4 SURFACE SHADING

Surface shading is the most heavily explored procedural graphics technique. There are

several reasons for this.

Procedural shading makes it easy to add the noise and random variability to a surface

that make it look more realistic.

e [t can be easier to create a procedural shader for a complicated surface than to try to

eliminate the diortions caused by wrapping a flat scanned texture over the surface.

e |If a procedural shader does not produce quite the right effect, it is easier to tweak it

than to rescan or repaint an image texture.

e |[tis often easier to create detail on an object using a procedural shader instgad of tr

ing to modify the object geometry.
e A procedural surface shader can change with time, distance, or viewing angle.

As was explained in Chapt2ythe job of a surface shader is to produce a color for
each point on a surface, taking into account the color variations of the surface itself and
the lighting effects. We have created a language nafauh for writing these surface
shadersf for PixelFlow,man for its similarity to Pixar's RenderMan shading language).
Our language is close, in syntax and purpose, to the RenderMan shading language
[Hanrahan9][Upstill90], and consequently to the C programming language. As in the
RenderMan shading language, we include several constructs (not found in C) intended to

make shading easier. Pfman is described in Segtion

Sectiord.1.5covers the interface used by the graphics application to controlathe pr
cedural shaders. The remaining sections of this chapter describe the optimizations that

make pfman shaders better able to run on the graphics hardware (or in some cases that

enable the shadersto run at al). The optimizations for PixelFlow cover one of the follow-
ing key areas. memory usage (Section 4.3), communication bandwidth (Section 4.4), or
execution speed (Section 4.5).

4.1. Pfman language

The PixelFlow shading language is a special purpose C-like language for describing the
shading of surfaces on the PixelFlow graphics system. On PixelFlow, a shading function is
associated with every primitive. The shading function is executed for each visible pixel (or
each sample for antialiasing) to determine its color. This section describes the pfman lan-

guage and points out where it differs from the RenderMan shading language

4.1.1. Data
Variable declarations in pfman follow this basic form:
type_specification[array_di nensions] identifier[array_di mensi ons]
Wheret ype_specificationis
[type_nodifier|basic_type] type_specification

Only onebasi c_t ype canappear inany t ype_speci fi cation.

Basic types

Only afew ssmple data types are supported: voi d, f | oat , and f i xed. The smplest
typeisvoi d. It isonly used as areturn type for functions that have no return value.
Where RenderMan has a single floating point type used for all scalar values, we have two
types, f | oat andf i xed. Thefloating point typeis easier to use, but fixed point is more
efficient. Unlike RenderMan, a string type is not used as an identifier for texture maps,
instead ascalar ID is used.

Thef i xed type has two parameters: the size in bits and an exponent. So it isreally a
class of types, givenasf i xed<si ze, exponent >. For exponents between zero and
the bit size, the exponent can also be thought of as the number of fractional binary digits.
A two byte integer would bef i xed<16, 0>, while atwo byte pure fraction would be

fi xed<16, 16>. An exponent larger than the size of the fixed point number or less than

zero is also perfectly legal. Conversion between the real value and stored value uses these
equations:

represented val ue = stored_val ue * 2 ®Poen

stored_val ue = represented _val ue * 2P
It is much less confusing to always work with the real value. For example, a
fi xed<8, 8>, representing 0.5 is not “128”, any more than a floating point numper re
resenting 0.5 is “2,113,929,216".

Variables of thd i xed type may be declaredd gned orunsi gned. The size of a
fixed point type does not include the extra sign bit addesi lggned. So asi gned
fi xed<15, 0> takes 16 bits. If not specified, all fixed point variables default to

si gned.

Arrays
Pfman supportarrays otthe basic types, declared in a C-like syntégr example he
declaratiorf | oat col or[3] declares color to be a 1D array of thileats,

color[0],color[1],andcol or[2] .

Arrays can be multi-dimensional, for exampleoat col or _list[2][3].As
with C, it is not necessary to give all of the indices for an array at Wiake col or _-
list[1][1] isafl oat,color _Iist[0O] andcol or _|ist[1] are each
fl oat[3] 1D arraysin this casegol or | i st ininterpreted as two three-element
vectors. Pfman allows the array sizes to be specified with the type or with the variable, so
col or _|i st could also have been declared &gat [2] [3] col or _|i st or
float[3] color_list[2].The lastversion makes explicit the idea that

col or _|i st is two three-element etors.

RenderMan uses separate types for points, vectors, normals, and colors. Pfman uses
arrays. This allows us to declare any of these quantities to be either floating point or fixed
point as appropriate. Arrays also make matrices and lists of points easy to repmesent. R
cent versions of the RenderMan shading language have added a new matrix type and a

rays of the basic types (float, point, vector, normal, color) for just this purpose.

44

Uniform and varying

As with RenderMan, pfman includes thei f or morvar yi ng type modifiersA
varyi ng variable is one thahightvary from pixel to pixel, similato pl ur al in Mas-
Par's MPL[MasPar90Jor pol y in Thinking Machines’ C{ThinkingMachines89]For

example, the texture coordinates across a surface wouldrhg ng.

A uni f or mvariable is one thatill not vary from pixel to pixel, similar to
si ngul ar in MPL or nono in C*. For the brick shader presented-igurel.3, the
uniform parameters are the width, height and color of the bricks and the thickness and
color of the mortar. These control the appearance of the brick, and allow us to use the

same brick shader for a variety of different brick styles.

Declaring a variable to bear yi ng does not imply that it will vary, only that it
might. If not specified, shader parameters defauliniof or mand local variables default

tovaryi ng.

Other type modifiers

There are a number of additional modifiers for pfman shader parameters. These affect
what happens to the parameter before it is passed to the shader. For example, the
modifier indicates that the parameter should be normalized before it is passed to-the sha
ing function. This does not imply thauai t parameter will remain unit length if it is

changed within the shader.

The remaining modifiers each declare a type of transformation to be applied-to a p
rameter before it is passed to the shading function. The first four of these transformation
types are discussed in more detail on gade2 Thet r ansf or m_as_poi nt modifier
applies the current geometric transformation to a point in homogeneous coordinates. The
inverse of this is given byr ansf or m_as_pl ane (so named because, for the pecspe
tive transformations prevalent in graphics, plane coefficients transform by the inverse of
the homogeneous point transform). Theansf or m as_vect or and
transf orm as_nor mal modifiers apply the correct transformations for vectors or
surface normalfONeill66][Koenderink90] For example, you might declare a parameter

unit transformas_vector float v[3]

45

The final transformation modifier ist r ansf or m as_t ext ur e. Thistransforma-
tion allows trandation, scaling, or various other effects between the original texture coor-
dinates and the coordinates used by the shader [Segal 92].

The RenderMan shading language does not include any similar form of type modifica-
tion. The transformations are implicit in the basic RenderMan types, and RenderMan has

no equivalent of uni t ortransform as_texture.

User-defined types

Pfman also supports aliases for typeswith aC-liket ypedef statement. t ypedef is
only legal outside function definitions, and no distinction is made between equivalent types
with different names. The statement

typedef float Point[3], Nornal[3];

declares Poi nt and Nor mal to both be types that can be used completely interchangea-
bly withf | oat [3] . A number of such type definitions can be found in the pfman include
file, pf t ypes. h. Pfman does not alow any function, parameter, or variable to have the

same name as a user-defined type.

