.0+0.01 to be

1.01, not 1.1, 1.05, or 1.08. If these excess bits affect the result, we set them to zero

to conform to this expected behavior. The ability to ask for more precision in the result

than it is possible to accurately compute is one of the pitfalls of fixed point and numeric

computing in general. We do not protect the user from these types of problems.

4.3.4. Memory allocation

We gain some memory savings from placing uniform variables and expressions in mi-

croprocessor memory and from using fixed point instead of floating point, yet the primary

feature that allows shaders to have any hope of working on PixelFlow is the memory allo-

cation done by the compiler. Since every surface shader is running different code, there is

no reason why the memory maps used by all shaders should be the same. We use a differ-

ent memory map for each shader, with the memory maps determined at compile time.

We have found that, while even the simplest of shaders may define more than 256

bytes worth of varying variables, most shaders do not use that many variables at once. We

effectively treat pixel memory as one giant register pool, and perform register allocation

on it during compilation. This is one of the most compelling reasons to use a compiler

when writing surface shaders to run on graphics hardware. While it is possible to manually
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do the analysis of which variables can coexist in the same place in memory, it is not easy.

It took the author about a month to do just such an analysis for the Pixel-Planes 5 shading

code (combined with an analysis of the fixed point sizes for all intermediate results). This

code was written by hand at approximately the level that the pfman compiler produces.

With automatic allocation, it suddenly becomes possible to prototype and change shaders

in minutes instead of months.

4.3.5. Memory allocation method

The pfman memory allocator was written by Voicu Popescu. It performs a variable

lifetime analysis using a static single assignment (SSA) representation of the procedure

[Muchnick97] [Briggs92] (see Figure 4.9). First, we go through the shader, creating a

new temporary variable for the result of every assignment. This is where the method gets

its name: we do a static analysis, resulting in one and only one assignment for every vari-

able. In some places, a variable reference will be ambiguous, potentially referring to one of

several of these new temporaries. At these points we replace the reference with a pseudo-

function called a � -function. This indicates that, depending on the control flow, one of

several variables could be referenced. The arguments to the � -function are each of the

temporary variables that the original reference could potentially use. In these cases, we

merge the separate temporaries back together into a single variable. What results is a pro-

gram with many more variables, but each having as short a lifetime as possible.

i = 1;

i = i + 1;

if (i > j) {

i = 5;

}

j = i;

i1 = 1;

i2 = i1 + 1;

if (i2 > j1) {

i3 = 5;

}

j2 = � (i2,i3);

i1 = 1;

i2_3 = i1 + 1;

if (i2_3 > j1) {

i2_3 = 5;

}

j2 = i2_3;

a b c

 Figure 4.9. Example of SSA analysis.

a) original code fragment. b) code fragment in SSA form. Note the new variables
used for every assignment and the use of the � � -function for ambiguous assignment.

c) final code fragment with � � -functions merged.

Following the conversion to SSA form, we make a linear pass through the code, map-

ping the new variables to free memory as soon as they become live, and unmapping them
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when they are no longer live. Variables can only become live at assignments and can only

die at their last reference. As a result of these two passes, variables with the same name in

the user’s code may shift from memory location to memory location. We only allow these

shifts when the SSA name for the variable changes. This costs us a little in the amount of

memory available to called functions, but eliminates excess copies whose sole purpose

would be to keep active memory compact. One of the major effects of the SSA analysis is

that a variable that is used independently in two sections of code may not actually reside

anywhere between the two sections.

Every  shader and function allocates memory from an offset of zero relative to a frame

pointer. This allows us to make the best use of our aggressive allocation without locking

the exact memory locations. Therefore, the successive calls of the recursive factorial func-

tion in Section 4.1.2 would have progressively higher frame pointers and would use pro-

gressively higher actual memory locations for its computations. This places a hard limit on

how big a number this factorial function can compute, and shows that general recursion is

not practical in pfman.

//*** 79:     uInt1 row = px_shader_texcoord[1] / brick_height; ***//

emc_ufixed2fp(pfman_p, pfman_map,

/* pfman_tmp0 */ pfman_frameptr,

/* px_shader_texcoord */ px_shader_texcoord + (int)(1*2));

emc_fp_intomem(pfman_p,

/* pfman_tmp1 */ pfman_frameptr + 4,

(1. / brick_height));

emc_fp_mul(pfman_p,

/* pfman_tmp2 */ pfman_frameptr,

/* pfman_tmp0 */ pfman_frameptr,

/* pfman_tmp1 */ pfman_frameptr + 4,

/* 14 byte temp */ pfman_map->mark());

emc_fp2fixed(pfman_p, pfman_map,

/* row */ ufixed<8,0>(pfman_frameptr) + 4,

/* pfman_tmp2 */ pfman_frameptr);

Figure 4.10. Generated code

Figure 4.10 shows a short section of code generated by the pfman compiler for part of

the brick shader of Chapter 1. All of the temporary values and local variables are relative
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to the frame pointer, but the shader parameters are referenced directly. Several temporar-

ies, as well as the local variable result of the expression are stored in the same place (at

different times). Finally, the reciprocal of the uniform variable, brick_height, is com-

puted at the time this C++ code is executed, while the instructions for the pixel computa-

tions are placed in the SIMD instruction stream buffer, pfman_p.

4.3.6. Memory allocation results 

Figure 4.11 shows the performance of the memory allocator on an assortment of shad-

ers. Images generated with these shaders are shown in Figure 4.12.

shader uniform +

varying

varying varying with

allocation

simple brick 171 97 16

fancy brick 239 175 101

ripple reflection 341 193 137

planks 216 152 97
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a b c d

Figure 4.12. Example surface shaders

a) simple brick. b) fancy brick. c) ripple reflection. d) wood planks

These numbers show that the distinction between uniform and varying variables makes

a large difference in the memory use by the shaders, while the success of the memory allo-

cation can vary from shader to shader. The actual memory usage numbers are hard to in-

terpret because they do not include the space taken by the shaders parameters, the shader-

light communication area, and the other pixel-memory overhead. An easier statistic to in-
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terpret is the amount of free pixel memory available during the shader execution. We have

collected this information, along with the SIMD execution time for some of the shaders in

Figure 4.12, as well as some of the user-written shaders from Chapter 6. These are shown

in Figure 4.13

The second nanoManipulator shader is particularly revealing. With only one byte free,

it is barely able to fit. This shader has already been largely converted to fixed-point to get

to the point where it would run at all. This shows that with only 256 bytes of memory,

even with memory allocation, it is not always possible to prototype an entire shader in

floating point. For larger shaders, an incremental approach is necessary, converting pieces

of the shader to fixed point as they are developed to make room. Further, the UNC

nanoManipulator project wants to combine the second nanoManipulator shader with the

BRDF shader. That large a shader may not be possible at all in the space available on Pix-

elFlow.

shader bytes free time

fancy brick 46 613.15 � s

ripple reflection 59 1058.07 � s

planks 105 532.30 � s

bowling pin 86 401.96 � s

nanoManipulator (texture and bumps) 75 567.95 � s

nanoManipulator (texture, bumps, and spot noise) 1 2041.44 � s

BRDF 51 1638.67 � s

 Figure 4.13. Shader execution time and memory.

4.4. Bandwidth optimizations

There are two communication paths between boards in the PixelFlow system (see

Section 3.3. The geometry network allows communication between the microprocessors

and the composition network allows communication between pixels. We are most con-
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cerned with the bandwidth of the composition network. The total effective bandwidth of

the composition network is 11.2 GB/s if we use simultaneous transfers in both directions

or 5.6 GB/s if we only send data in one direction at a time.

As mentioned in Section 3.1, PixelFlow uses deferred shading. The rendering boards

store varying shading parameters and a shader ID in the pixels. The complete set of data

for each visible pixel must be transferred over the composition net from the rendering

boards to a shader board, then a final color from the shader board to the frame buffer. The

design of the composition network allows these two transfers to be overlapped, so we

really only pay for the bandwidth to send data for each visible pixel from the rendering

boards to shading boards. At 30 frames per second on a 1280x1024 screen (or 640x512

screen with 4 sample antialiasing), and accounting for the transfer chunk size, this results

in a maximum communication budget of 280 bytes per pixel for bi-directional composi-

tions or 140 bytes per pixel for uni-directional compositions. To deal with this limited

communication budget, we have to perform some optimizations to reduce the number of

parameters that need to be sent from renderer board to shader board.