4.1.2. Functions
Overloading

Function overloading, similar to that in C++, is supported by both pfman and Render-
Man. Functions of the same name that can be distinguished by their input parameters are
considered distinct. This provides the ability to have separate versions of functions for
uni f or mand var yi ng parameters, f | oat andf i xed, or different fixed point types.
Note that functions cannot be overloaded based on their return types and operator over-
loading is not supported.
Definition

A function definition specifies the return type, name, parameters, and body that define

the function. These function definitions cannot be nested. A ssimple function definition is

46

float factorial (float n) {
if (n>1)
return n * factorial(n);
el se
return 1;

}
Shading functions

There are several specpeudoreturn-typeghatindicate that a functiois actually a
procedure for some procedural stage (Se@i8n For the procedure types discussed in
this chapter, these asair f ace andl i ght . Chaptel5 coverspri m ti ve and
i nt er pol at or functions. Instead of returning the result of the procedural stage, these
functions place their results in spemait put parameters. F@ur f ace procedures,
the output color isetlared

out put varying Color px_rc_co[3]
WhereCol or is at ypedef alias forunsi gned fi xed<8, 8>. We restrict varying
surface shader parameters to only use fixed point types. This is an implementation restri

tion that may be relaxed in the future.

Light procedures produce both a color and direction, whicheaterdd

out put varying Short px_rc_|[3]
out put varying Color px_rc_cl[3],

Short is at ypedef alias forsi gned fi xed<11, 8>. These type names are defined

for convenience in thef man_t ypes. h header file, included by most pfman peoc

dures. The parameter names are defined by other portions of the PixelFlow system sof
ware. One of the biggest complaints of our users is that the names of these parameters do
not match those of RenderMaadi (, L, andC). In future efforts, even if we kept the

pfman language, we would choose to convert these names within the pfman compiler to

match the user’'s expetibns.

The procedural stage functions are not called explicitly. Their parameters are set by
name from a global state kept by the graphics library (discussed in more detail in Section
4.1.9. It is possible that an application program will never set the value for some of the

parameters of a shader. As is done in RenderMan, we allow default values fr the p

47

rameters of these functioriBhese are giveim the parameter list ggar anet er =
val ue (just like variable initialization)e.qg.
float brick_width = 0.05
These default values must be compile-time constAstsith RenderMan, if no default

value is given, it is assumed to be zero.

These ideas are demonstrated in the code for a simple light that uses the same color

and light direction for all pixeldjgure4.1).

[ight sinple_light(
uniformfloat px_light_diffuse[3] = {0.99, 0.99, 0.99},
uniformfloat px_light_position[3] = {.408, -.408, .816},
out put varying Color px_rc_cl[3],
out put varying Short px_rc_I[3])

px_rc_cl = px_light_diffuse;
px_rc_| = px_light_position

Figure4.1. Codefor asimplelight.

Prototypes
Any function that is to be used before it is defined, or that is defined in a different
source file, must have a prototyper example
float factorial (float n);
Prototypes for the common math and shading functions (as defined for RenderMan in

[Upstill90]) are defined in the standard pfman includegdiieran. h.

External linkage

As mentioned in SectioB.3.], The pfmanshading language compilemrns shading
language source code i@+ source code that must be further compiled with a C++
compiler The function definitiongnd function callgreated by the compiler correspond
directly to C++ function definitions and function callsis possible (and supported) to call
C++ functions from shading language functions and to call shading language functions
from C++ This facility is limited to functions using pfman’s types. For example, the ability
to call C++ functions from shading code is used to allow access to the standard math

functions foruni f or m f | oat variables. The ability to call shading language code from

48

C++ alows shaders written with the testbed interface to call functions that have been cre-

ated in pfman.

The pfman compiler adds some additional arguments to most functions when creating
the corresponding C++ function. To create and call ordinary C++ functions, we use
extern directivessmilar to the C++ extern directive:

extern “C++” uniform float factorial(float x);
These directives appear immediately before afunction definition or declaration, and mod-
ify the C++ code generated for that function. Legal strings for the extern are“C”
“C++” , “inline” or “static” . The extern “C++” and extern “C” direc-
tivesindicate that the function should be compiled as aregular C++ or C function without
the extra arguments normally added by pfman. Functions of either of these types cannot
include any varying parameters or variables. The extern “inline” directive indicates
that the function should be compiled as a C++ inline function. The extern “static”
directive indicates that the function should be visible only in the file where it is defined.
Combinations of these are also acceptable (e.g. extern “static C++”),aslongasC
and C++ do not both appear. Thusthe extern specificationis

extern® [inline] [static] [C C+4]”

4.1.3. Expressons
Operators
The set of operators and operator precedence is similar to that of C (it was based on a

grammar for ANSI C). Thefull list of operators and their precedenceis given in Figure
4.2.

Operationson arrays

Operations on arrays are defined as the corresponding vector, matrix, or tensor opera-
tion. The unary operations act on all elements of the array. Addition, subtraction, and as-
signment require arrays of equal dimension and perform the operation between corre-
sponding elements (i.e.a + b givesthe standard matrix addition of a and b). The com-
parison operations also require arrays of equal dimension, though only == and != are

permitted.

49

Operation Associativity | Purpose
0) — expression grouping
++ —1] — postfix increment and decrement, array index
++— = — prefix increment and decrement, arithmetic
and logical negation
() — type cast
N left xor / cross product / wedge product
*1 % left multiplication, division, mod
+ - left addition, subtraction
& left bitwise and
| left bitwise or
<< >> left shift
<<=>=> left comparison
=== left comparison
&& left logical and
| left logical or
? right conditional expression
= += -=:: I= right assignment
, — expression list

Figure 4.2. Pfman operator precedence

Multiplication between vectors gives a dot product, between vector and matrix, matrix
and vector, or matrix and matrix gives the appropriate matrix multiplicatlore gene-
ally, multiplication between any two arrays gives the tensor contraction of the last index of

the first array against the first index of the second geay a generalized inner product).

In other words, fofloat a[3][3][3] , float b[3][3][3] andfloat
c[3][3lI31[3] ,
c=a*b;
computes
3
cliInIkIm = Z_Oa[i][i][m]*b[m][k][ll

The/ and” operators have special meaning for certain array tyyesis the inverse
of a square matrig, andb/a multipliesb by the inverse of square matexThe” op-

erator gives the cross product between 3Bovectors.

50

Inlinearrays

C-style array initidizers are allowed in any expression as an anonymous array. A 3x3
identity matrix might becodedas{{ 1, 0, 0}, {0, 1, 0}, { O, O, 1} }, while the com-
puted elements of a point on a paraboloid might befilledinwith{x, vy, x*x+y*y}.
Asavariableinitiaizer, thiswould be

float v[3] = {0,0,0};
In an expression, it would be

v =p- {1,1,1};
4.1.4. Statements

Asin C, anywhere a statement is legal, a compound statement islegal aswell. A com-
pound statement isjust alist of statements delimited by { and } . Any expression followed
by a; isasoalegal statement. The remaining types of statements closely mimic C or the

RenderMan shading language.

Standard control statements

Most of the control statements are borrowed directly from C.

if (condition_expression) statenent_for_true
if (condition_expression) statenent_for_true
el se statement _for_fal se
whil e (condition_expression) |oop_statenent
do | oop_statenent until (condition_expression);
for (initial_expression; condition_expr; increnent_expression)
| oop_st at enent
br eak;
conti nue;
return,
return return_val ue_expression

In addition, thei | | um nance statement is taken from RenderMan, to aid in shad-
ing. This statement,

i llum nance () statenent

i Ilum nance (position_expression) statenent

i llum nance (position_expression, axis_expression
angl e_expressi on) statenent

51

can be thought of as an integral over the incoming.ligbt our implementation (as well
as Pixar's RenderMan implementationl),| um nance actsasa loop over the available
light sourcesSince the lights are also procedural, this means the function foligiaich
source is runproducinga light color and intensityA group at the University of Erlangen
has produced a RenderMan implementation that compgteba illumination rende-
ing, including all of the inter-reflections between different surff8ksallek94] In their
implementation, thel | um nance statement really does numerically compute the int

gral over all incoming light.

Within the body of the | | um nance statement, the light direction can be accessed
with the shading parametgrx_r c_| , and the light color can be accessegasr c_ -
cl . An example of thel | um nance construct implementing an approximation to

Phong shading frorfLyon93] is given inFigure4.3.

illum nance() {
float L[3] = normalize(px_rc_l);
float n_dot_| = N * L; // N =unitsurface normal
float v_dot_| =V * L; //V=unit"view" vector from surface to eye

/I specular contribution

varying float spec = 1 + v_dot_| - two_n_dot_v * n_dot_I|;// D.D/ 2
spec = 1 - spec * px_material _shininess / 4

if (spec < 0) spec = 0;

spec *= spec;

spec *= spec;

if (n_dot_ | < 0)
n_dot | = spec = 0;

/l add in diffuse and specular contributions with appropriate colors
diffuse += px_rc_cl * n_dot_I;
specul ar += px_rc_cl * spec;

Figure4.3. Use of the illuminance construct.

Declar ation statements

As in C++, \ariable declarations can occur anywheistatement can. For exgle,

float a[3], b=2*x, c;

52

declaresa asan uninitialized 1D f | oat array with 3 elements, b asaf | oat with anini-
tial value twice the value of variable x at the declaration time, and ¢ as an uninitialized

f | oat . Each compound statement block, enclosed by { and }, defines a new scope. Vari-
ables can be redefined within a compound statement without conflicting with function or

variable namesin other scopes.

4.1.5. Antialiasing

Pfman has minimal support for shader antialiasing smilar what is available in the Ren-
derMan shading language. None of the automatic antialiasing techniques discussed in 2.4.5
are used. Filtered st ep functions are available to analytically antialias a shader. Band-
limited noise functions are aso available as a creative tool for writing shaders, and these
functions can be faded by the user-written pfman code as their base frequency approaches
the pixel size. To usethesetools, it is necessary to know the size of pixel being shaded.
The pixel sizeisavailablein the varying input parameter, px_shader _f _sqr, equiva

lent to the RenderMan variable ar ea.

4.2. Application interface

The RenderMan standard [Upstil|90] defines not only the shading language, but also a
graphics application program interface (AP!). Thisisalibrary of graphics functions that
the graphics application can call to describe the scene to the renderer. We elected to base
our API on OpenGL [Neider93] instead of RenderMan. OpenGL isapopular API for in-
teractive graphics applications, supported on a number of graphics hardware platforms. It
provides about the same capabilities as the RenderMan API with asimilar collection of
functions, but with more focus on interactive graphics. By using OpenGL as our base we

can aso easily port applications written for other hardware.

We extended OpenGL to support procedural shading. We required that these proce-
dural shading extensions have no impact on applications that do not use procedural shad-
ing. We aso endeavored to make them fit into the framework and philosophy of OpenGL.
The design of these extensions was a group effort. The primary contributors were Jon

Leech, Lee Westover, Anselmo Lastra, Roman Kuchkuda, Paul Layne, Rich Holloway,

53

and the author. These PixelFlow extensions to OpenGL are described in much more detail
in[Leech98].

Following the OpenGL standard, all of our extensions have the suffix EXT. We will
follow that convention here to help make it clear what functions are already part of
OpenGL and which we added. OpenGL functions also usually include additional suffix
letters to indicate the operand types (f , i , S, €tc.). For brevity, we will generally omit

these in the text, though we will use them in the code examples.

4.2.1. Shading parameters

Applications that do not employ procedural shading use a default OpenGL shader.
This built-in procedural shader supports the standard OpenGL shading model. Parameters
to the OpenGL shading model are set using the gl Mat er i al call or one of a handful of
other parameter-specific calls (gl Col or, gl Nor mal , and gl TexCoor d). The
OpenGL shading model uses anumber of different color parameters (G._ AVBI ENT _ -
COLOR, GL_DI FFUSE_COLOR, G._SPECULAR_COLOR Or
GL_EMM SI VE_COLOR). gl Col or can be assigned to set any one of these or the com-
bination of ambient and diffuse. The other colors can still be set by gl Mat eri al . Figure
4.4 shows some OpenGL code for one vertex using these calls. A triangle includes three

similar vertices.

gl Nornal 3f (1.0, 0.0, 0.0);
gl Material fv(GL._EM SSI VE_COLOR, white); // white is a float array
gl Vertex3f (0.0, 0.0, 1.0);

Figure4.4. Typical OpenGL codefor avertex.

We use these same functions for other shaders. To handle arbitrary shading parame-
ters, we assign each parameter a parameter 1D, which isused to identify it in the gl Ma-
teri al cal. Theapplication can find a parameter ID using thegl Mat er i al Par ane-
t er Name EXT function. Thegl Nor mal , and gl TexCoor d functions are equivalent to
using gl Mat eri al with specific parameters of the OpenGL shader (px_rmat eri al _-
nor mal and px_mat eri al _t excoor d). For example,

gl Normal fv(nornal) ;
gl TexCoor df v(t excoord);

is equivalent to

gIMaterialfv(glMaterialParameterNameEXT(
“px_material_normal”), normal);

gIMaterialfv(glMaterialParameterNameEXT(
“px_material_texcoord”), texcoord);

The various color parameters are equivalent to parameters pamedte ri al_ -
ambient , px_material_diffuse , pX_material_specular andpx_ mae -
ri al_ emissive . By using parameters with these same names, user-written shaders can
make use of the values that were set in the application gkbodpr , gINormal , and

glTexCoord

4.2.2. Shader instances

The RenderMan API allows some parameter values to be fixed when a shader function
is chosen. Our equivalent is to allow cerfadund parameter values. A shading function
along with its bound parameters together mag@der instance (or sometimes just
shader) that describes a particular type of surface. Shader instances with bound parameter
values allow us to define several surface types using the same shading functiomfor exa
ple fat red bricks and thin yellow brickSigure4.5), both using the brick function of
Figurel.2. We can easily choose one kind of brick or the other within the application by

referring to the right shader instance.

A shader function describes how to create a certain class of surfaces, (e.g. “bricks”).
To set bound parameter values, we adtBaundMaterialEXT function, equivalent

to glMaterial for bound parameters.

Figure4.5. Instances of a brick surface shader

55

We load a shader function by calling the new API function gl LoadExt ensi on-
Code. To create instances, we provide three new functions. The instance definition is
contained in agl NewShader EXT, gl EndShader EXT pair. Thisis similar to other
OpenGL capabilities, for example display list definitions are bracketed by callsto gl New-
Li st and gl EndLi st . gl NewShader EXT takes the shading function to use and re-
turns a shader ID that can be used to identify the instance later. Between the gl New-
Shader EXT and gl EndShader EXT we alow callsto gl Shader Par anet er Bi n-
di ngEXT. gl Shader Par anet er Bi ndi ngEXT takes a parameter 1D and one of
GL_MATERI AL_EXT or GL_BOUND MATERI AL_EXT. Thisindicates that the pa-
rameter should be set by callsto gl Mat eri al or gl BoundMat er i al EXT respec-
tively. Figure 4.6 shows the code to create a shader instance.

/1 1oad the shader function
GLenum phong = gl LoadExt ensi onCodeEXT(GL_SHADER FUNCTI ON_EXT, "phong");

/] create a new instance called red_phong
GLenum r ed_phong = gl NewShader EXT(phong) ;
gl Shader Par anet er Bi ndi ngEXT(
gl Get Mat eri al Par amet er NameEXT(" px_nat eri al _nornal "),
GL_MATERI AL_EXT) ;
gl Shader Par anet er Bi ndi ngEXT(
G__DI FFUSE,
GL_BOUND_MATERI AL_EXT) ;
gl EndShader EXT() ;

/1 set the bound value for the diffuse col or paraneter
float red[3] = {.4,0,0,1};
gl BoundMat eri al f vEXT(red_phong, G._DI FFUSE, red);

Figure4.6. Application code to create a shader instance.