4.4.1. Shader-specific maps

Even though each 128x64 pixel region is sent as a single transfer, each pixel could

potentially be part of a different surface. Rather than use a transfer that is the union of all

the parameters needed by all of those surface shaders, we allow each to have its own tai-

lored transfer map. The first two bytes in every map contain the shader ID, which indicate

what transfer map was used and which surface shader to run.

4.4.2. Bound parameters

The bound parameters of any shader instance cannot change from pixel to pixel

(Section 4.2.2), so they are sent over the geometry network directly to the shading nodes.

Since the shading nodes deal with visible pixels without any indication of when during the

frame they were rendered, we must restrict bound parameters to only be changed between

frames. The bound uniform parameters are used directly by the shading function running

on the microprocessor. Any bound varying parameters must be loaded into pixel memory.

Based on the shader ID stored in each pixel, we identify which pixels use each shader in-
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stance and load their bound varying parameters into pixel memory before the shader exe-

cutes.

Any parameter that is bound in every instance of a shader should probably be uniform,

since this gives other memory and execution time gains. Yet, it is occasionally helpful to

have bound values for varying shading parameters. For example, our brick shader may in-

clude a dirtiness parameter. Some brick walls will be equally dirty everywhere. Oth-

ers will be dirtiest near the ground and clean near the top. The instance used in one wall

may have dirtiness as a bound parameter, while the instance used in a second wall

allows dirtiness to be set using glMaterial with a different value at each vertex.

However, the set of parameters that should logically be bound in some instances and

not in others is small. Allowing bound values for varying parameters would be only a mi-

nor bandwidth savings, were it not for another implication of deferred shading. Since

bound parameters can only change once per frame, we find parameters that would other-

wise be uniform are being declared as varying solely to allow them to be changed with

glMaterial from primitive to primitive (instead of requiring hundreds of instances).

This means that someone writing a PixelFlow shader may make a parameter varying for

flexibility even though it will never actually vary across any primitives. Allowing instances

to have bound values for all parameters helps counter the resulting explosion of pseudo-

varying parameters.

4.4.3. Explicit shader parameters

RenderMan defines a certain set of standard parameters that are implicitly available

for use by every surface shader. The surface shader does not need to declare these pa-

rameters and can just use them as if they were global variables. In pfman, these parameters

must be explicitly declared. This allows us to construct a transfer map that contains only

those parameters that are actually needed by the shader.

In retrospect, it would have been possible to do a static analysis of the shader function

to tell which of the built-in parameters is used. This would have had the positive effect of

making pfman that much more like RenderMan, and consequently that much easier for
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new users already familiar with RenderMan. On the other hand, it would also have pro-

longed the time it took to develop pfman.

4.5. Execution optimizations

Execution-time optimizations are the final type of optimization necessary for the prac-

tical use of shaders on PixelFlow. A frame rate of 30 frames per second translates to 33

ms per frame. The system pipelining means that most of this time is actually available for

shading. Based on 160 regions to shade for a high-resolution or antialiased NTSC video

display, each shading node is responsible for 40 regions on a system with four shading

nodes, and can take an average of 825 � s to shade each region. On a larger system with

16 shading nodes, each is responsible for 10 regions and can spend an average of 3.3 ms

shading a region. To put these times in perspective, the rippled reflection shader (see

Figure 4.12c) takes 1.1 ms to run. Even if this is the only shader, we cannot achieve our

target frame rate using only four shading nodes. With more shading nodes we can achieve

the target frame rate with time left over to shade other surfaces (though hopefully not too

many others of that shading complexity).

4.5.1. Deferred shading

Deferred shading is the technique of performing shading computations on pixels only

after the visible pixels have been determined. It provides several advantages for the execu-

tion of surface shading functions. First, no time is wasted doing shading computations on

pixels that will not be visible. Second, our SIMD array can simultaneously evaluate an in-

stance of a surface shader on every primitive that uses it in a 128x64 region. Finally, it de-

couples the rendering performance and shading performance of the system. To handle

more complex shading, add more shading hardware. To handle more complex geometry,

add more rendering hardware. On PixelFlow, where the boards for both are identical, the

balance between rendering performance and shading performance can be changed on an

application by application basis.
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4.5.2. Fixed point

In addition to their memory advantages, we can achieve significant speed improve-

ments by using fixed point operations instead of floating point. Our pixel processors do

not support floating point in hardware, so every floating point operation is built from basic

integer math operations. In contrast, fixed point operations correspond to a single integer

math operation and a small number of shifts for alignment. Essentially, a fixed point num-

ber is like a floating point number where the exponent is a compile-time constant. As a

result, some of the run-time pixel computations required for floating point become com-

pile-time constants. Some operations present a bigger advantage for fixed point than oth-

ers. Figure 4.14 shows a comparison for several operations. Addition (and subtraction)

have the highest penalty for floating point. Multiplication and division have similar costs

for both fixed and floating point because they do not require the shifts for alignment that

are necessary for addition and subtraction. As expected, the fixed-point advantage for

more complex operations falls in between these extremes. Here, sqrt is a square-root

operation and noise is a band-limited noise function, a common building block for shad-

ers.