To choose a shader instance, we use the gl Shader EXT call. Thisfunction takes a
shader ID returned by gl NewShader EXT. Primitives drawn after the gl Shader EXT
call will use that shader instance.

4.2.3. Lights
OpenGL normally supports up to eight lights, GL_ LI GHTO through G__ LI GHT7.
These lights are turned on and off through callsto gl Enabl e and gl Di sabl e. Pa

56

rameters for the lights are set by callgtd.i ght , which takes the light ID, the param

ter, and the new value. We use all of these calls for our procedural lights. New lght fun
tions are loaded witgl LoadExt ensi onCodeEXT, in the same way that new shader
functions are loaded. New light IDs beyond the eight pre-loaded lights are created with
gl NewLi ght EXT.

Since OpenGL only supports eight lights, many applications reuse these lights within a
frame. For example, all eight lights may be used in a single room of an architectural model.
The positions and directions of the lights can be changed before rendering any polygons
for the next room, giving the effect of more than eight lights even though only eight at a

time shine on any one polygon.

PixelFlow’s use of deferred shading means that we cannot easily handle light changes
within a frame. Each light, along with its parameter settings, is effectivaitanstance
in the same way that a shader with its bound shader parametanadsrainstance. This
encourages a PixelFlow application to create a large number of lights, since each change in
parameters requires a new light. To handle the enabling and disabling of a large set of
lights, we creatéight groups. A new light group is created by a callgbNewLi ght -
G oup. Lights are enabled and disabled in the light group using the ngtrgaalabl e
andgl Di sabl e calls. Within the frame we ugg Enabl e with a light group ID to
switch the active set of lights. Light groups may be a useful shorthand on other systems,

but their primary purpose is to make light changes within a frame possible on PixelFlow

4.3. Memory optimizations

The most limited resource for shaders on PixelFlow is the pixel memory. The texture
memory size (64 megabytes) affects the size of image textures a shader can useHn its co
putations, but does not affect the shader complexity. The microprocessor memory (128
megabytes), is designed to be sufficient to hold large geometric databases. For shading
purposes it is effectively unlimited. However, the pixel memory, at only 256 bytes, is quite
limited. From that 256 bytes, we further subtract the shader input parameters and an area

used for communication between the light shaders and surface shaders. In this section we

57

highlight some of the pfman features and optimizations made by the pfman compiler to

make this limited amount of m®ry work for real shaders.

4.3.1. Paging

It would be possible to increase the available pixel memory by paging to texiure me
ory, and even further by paging texture memory completely out of the PixelFlow machine.
Writing, then reading, four bytes of texture memory for every pixel in a 128x64 region
takes 38Qus. For a system with four shaders, a single swapping operation in each of the
40 regions of a non-antialiased NTSC video image would take over 10% of the 33 ms
available for rendering a frame at 30 frames per second. For a single swapping operation
in each of the 160 regions of a high-resolution image or an antialiased NTSC video image,
the total jumps to over 45% of the available time. Consequently, paging could help for
running arbitrary shaders at faster than off-line rendering (but slower than interactive)
speeds. Since our primary focus is interactive rendering, we have not pursued any paging
methods. Any shader we want to run interactivelyst fit in the 256 bytes of real pixel

memory.

4.3.2. Uniform and varying

RenderMan divides parameters intoform, andvarying in part for the efficiency of
their off-line uni-processor renderer. Uniform parameters are used to control the overall
operation and appearance of the shader while varying parameters control variations across
the surface. A single expression can use a mix of uniform and varying parametees. We d
fine auniform expression (or sub-expression) as one with a uniform result, araiyang
expression as one with a varying result. As Pixar's prman renderer evaluates the shading
on a surface, it computes uniform expressions only once, sharing the results with all of the
surface samples. Then it loops over all of the surface samples to compute the varying e

pressions.

We can make use of a similar division of labor. We store all uniform variables in the
microprocessor memory, so operations between them can be done once, byahe micr
processor. Thus operations and storage for uniform variables are shared by all pixels.

Varying computations must be done by the pixel processors since they can potentially

58

have different values at every pixel. Consequently, these variables must exist in pixel
memory. Their storage and operations are replicated across the SIMD array. This same
distinction between sharednfform) and SIMD array\@arying) memory has been made

by other SIMD compilerfMasPar90[ThinkingMachines89[Sectior4.1.]).

The division between uniform and varying provides some execution speed gain, since
computing a single math operation on the PA-RISC processor is faster than computing the
same math operation simultaneously on all of the pixel processors. However, the memory

savings is the primary motivation for our interest in thissitwn.

4.3.3. Fixed point

RenderMan has one representation for all numbers: floating point. Pfman also supports
floating point (32-bit IEEE single precision format) because it is such a forgiving repr
sentation. This format can represent numbers as large as aBoutd9small as 1%,
with about 10’ relative error throughout the range. Smaller numbers can be represented

but with greater relative error.

a b
Figure4.7. Fixed point vs. floating point comparison.
a) Mandelbrot set computed using floating point. b) Mandelbrot set computed using
fixed point
For some quantities used in shading this range is overkill. For colors, an 8 to 16 bit

fixed point representation is sufficigftill97] . But floating point takes four byte®-r

gardless of the necessary range. Worse, there are cases where floating point has too much
range but not enough precision. For example, a Mandelbrot fractal shader has an insatiable
appetite for precision, but only over the range [-Z&re4.7). In this case, it makes

much more sense to use a 32 bit fixed point format instead of a 32 bit floating point fo

59

mat, since the floating point format wastes one of the four bytes for an exponent that is
hardly used. In general, it is easiest to prototype a shader using floating point, then make
changes to fixed point as necessary for memory usage, precision, and speed (the speed a

vantages will be covered in more detail later in this chapter).

To help further, we specify the size of our fixed point numbers in bits. PixelFlow can
only allocate and operate on multiples of single bytes. However, we can do a much better
job of limiting the sizes of intermediate results in expressions with a more accurate idea of
the true range of the values involved. For example, if we add two arbitrary two-leyte int
gers, we need to allocate three bytes for the result. However, if we know the integers
really only use 14 bits, the result can be at most 15 bits, which fits in two bytes instead of

three.

The analysis to determine the sizes of intermediate fixed-point results happens in two
passes. The firshottom-up pass determines the sizes necessary to keep all availalie prec
sion. It starts with the sizes it knows, variable references or the result of type casts. It
combines them according to simple rules (e.g. multiplication adds the bit sizes and adds
exponents). The secortdp-down pass limits the fixed point types used for the inteimed
ate results to only what is necessary for the assignment or type cast used for tee final r
sult of the expression.

fixed<10, 10> x,vy; fixed<20,20> t1l = x*y; fixed<l12,12> t1l = x*y;
fixed<l15, 12> z,r; fixed<24,20> t2 = t1+z; fixed<l5,12> t2 = t1+z;
r = x*y + z fixed<l15,12>r = 1t2; fixed<l15,12>r = 1t2;

a b C

Figure4.8. Example of fixed point size deter mination.
a) original code. b) after bottom-up pass. c) after top-down pass

Figure4.8 demonstrates the procedure used for determining fixed point types for i
termediate results in a complex expressiogure4.8a shows the original expression and
sizes. The variables andy are signed 10-bit pure fractions, representing numbers from —
1 to just under 1. Both and the result,, are 15 bits (3-bit integer part and 12-bitcfra
tional part), representing numbers from -8 to just under Bigure4.8b, we have done

the bottom-up pass. The resultxdfy could be as big as 20 bits, all of which would still

60

be fractional. The result of addiagto this could have 4 integer bits (e.g. adding a number
just under 8 to a number just under 1, gives a result that is almost 9), and we might want

to keep all 20 fraction bits from*y.

Finally, Figure4.8c demonstrates the top-down part of the algorithm. Sinmaly has
three integer bits and 12 fraction, there is no point in keegdniy any greater precision.
Sincet 2 has now been trimmed downftoxed<15, 12>, there is no point to keeping a
full 20 bits fort 1 since only 12 will be used. The result is a set of fixed point types for all
parts of the expression that are as small as possible, while still conforming to-the co

straints set by the input and output types.

Strictly speaking, since the representation ¢f only accurate to 12 bits, the actual
number that represents could be all 1's instead of all 0’'s (or any other choice of random
bits) for the extra eight bits frigure4.8b. However, most users expdctO+0. 01 to be
1. 01, notl. 1, 1. 05, orl. 08. If these excess bits affect the result, we set them to zero
to conform to this expected behavior. The ability to ask for more precision in the result
than it is possible to accurately compute is one of the pitfalls of fixed point and numeric

computing in general. We do not protect the user from these typestempso

4.3.4. Memory allocation

We gain some memory savings from placing uniform variables and expressidans in m
croprocessor memory and from using fixed point instead of floating point, yet the primary
feature that allows shaders to have any hope of working on PixelFlow is the memmory all
cation done by the compiler. Since every surface shader is running different code, there is
no reason why theemory maps used by all shaders should be the same. We use 1a diffe

ent memory map for each shader, with the memory maps determined at compile time.

We have found that, while even the simplest of shaders may define more than 256
bytes worth of varying variables, most shaders do not use that many variables at once. We
effectively treat pixel memory as one giant register pool, and perform register allocation
on it during compilation. This is one of the most compelling reasons to use a compiler

when writing surface shaders to run on graphics hardware. While it is possible to manually

61

do the analysis of which variables can coexist in the same place in memory, it is not easy.
It took the author about a month to do just such an analysis for the Pixel-Planes 5 shading
code (combined with an analysis of the fixed point sizesfor all intermediate results). This
code was written by hand at approximately the level that the pfman compiler produces.
With automatic allocation, it suddenly becomes possible to prototype and change shaders

in minutesinstead of months.

4.3.5. Memory allocation method

The pfman memory allocator was written by Voicu Popescu. It performs avariable
lifetime analysis using a static single assignment (SSA) representation of the procedure
[Muchnick97] [Briggs92] (see Figure 4.9). First, we go through the shader, creating a
new temporary variable for the result of every assignment. Thisiswhere the method gets
its name: we do a static analysis, resulting in one and only one assignment for every vari-
able. In some places, avariable reference will be ambiguous, potentially referring to one of
several of these new temporaries. At these points we replace the reference with a pseudo-
function called a g-function. Thisindicates that, depending on the control flow, one of
several variables could be referenced. The arguments to the ¢-function are each of the
temporary variables that the original reference could potentially use. In these cases, we
merge the separate temporaries back together into asingle variable. What resultsis a pro-

gram with many more variables, but each having as short a lifetime as possible.

i = 1; il =1; il =1;
i =i + 1; i2 =11+ 1; i23=1il+ 1,
if (i >j) { if (i2>j1) { if (i2.3>j1) {
i = 5; i3 = 5; i2 3 =5;
} } }
o= 2 = ¢(i2,i3); j2 =123,
a b C

Figure 4.9. Example of SSA analysis.

a) original code fragment. b) code fragment in SSA form. Note the new variables
used for every assignment and the use of the ¢-function for ambiguous assignment.
c) final code fragment with ¢-functions merged.

Following the conversion to SSA form, we make alinear pass through the code, map-

ping the new variables to free memory as soon as they become live, and unmapping them

62

when they are no longer live. Variables can only become live at assignments and can only
die at their last reference. As a result of these two passes, variables with the same name in
the user’s code may shift from memory location to memory location. We only allow these
shifts when the SSA name for the variable changes. This costs us a little in the amount of
memory available to called functions, but eliminates excess copies whose sole purpose
would be to keep active memory compact. One of the major effects of the SSA analysis is
that a variable that is used independently in two sections of code may not actually reside

anywhere between the twociens.

Every shader and function allocates memory from an offset of zero relatifraioea
pointer. This allows us to make the best use of our aggressive allocation without locking
the exact memory locations. Therefore, the successive calls of the recursive factorial fun
tion in Sectior.1.2would have progressively higher frame pointers and would wse pr
gressively higher actual memory locations for its computations. This places a hard limit on
how big a number this factorial function can compute, and shows that general recursion is

not practical in pfman.

[1*** 79: ulntl row = px_shader texcoord[1] / brick_height; ***//

enc_ufi xed2f p(pf man_p, pfman_nap,

/* pfman_tmpO */ pfrman_frameptr,

/* px_shader texcoord */ px_shader _texcoord + (int)(1*2));
entc_fp_i ntomem(pf man_p,

/* pfman_tnpl */ pfrman_franeptr + 4,

(1. / brick_height));
enc_fp_nul (pf man_p,

[* pfman_tnmp2 */ pfrman_frameptr,

/* pfman_tmpO */ pfrman_frameptr,

/* pfman_tnpl */ pfrman_franeptr + 4,

[* 14 byte tenmp */ pfman_map->mark());
enc_f p2fi xed(pf man_p, pfman_map,

/* row */ ufixed<8, 0>(pfrman_frameptr) + 4,

/* pfman_tnp2 */ pfrman_franeptr);

Figure4.10. Generated code

Figure4.10 shows a short section of code generated by the pfman compiler for part of

the brick shader of Chapter All of the temporary values and local variables are relative

63

to the frame pointer, but the shader parameters are referenced directly. Several temporar-
ies, aswell asthe local variable result of the expression are stored in the same place (at
different times). Finally, the reciprocal of the uniform variable, br i ck_hei ght , iscom-
puted at the time this C++ code is executed, while the instructions for the pixel computa

tions are placed in the SIMD instruction stream buffer, pf man_p.

4.3.6. Memory allocation results

Figure 4.11 shows the performance of the memory allocator on an assortment of shad-

ers. Images generated with these shaders are shown in Figure 4.12.

shader uniform + varying varying with
varying allocation
simple brick 171 97 16
fancy brick 239 175 101
ripple reflection 341 193 137
planks 216 152 97

Figure4.11. Shader memory usagein bytes.

Figure4.12. Example surface shaders
a) simplebrick. b) fancy brick. c) ripplereflection. d) wood planks

These numbers show that the distinction between uniform and varying variables makes
alarge difference in the memory use by the shaders, while the success of the memory allo-
cation can vary from shader to shader. The actual memory usage numbers are hard to in-
terpret because they do not include the space taken by the shaders parameters, the shader-

light communication area, and the other pixel-memory overhead. An easier statistic toin-

terpret isthe amount of free pixel memory available during the shader execution. We have
collected thisinformation, along with the SIMD execution time for some of the shadersin
Figure 4.12, aswell as some of the user-written shaders from Chapter 6. These are shown
inFigure4.13

The second nanoManipulator shader is particularly revealing. With only one byte free,
itis barely ableto fit. This shader has already been largely converted to fixed-point to get
to the point where it would run at al. This shows that with only 256 bytes of memory,
even with memory allocation, it is not aways possible to prototype an entire shader in
floating point. For larger shaders, an incremental approach is necessary, converting pieces
of the shader to fixed point as they are developed to make room. Further, the UNC
nanoManipulator project wants to combine the second nanoManipulator shader with the
BRDF shader. That large a shader may not be possible at al in the space available on Pix-
elFlow.

shader bytesfree time

fancy brick 46 613.15 us
ripple reflection 59 1058.07 us
planks 105 532.30 us
bowling pin 86 401.96 us
nanoM anipulator (texture and bumps) 75 567.95 us
nanoM anipulator (texture, bumps, and spot noise) 1 2041.44 s
BRDF 51 1638.67 s

Figure 4.13. Shader execution time and memory.