Operation 16-bit fixed 32 bit fixed 32-bit float

+ 0.07 � s 0.13 � s 3.08 � s

* 0.50 � s 2.00 � s 2.04 � s

/ 1.60 � s 6.40 � s 7.07 � s

sqrt 1.22 � s 3.33 � s 6.99 � s

noise 5.71 � s — 21.64 � s

Figure 4.14. Fixed point and floating point execution times.

The fixed point noise function listed in Figure 4.14 was implemented by Yulan Wang,

and the remaining fixed point operations were written by Peter McMurry and Greg Pruett.

The floating point noise function was implemented by the author and the remaining float-

ing point operations were written by John Eyles and Steve Molnar.
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4.5.3. Math functions

To round out the varying math capabilities, the author created floating point versions

of the remaining standard math library functions. Efficient SIMD implementation of these

functions requires a slightly different approach than a serial implementation would. The

typical way to implement a transcendental math function (sin, asin, exp, log, …) is

with a piece-wise polynomial approximation. First the domain is folded using identities of

the particular function. For example, for log(x), we write x as m*2e with m �  [1,2). If

x is floating point, it is already in this form.

log(x) = log(m*2e) = log(2e) + log(m) = e log(2) + log(m)

It is enough to approximate log(m) between 1 and 2. Normally, the domain is further

reduced with a table of polynomials. For example, the math library distributed with SunOS

4.1 [Sun89] divides  this [1,2) domain into 32 segments and fits each with a different fifth-

order polynomial.

This approach presents a problem on PixelFlow due to the handling of conditionals on

a SIMD array. For a typical if/else, a normal serial processor evaluates the condition,

then executes either one branch or the other. On a SIMD array, the condition determines

which processing elements are enabled. The true part is executed with some processing

elements enabled, then the set of enabled processors is flipped and the false part is exe-

cuted. Thus the SIMD array spends the time to execute both branches of the if.

For the log function example, this means that using a table of 32 polynomials takes as

much time as a single polynomial for the entire [1,2) domain with 32 times as many terms.

Even so, a polynomial with 160 terms is not practical. For each PixelFlow math function,

we reduce the function domain using identities (e.g. getting an approximation domain

from 1 to 2 for the log function), but do not reduce it further. We fit this domain with a

single polynomial. Each polynomial is chosen to use as few terms as possible while re-

maining accurate to within the floating point precision.

Each approximation must have relative error that is less than the error in the floating

point representation. The mantissa of a floating point number has an error of 2-24. The full

floating point number m*2e has an absolute error of  2-24*2e, or a relative error that
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ranges from 2-24 to 2-25 (about 6*10-8 to about 3*10-8) as m ranges from 1 to 2. The

major determining factor in the accuracy of the polynomial approximation is the number of

terms. Once we have selected the right number of terms for p(x), the actual coefficients

can vary quite a bit and still be within floating point accuracy.

We want to minimize the maximum relative error. This can become quite difficult.

Since we only need a solution within the floating point accuracy, we instead solve the

easier least-squares minimum relative error over the approximation domain. So to ap-

proximate f(x) with p(x), we want to solve for the p(x) that minimizes

� ���  ��� � �	
p(x)–f(x)

f(x)

2

dx (4.1)

over the approximation domain, � . We find p(x) by solving for the coefficient vector, v 
  in

d
dv 
 � ���  ��� � �	

p(x)–f(x)
f(x)

2

dx = 0
�

(4.2)
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Figure 4.15. Natural log function over the approximation domain.
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Figure 4.16. Relative error in natural log approximation.
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For most of the math functions, even Equation 4.2 has no closed form solutions. How-

ever, we can factor it into terms that are linear in the elements of v �  and solve with nu-

meric integration.