4.4. Bandwidth optimizations

There are two communication paths between boards in the Pixel Flow system (see
Section 3.3. The geometry network allows communication between the microprocessors

and the composition network allows communication between pixels. We are most con-

65

cerned with the bandwidth of the composition network. The total effective bandwidth of
the composition network is 11.2 GB/s if we use simultaneous transfers in both directions

or 5.6 GB/sif we only send datain one direction at atime.

Asmentioned in Section 3.1, PixelFlow uses deferred shading. The rendering boards
store varying shading parameters and a shader 1D in the pixels. The complete set of data
for each visible pixel must be transferred over the composition net from the rendering
boards to a shader board, then afinal color from the shader board to the frame buffer. The
design of the composition network allows these two transfers to be overlapped, so we
really only pay for the bandwidth to send data for each visible pixel from the rendering
boards to shading boards. At 30 frames per second on a 1280x1024 screen (or 640x512
screen with 4 sample antialiasing), and accounting for the transfer chunk size, this results
in a maximum communication budget of 280 bytes per pixel for bi-directional composi-
tions or 140 bytes per pixel for uni-directional compositions. To deal with thislimited
communication budget, we have to perform some optimizations to reduce the number of

parameters that need to be sent from renderer board to shader board.

4.4.1. Shader-specific maps

Even though each 128x64 pixel region is sent as asingle transfer, each pixel could
potentially be part of a different surface. Rather than use atransfer that is the union of al
the parameters needed by all of those surface shaders, we allow each to have its own tai-
lored transfer map. The first two bytes in every map contain the shader 1D, which indicate

what transfer map was used and which surface shader to run.

4.4.2. Bound parameters
The bound parameters of any shader instance cannot change from pixel to pixel

(Section 4.2.2), so they are sent over the geometry network directly to the shading nodes.
Since the shading nodes deal with visible pixels without any indication of when during the
frame they were rendered, we must restrict bound parameters to only be changed between
frames. The bound uniform parameters are used directly by the shading function running
on the microprocessor. Any bound varying parameters must be loaded into pixel memory.
Based on the shader 1D stored in each pixel, we identify which pixels use each shader in-

66

stance and load their bound varying parameters into pixel memory before the shader exe-

cutes.

Any parameter that isbound in every instance of a shader should probably be uniform,
since this gives other memory and execution time gains. Y et, it isoccasionally helpful to
have bound values for varying shading parameters. For example, our brick shader may in-
cludeadi rti ness parameter. Some brick wallswill be equally dirty everywhere. Oth-
erswill be dirtiest near the ground and clean near the top. The instance used in one wall
may havedi rt i ness asabound parameter, while the instance used in a second wall

allowsdi rti ness tobesetusinggl Mat eri al withadifferent value at each vertex.

However, the set of parameters that should logically be bound in some instances and
not in othersis small. Allowing bound values for varying parameters would be only a mi-
nor bandwidth savings, were it not for another implication of deferred shading. Since
bound parameters can only change once per frame, we find parameters that would other-
wise be uniform are being declared as varying solely to allow them to be changed with
gl Mat eri al from primitive to primitive (instead of requiring hundreds of instances).
This means that someone writing a Pixel Flow shader may make a parameter varying for
flexibility even though it will never actually vary across any primitives. Allowing instances
to have bound values for all parameters helps counter the resulting explosion of pseudo-

varying parameters.

4.4.3. Explicit shader parameters

RenderMan defines a certain set of standard parameters that are implicitly available
for use by every surface shader. The surface shader does not need to declare these pa
rameters and can just use them asiif they were global variables. In pfman, these parameters
must be explicitly declared. This allows us to construct a transfer map that contains only
those parameters that are actually needed by the shader.

In retrospect, it would have been possible to do a static analysis of the shader function
to tell which of the built-in parametersis used. Thiswould have had the positive effect of

making pfman that much more like RenderMan, and consequently that much easier for

67

new users aready familiar with RenderMan. On the other hand, it would also have pro-

longed the time it took to develop pfman.

4.5. Execution optimizations

Execution-time optimizations are the final type of optimization necessary for the prac-
tical use of shaders on PixelFlow. A frame rate of 30 frames per second translatesto 33
ms per frame. The system pipelining means that most of thistimeis actually available for
shading. Based on 160 regions to shade for a high-resolution or antialiased NTSC video
display, each shading node is responsible for 40 regions on a system with four shading
nodes, and can take an average of 825 usto shade each region. On alarger system with
16 shading nodes, each is responsible for 10 regions and can spend an average of 3.3 ms
shading aregion. To put these times in perspective, the rippled reflection shader (see
Figure 4.12c) takes 1.1 msto run. Even if thisisthe only shader, we cannot achieve our
target frame rate using only four shading nodes. With more shading nodes we can achieve
the target frame rate with time | eft over to shade other surfaces (though hopefully not too
many others of that shading complexity).

4.5.1. Deferred shading

Deferred shading is the technique of performing shading computations on pixels only
after the visible pixels have been determined. It provides several advantages for the execu-
tion of surface shading functions. First, no timeis wasted doing shading computations on
pixelsthat will not be visible. Second, our SIMD array can simultaneously evaluate an in-
stance of a surface shader on every primitive that usesit in a 128x64 region. Finaly, it de-
couples the rendering performance and shading performance of the system. To handle
more complex shading, add more shading hardware. To handle more complex geometry,
add more rendering hardware. On PixelFlow, where the boards for both are identical, the
bal ance between rendering performance and shading performance can be changed on an

application by application basis.

68

4.5.2. Fixed point

In addition to their memory advantages, we can achieve significant speedemprov
ments by using fixed point operations instead of floating point. Our pixel processors do
not support floating point in hardware, so every floating point operation is built from basic
integer math operations. In contrast, fixed point operations correspond to a single integer
math operation and a small number of shifts for alignment. Essentially, a fixed paint nu
ber is like a floating point number where the exponent is a compile-time constant. As a
result, some of the run-time pixel computations required for floating point became co
pile-time constants. Some operations present a bigger advantage for fixed poirt-than ot
ers.Figure4.14 shows a comparison for several operations. Addition (and subtraction)
have the highest penalty for floating point. Multiplication and division have similar costs
for both fixed and floating point because they do not require the shifts for alignment that
are necessary for addition and subtraction. As expected, the fixed-point advantage for
more complex operations falls in between these extremes.d4pre,is a square-root

operation anchoi se is a band-limited noise function, a common building block fodsha

ers.
Operation | 16-bit fixed | 32 bit fixed | 32-bit float
+ 0.07us 0.13ps 3.08us
* 0.50us 2.00us 2.04us
/ 1.60us 6.40us 7.07us
sqrt 1.22us 3.33us 6.991s
noi se 5.71ps — 21.64ps

Figure4.14. Fixed point and floating point execution times.

The fixed point noise function listed kgure4.14 was implemented by Yulan Wang,
and the remaining fixed point operations were written by Peter McMurry and Greg Pruett.
The floating point noise function was implemented by the author and the remaintng floa

ing point operations were written by John Eyles and Steve Molnar.

69

4.5.3. Math functions

To round out the varying math capabilities, the author created floating point versions
of the remaining standard math library functions. Efficient SIMD implementation of these
functions requires a slightly different approach than a serial implementation would. The
typical way to implement a transcendental math funcgem(asi n, exp, | og, ...) is
with a piece-wise polynomial approximation. First the domain is folded using identities of
the particular function. For example, foog(x) , we writex asnt 2° with me [1,2). If
X is floating point, it is already in this form.

log(x) = log(nm2% =1og(2%) + log(m = e log(2) + Iog(m

It is enough to approximateog(m between 1 and 2. Normally, the domain is further
reduced with a table of polynomials. For example, the math library distributed with SunOS
4.1[Sun89]divides this [1,2) domain into 32 segments and fits each witlfiemeghit fifth-

order polynormal.