This works well for areas where f(x) does not approach 0. If f(x0)=0 for some x0
� � ,

the relative error goes to infinity as x approaches x0. In these cases, we salvage the ap-

proximation by constraining p(x0) and  p’(x0) to match exactly while still minimizing the

least-squares relative error. Figure 4.15 shows the natural log function over the approxi-

mation domain. Figure 4.16 shows the relative error of a 10th order approximation made

by constraining the value and first derivative at x=1 and minimizing the least-squares rela-

tive error over the rest of the domain.

function exact fast

sin 81.36 � s 45.64 � s

cos 81.36 � s 48.77 � s

tan 93.25 � s 52.65 � s

asin, acos 78.52 � s 47.50 � s

atan 66.41 � s 35.34 � s

atan2 66.17 � s 35.15 � s

exp 53.37 � s 37.86 � s

exp2 51.09 � s 35.58 � s

log 57.76 � s 21.57 � s

log2 57.68 � s 21.49 � s

Figure 4.17. SIMD execution time for floating point math functions.

We provide these accurate versions of the math functions, but often shaders do not

really need the “true” function. With the ripple reflection shader in Figure 4.12c, it is not

important that the ripples be sine waves. They just need to look like sine waves. For that

reason, we also provide faster, visually accurate, but numerically poor versions of the
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math functions. The fast versions use simpler polynomials, just matching value and first

derivative at each endpoint of the range fit by the more exact approximations. This pro-

vides a function that appears visually correct while not requiring an excessive number of

terms.

4.5.4. Combined execution

Many shading functions follow the same general mold. On a SIMD system, the shaders

are executed sequentially, so the time spent shading is the sum of the time for all of the

shaders. Combining the execution of the common sections of code in multiple shaders can

lead to large gains in performance. If we find an expensive operation performed by each of

ten shaders in a scene, and manage to execute that expensive operation only once, it is

equivalent to making the expensive operation ten times faster.

This combination of operations is similar to the work of Dietz for combining execution

of code within a single SIMD procedure [Dietz92]. On a SIMD processor, even a simple

if statement requires executing the then clause and else clause sequentially. Dietz’

work with common subexpression induction allows code that appears in both to be com-

bined and executed only once.

Rather than attempt common subexpression induction at a fine grain within a shader or

between shaders, we have focused on combining the large, expensive operations shared by

different shaders. The easiest and most automatic of these types of optimizations is the

combined execution of lights for all surface shaders. For some of the more “traditional”

surface shaders, involving image texture lookups and Phong shading,  we can do further

overlapped computation. Different surface types that share the same surface shading func-

tion can sometimes be executed together. Finally, there is some interesting possible future

work with generalizing this class of overlapped execution optimizations.

Lights

One of the jobs of a surface shader is to incorporate the effects of  each light in the

scene. This is accomplished through the illuminance construct, which behaves like a

loop over the active lights (see Figure 4.18). The illuminance construct is covered in

more detail in Section 4.1.4. This means that each surface shader effectively includes a
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loop over every light. For m shaders and n lights, this would result in the execution of

m*n lights. This would be quite expensive since the lights themselves are procedural, and

could be arbitrarily complex. However, since the lights are the same for each of the m

shaders, we can compute each light just once and share its results among all of the shad-

ers, resulting in the execution of only n lights. We do this by interleaving the execution of

all of the lights and shaders.

// setup, compute base surface color

illuminance() {

// incorporate the contribution of one light

}

// wrap up

Figure 4.18. Outline of a typical surface shader.

We accomplish this interleaving by having the compiler generate three SIMD instruc-

tion streams for each shader function. The first stream, which we call pre-illum, con-

tains only the setup code (until the illuminance in Figure 4.18). The second stream

contains the body of the illuminance construct. We call this the illum stream. Fi-

nally, the post-illum stream contains everything after the illuminance. The lights

themselves create their own stream of SIMD commands. The interleaving pattern of these

streams is shown in Figure 4.19.

— time (not to scale) �
setup
phase

light 1
phase

light 2
phase

wrap up
phase

pre-illum

Surface 1 illum
post-illum
pre-illum

Surface 2 illum
post-illum
pre-illum

Surface 3 illum
post-illum

Light 1
Light 2

Figure 4.19. Interleaving of surface shaders and lights
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The memory usage of the surfaces and lights must be chosen in such a way that each

has room to operate in SIMD memory, but none conflict. The surface shaders cannot in-

terfere with each other since any one pixel can only use one surface shader. Different sur-

face shaders already use different allocations of pixel memory. Lights, however, must op-

erate in an environment that does not disturb any surface shader, but provides results in a

form that all surface shaders can use. The results of the lighting computation, the color

and direction of the light hitting each pixel, are stored in a special communications area to

be shared by all surface shaders. The light functions themselves operate in the SIMD

memory left over by the greediest of the surface shader pre-illum stages. Above this

high water mark, the light can freely allocate whatever memory it needs. The illum, and

post-illum streams of all shaders can use all available memory without interfering

with either the other surfaces or the lights.

Surface position

For image composition, every pixel must contain Z-buffer depth of the closest surface

visible at that pixel. This Z value, along with the position of the pixel on the screen, is suf-

ficient to compute the location of the surface sample in 3D. Since the surface position can

be reconstructed from these two pieces of information, we do not explicitly store the sur-

face position in pixel memory during rendering, or waste composition bandwidth sending

it from the rendering boards to the shading boards. Instead, we compute it on the shading

boards in a phase we call pre-shade, which occurs before any shading. Thus, we save

memory and bandwidth early in the graphics pipeline, and share the execution time neces-

sary to reconstruct the surface position once we need it.

Support for traditional shaders

Two optimizations have been added to assist in cases that are common for forms of

the OpenGL shading model. These can be used by procedural shaders as well, though the

interface is not as automatic as the shared lighting computations. Shared lighting compu-

tations can be applied to any shader without special coding by the shader writer, while

these special-purpose optimizations rely on the shader-writer to declare certain “magic”

parameters to enable the optimization.
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Surface shaders that use only the typical Phong shading model can use a shared

illum stream. Use of this shared stream is switched on for any shader that declares the

px_rc_spec_co and px_rc_phong_co parameters. In the post_illum portion

of the shaders, these parameters contain the results of the shared illuminance computation.

This optimization is not easily detected automatically, so it is much easier to rely on the

intelligence of the shader-writer directly.

Surface shaders that perform a certain class of texture lookups can share the lookup

computations. The PixelFlow hardware does not provide any significant improvement in

actual lookup time for shared lookups, but the shared lookup allows illuminance computa-

tions to happen while the lookup is happening. The optimized texture lookup is used by a

number of variants of the OpenGL shading model. These shaders know what texture they

want to look up in the pre-illum phase, but don’t require the results until the post-

illum phase. To share the lookup processing, they place their texture ID and texture co-

ordinates in special shared “magic” parameters. The results of the lookup are placed in

another shared magic parameter by the start of the post-illum stage.

4.5.5. Cached instruction streams

As mentioned in Section  4.3.2, PixelFlow shading code consists of two conceptual

parts. Any operations involving only uniform quantities execute only on the shading board

microprocessor. Any operations involving varying quantities, or a mixture of uniform and

varying, occur on the SIMD pixel processors. The microprocessor code computes the

uniform expressions and all of the uniform control flow (if’s with uniform conditions,

while’s, for’s, etc.), generating a stream of SIMD processor instructions. This SIMD

instruction stream is buffered for later execution. The set of SIMD instructions only

changes when some uniform parameter of a shader changes, so we cache the instruction

stream and re-use it. Any parameter change sets a flag that indicates that the stream must

be regenerated. For most non-animated shaders, this means that the uniform code executes

only once when the application starts.
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Shader groups

Different shader instances that use the same shader function can sometimes be exe-

cuted together. The set of shader instances that may be executed together is called a

shader instance group. We have elected not to use this optimization. The payoff when it

succeeds can be high, but it is costly to find the groups. The merging of instances into in-

stance groups can only be done while the application is running, and may change from

frame to frame. By contrast, the earlier optimizations in this section can all be statically

determined at compile-time. Since, in our limited experience, we have yet to see any appli-

cations with a group size larger than one, any effort spent finding groups would be

wasted. However, we will discuss some of the issues in using shader groups, should they

prove practical in the future.

Shader instances that share a pfman function produce different streams of SIMD in-

structions if their uniform parameters differ. For example, one uniform parameter might be

the number of times to execute a loop in the shader. Consequently, a shader group con-

sists only of those instances that do not differ in any uniform parameter values, though

they may differ in bound values for varying parameters. Since the values of the bound pa-

rameters can change from frame to frame, a particular instance may change from shader

group to shader group. In addition, the number of shader groups may change.