This approach presents a problem on PixelFlow due to the handling of conditionals on
a SIMD array. For a typicalf /el se, a normal serial processor evaluates the condition,
then executes either one branch or the other. On a SIMD array, the condition determines
which processing elements are enabled. The true part is executed with some processing
elements enabled, then the set of enabled processors is flipped and the falsegoart is ex

cuted. Thus the SIMD array spends the time to execute both branches fof the

For thel og function example, this means that using a table of 32 polynomials takes as
much time as a single polynomial for the entire [1,2) domain with 32 times as many terms.
Even so, a polynomial with 160 terms is not practical. For each PixelFlow math function,
we reduce the function domain using identities (e.g. getting an approximation domain
from 1 to 2 for thé og function), but do not reduce it further. We fit this domain with a
single polynomial. Each polynomial is chosen to use as few terms as possiblewhile r

maining accurate to within the floating poinegision.

Each approximation must have relative error that is less than the error in the floating
point representation. The mantissa of a floating point number has an &tét. dthe full

floating point numbent 2° has an absolute error @ >** 2°, or a relative error that

70

0.8

06 |

04 r

In(x)

02 r

0

1

12

14

16

18

2

Figure 4.15. Natural log function over the approximation domain.

1e-08

0

-1e-08 |

relative error

-2e-08

-3e-08

1

Figure4.16. Relative error in natural log approximation.

12

14

16

18

ranges fron2 2* to 2" ?° (about6* 10" ® to about3* 10" ®) asmranges from 1 to 2. The

major determining factor in the accuracy of the polynomial approximation is the number of

terms. Once we have selected the right number of terms for p(x), the actual coefficients

can vary quite a bit and still be within floating point accuracy.

We want to minimize the maximum relative error. This can become quite difficult.

Since we only need a solution within the floating point accuracy, we instead solve the

easier least-squares minimum relative error over the approximation domain.pSo to a

proximatef(x) with p(x), we want to solve for thg(x) that minimizes

J " e
D

(4.1)

over the approximation domain, We find p(x) by solving for the coefficient vectat,in

d (ng)—f(x)
av f(x)
D

jzdx =0

71

(4.2

For most of the math functions, even Equatddhhas no closed form solutions. Wo
ever, we can factor it into terms that are linear in the elememtsnél solve with a-

meric inegration.

This works well for areas where f(x) does not approach 0.JEQxfor some ¥ b,
the relative error goes to infinity as x approache$mxthese cases, we salvage the a
proximation by constraining p{xand p’(») to match exactly while still minimizing the
least-squares relative erréiigure4.15 shows the natural log function over the approx
mation domainFigure4.16 shows the relative error of a1 6rder approximation made
by constraining the value and first derivative at x=1 and minimizing the least-squares rel

tive error over the rest of the domain.

function exact fast
sin 81.36us| 45.64us
cos 81.36us| 48.77us
tan 93.25us| 52.65us
asin, acos 78.52us| 47.50us
atan 66.41us| 35.34us
at an2 66.17us| 35.15us
exp 53.37us| 37.86us
exp2 51.09us| 35.58us
| og 57.76us| 21.57ups
| 0g2 57.68us| 21.49us

Figure4.17. SIMD execution timefor floating point math functions.

We provide these accurate versions of the math functions, but often shaders do not
really need the “true” function. With the ripple reflection shad&igure4.12c, it is not
important that the ripplese sine waves. They just needltok like sine waves. For that

reason, we also provide faster, visually accurate, but numerically poor versions of the

72

math functions. The fast versions use simpler polynomials, just matching value and first
derivative at each endpoint of the range fit by the more exact approximations.coFhis pr
vides a function that appears visually correct while not requiring an excessive number of

terms.

4.5.4. Combined execution

Many shading functions follow the same general mold. On a SIMD system, the shaders
are executed sequentially, so the time spent shading is the sum of the time for all of the
shaders. Combining the execution of the common sections of code in multiple shaders can
lead to large gains in performance. If we find an expensive operation performed by each of
ten shaders in a scene, and manage to execute that expensive operation only once, it is

equivalent to making the expensive operation ten times faster.

This combination of operations is similar to the work of Dietz for combining execution
of code within a single SIMD procedyi@ietz92]. On a SIMD processor, even a simple
i f statement requires executing theen clause anel se clause sequentially. Dietz’
work with common subexpression induction allows code that appears in both to-be co

bined and executed only once.

Rather than attempt common subexpression induction at a fine grain within a shader or
between shaders, we have focused on combining the large, expensive operations shared by
different shaders. The easiest and most automatic of these types of optimizations is the
combined execution of lights for all surface shaders. For some of the more “traditional”
surface shaders, involving image texture lookups and Phong shading, we can do further
overlapped computation. Different surface types that share the same surface shading fun
tion can sometimes be executed together. Finally, there is some interesting possible future

work with generalizing this class of overlapped execution opéitions.

Lights

One of the jobs of a surface shader is to incorporate the effects of each light in the
scene. This is accomplished throughithé um nance construct, which behaves like a
loop over the active lights (s€&gure4.18). Thei | | um nance construct is covered in

more detail in Sectiod.1.4 This means that each surface shader effectively includes a

73

loop over every light. Famshaders and lights, this would result in the execution of

nt n lights. This would be quite expensive since the lights themselves are procedural, and
could be arbitrarily complex. However, since the lights are the same for eachnof the
shaders, we can compute each light just once and share its results among all df the sha
ers, resulting in the execution of omlights. We do this by interleaving the execution of

all of the lights and shaders.

/1 setup, conpute base surface col or
i Ilum nance() {
/1 incorporate the contribution of one |ight

}
/1 wrap up

Figure 4.18. Outline of a typical surface shader.

We accomplish this interleaving by having the compiler generate three SIMzinstru
tion streams for each shader function. The first stream, which werealli | | um con-
tains only the setup code (until thel um nance in Figure4.18). The second stream
contains the body of thd | um nance construct. We call this thd | umstream.
nally, thepost - i | | umstream contains everything after the um nance. The lights
themselves create their own stream of SIMD commands. The interleaving pattern of these
streams is shown iRigure4.19.

— time (not to scale}»
setup light 1 light 2 wrap up
phase phase phase phase

pre-ilTum BN
Surface 1 i1lum B B
post-illum N
pre-illum |
Surface 2 i1lum B B
post-illum .
pre-illum o
Surface 3 illum - -

post-illum

Light 1
Light 2 N

Figure4.19. Interleaving of surface shadersand lights

74

The memory usage of the surfaces and lights must be chosen in such a way that each
has room to operate in SIMD memory, but none conflict. The surface shaders nannot i
terfere with each other since any one pixel can only use one surface shader. Different su
face shaders already use different allocations of pixel memory. Lights, howeverpmust o
erate in an environment that does not disturb any surface shader, but provides results in a
form that all surface shaders can use. The results of the lighting computation, the color
and direction of the light hitting each pixel, are stored in a special communications area to
be shared by all surface shaders. The light functions themselves operate in the SIMD
memory left over by the greediest of the surface shader i | | umstages. Above this
high water mark, the light can freely allocate whatever memory it needsi Theim and
post -i | | umstreams of all shaders can use all available memory without interfering

with either the other surfaces or the lights.