To utilize the optimization, we must be able to rapidly identify which group to use for

an instance when one of its uniform parameters changes. This may also involve creating a

new group or removing an old one. We can rapidly limit the number of groups to check by

creating a simple hash function of all of the uniform parameters. The more complete, pa-

rameter by parameter, comparison need only be done for groups that match the hash

value. A particularly attractive hash is a simple checksum. When a parameter value

changes, it is easy to recompute the checksum by subtracting the contribution of the old

parameter value and adding in the contribution of the new parameter value. Once we

identify the shader instance groups, it is easy to combine their execution by enabling a set

of shader IDs instead of only one.
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4.5.6. Identification of active shaders

Just because a shader is loaded does not mean that it is being used. Even if it is used,

all of the primitives that use it may be entirely off screen. Even if they are on screen, they

may not fall in a particular region. Even if they fall in the region, they may not be visible.

Time spent running shaders that do not even appear in the image is wasted. There are sev-

eral levels of active shader detection that we could support, corresponding to the ways

that a loaded shader might not be used.

The most advanced and accurate technique is to detect which shaders actually appear

in image pixels in a region. The PixelFlow hardware includes an Enable OR (EOR) test,

provided specifically to make this possible. EOR can tell whether any processors in the

SIMD array are enabled.

 Normally, the code running on each board’s microprocessor generates a buffer of

SIMD instructions to be sent at some later time. To use the EOR test, we must generate

instructions to be sent to the SIMD array while we wait. The basic algorithm is to enable

only the pixels using a particular shader, then check EOR to see if such pixels exist. Since

only one EOR test can be done at a time on PixelFlow, its use is further complicated by the

buffering that exists in hardware and software. Before any such test can be started, we

must wait for the queued and buffered instructions to complete. For this reason, an EOR

test would be best done once per region, for all shaders, instead of on a shader-by-shader

basis. Even if the EOR test were only done once per region, it still upsets the buffering and

load balancing of the machine.

Shaders tend to be applied on an object-by-object basis, so the pixels using a particular

shader tend to be close together. Even with the buffering and load balancing concerns, the

EOR test would be worthwhile for scenes with large numbers of shaders since all shaders

are unlikely to appear in a single region. However, we did not run into any such scenes in

our testing, so we instead focused our energies on other forms of optimization.
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4.6. Stages in shading

All of the attempts to share execution between different shaders or other parts of the

system mean that the software stages actually run on PixelFlow are quite different from

the simple abstract pipeline presented to the users and covered in Chapter 2. Figure 4.20

shows the full set of stages

rendering node rasterize primitive
post-rast —
compress —

|

shading node uncompress —
pre-shade —
pre-illum shade

light light
illum shade

post-illum shade
post-shade —

fog atmospheric
blend —

|

frame buffer node frame-buffer warp

a) b)

Figure 4.20. Comparison of PixelFlow software stages and abstract stages

a)  All of the stages present in the PixelFlow software. b) The mapping of these
stages into the abstract pipeline stages.

The rasterize  stage handles the transformation, rasterization, and interpolation

stages of the abstract pipeline of Chapter 2. The post-rast  stage handles operations

that can be shared by many or all primitives and that reduce the required composition net-

work bandwidth. For example, perspective correction of shading parameters is done in

post-rast . Compress  removes empty spaces in the memory map before composition.

Uncompress  expands the map back out again and fills in the bound parameter values for

any pixel-memory bound parameters. As mentioned in Section 4.5.4, pre-shade  han-

dles common tasks like the computation of surface position that can be shared by all shad-

ers. pre-shade  and post-rast  serve similar functions on opposite sides of the com-

position network transfer. Particular computations are placed in one or the other, based on

which will allow the minimum composition network message size from rendering node to
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shading node. Pre-illum, light, illum, and post-illum were discussed in Sec-

tion 4.5.4. Fog corresponds to the fog or atmospheric stage of the abstract pipeline of

Chapter 2. Blend does blending of image samples into a single pixel value for anti-

aliasing. Blending occurs on the shading board to reduce the composition network band-

width required between the shading board and frame buffer boards. Finally the frame-

buffer stage handles copying the incoming image pixels into the frame buffer, including

any required warping.