Surface position

For image composition, every pixel must contain Z-buffer depth of the closest surface
visible at that pixel. This Z value, along with the position of the pixel on the screefs, is su
ficient to compute the location of the surface sample in 3D. Since the surface position can
be reconstructed from these two pieces of information, we do not explicitly store-the su
face position in pixel memory during rendering, or waste composition bandwidth sending
it from the rendering boards to the shading boards. Instead, we compute it on the shading
boards in a phase we cpll e- shade, which occurs before any shading. Thus, we save
memory and bandwidth early in the graphics pipeline, and share the execution tisne nece

sary to reconstruct the surface position once we need it.

Support for traditional shaders

Two optimizations have been added to assist in cases that are common for forms of
the OpenGL shading model. These can be used by procedural shaders as well, though the
interface is not as automatic as the shared lighting computations. Shared lighting comp
tations can be applied to any shader without special coding by the shader writer, while
these special-purpose optimizations rely on the shader-writer to declare certain “magic”

parameters to enable the optimization.

75

Surface shaders that use only the typical Phong shading model can use a shared
i I I umstream. Use of this shared stream is switched on for any shader that declares the
px_rc_spec_co andpx_rc_phong_co parameters. In theost _i | | umportion
of the shaders, these parameters contain the results of the shared illuminance computation.
This optimization is not easily detected automatically, so it is much easier to rely on the

intelligence of the shader-writer directly.

Surface shaders that perform a certain class of texture lookups can share the lookup
computations. The PixelFlow hardware does not provide any significant improvement in
actual lookup time for shared lookups, but the shared lookup allows illuminance aomput
tions to happen while the lookup is happening. The optimized texture lookup is used by a
number of variants of the OpenGL shading model. These shaders know what texture they
want to look up in th@r e-i | | umphase, but don’t require the results until ploest -

i I I umphase. To share the lookup processing, they placedkieire ID andtexture co-
ordinates in special shared “magic” parameters. The results of the lookup are placed in

another shared magienameter by the start of thpost - i | | umstage.

4.5.5. Cached instruction streams

As mentioned in Sectiod.3.2 PixelFlow shading code consists of two conceptual
parts. Any operations involving only uniform quantities execute only on the shading board
microprocessor. Any operations involving varying quantities, or a mixture of uniform and
varying, occur on the SIMD pixel processors. The microprocessor code computes the
uniform expressions and all of the uniform control flow 6 with uniform conditions,
whi | e’s, f or’s, etc.), generating a stream of SIMD processor instructions. This SIMD
instruction stream is buffered for later execution. The set of SIMD instructions only
changes when some uniform parameter of a shader changes, so we cache the instruction
stream and re-use it. Any parameter change sets a flag that indicates that the stream must
be regenerated. For most non-animated shaders, this means that the uniform code executes

only once when the application starts.

76

Shader groups

Different shader instances that use the same shader function can sometimes be exe-
cuted together. The set of shader instances that may be executed together is called a
shader instance group. We have elected not to use this optimization. The payoff when it
succeeds can be high, but it is costly to find the groups. The merging of instancesinto in-
stance groups can only be done while the application is running, and may change from
frame to frame. By contrast, the earlier optimizations in this section can all be statically
determined at compile-time. Since, in our limited experience, we have yet to see any appli-
cations with agroup size larger than one, any effort spent finding groups would be
wasted. However, we will discuss some of the issues in using shader groups, should they

prove practical in the future.

Shader instances that share a pfman function produce different streams of SIMD in-
structionsiif their uniform parameters differ. For example, one uniform parameter might be
the number of times to execute aloop in the shader. Consequently, a shader group con-
sistsonly of those instances that do not differ in any uniform parameter values, though
they may differ in bound values for varying parameters. Since the values of the bound pa-
rameters can change from frame to frame, a particular instance may change from shader

group to shader group. In addition, the number of shader groups may change.

To utilize the optimization, we must be able to rapidly identify which group to use for
an instance when one of its uniform parameters changes. This may also involve creating a
new group or removing an old one. We can rapidly limit the number of groups to check by
creating a ssimple hash function of all of the uniform parameters. The more complete, pa-
rameter by parameter, comparison need only be done for groups that match the hash
value. A particularly attractive hash is a simple checksum. When a parameter value
changes, it is easy to recompute the checksum by subtracting the contribution of the old
parameter value and adding in the contribution of the new parameter value. Once we
identify the shader instance groups, it is easy to combine their execution by enabling a set
of shader IDsinstead of only one.

77

45.6. ldentification of active shaders

Just because a shader is loaded does not mean that it is being used. Even if it is used,
all of the primitives that use it may be entirely off screen. Even if they are on screen, they
may not fall in a particular region. Even if they fall in the region, they may not be visible.
Time spent running shaders that do not even appear in the image is wasted. There are se
eral levels of active shader detection that we could support, corresponding to the ways

that a loaded shader might not be used.

The most advanced and accurate technique is to detect which shaders actually appear
in image pixels in a region. The PixelFlow hardware includes an EnablE@R test,
provided specifically to make this possild#R can tell whether any processors in the

SIMD array are enabled.

Normally, the code running on each board’s microprocessor generates a buffer of
SIMD instructions to be sent at some later time. To us&@ketest, we must generate
instructions to be sent to the SIMD array while we wait. The basic algorithm is to enable
only the pixels using a particular shader, then cli€dR to see if such pixels exist. Since
only oneEOR test can be done at a time on PixelFlow, its use is further complicated by the
buffering that exists in hardware and software. Before any such test can be started, we
must wait for the queued and buffered instructions to complete. For this rea&@R an
test would be best done once per region, for all shaders, instead of on a shader-by-shader
basis. Even if th&OR test were only done once per region, it still upsets the buffering and

load balancing of the machine.

Shaders tend to be applied on an object-by-object basis, so the pixels using a particular
shader tend to be close together. Even with the buffering and load balancing concerns, the
ECR test would be worthwhile for scenes with large numbers of shaders since all shaders
are unlikely to appear in a single region. However, we did not run into any such scenes in

our testing, so we instead focused our energies on other forms of optimization.

78

4.6. Stagesin shading

All of the attempts to share execution between different shaders or other parts of the
system mean that the software stages actually run on PixelFlow are quite different from
the simple abstract pipeline presented to the users and covered in Chapter 2. Figure 4.20
shows the full set of stages

rendering node rasterize primitive
post-rast _
compress _
|
shading node uncompress —
pre-shade _
pre-illum shade
light light
illum shade
post-illum shade
post-shade _
fog atmospheric
blend _
|
frame buffer node frame-buffer warp
a) b)

Figure 4.20. Comparison of PixelFlow softwar e stages and abstract stages

a) All of the stages present in the PixelFlow softwar e. b) The mapping of these
stagesinto the abstract pipeline stages.

Therasterize stage handles the transformation, rasterization, and interpolation
stages of the abstract pipeline of Chapter 2. The post-rast stage handles operations
that can be shared by many or all primitives and that reduce the required composition net-
work bandwidth. For example, perspective correction of shading parametersisdonein
post-rast . Compress removes empty spacesin the memory map before composition.
Uncompress expands the map back out again and fills in the bound parameter values for
any pixel-memory bound parameters. As mentioned in Section 4.5.4, pre-shade han-
dles common tasks like the computation of surface position that can be shared by all shad-
ers. pre-shade and post-rast serve similar functions on opposite sides of the com-
position network transfer. Particular computations are placed in one or the other, based on

which will alow the minimum composition network message size from rendering node to

79

shadingnode. Pre-illumlight,illumandpost-ill| umwerediscussedin Sec-
tion 4.5.4. Fog corresponds to the fog or atmospheric stage of the abstract pipeline of
Chapter 2. Bl end does blending of image samplesinto asingle pixel value for anti-
aliasing. Blending occurs on the shading board to reduce the composition network band-
width required between the shading board and frame buffer boards. Finally thef r ane-
buf f er stage handles copying the incoming image pixelsinto the frame buffer, including

any required warping.

80

