
3 IMPLEMENTATION OVERVIEW

So far, we have mentioned very little about our test implementation on PixelFlow. This

is intentional, as the abstract pipeline and language should not depend on any details of a

particular hardware implementation. However, an example implementation is needed to

show that these procedural techniques can run at interactive rates on graphics hardware.

In this chapter, we cover the basic knowledge of the PixelFlow hardware required to un-

derstand the implementation issues. For more details on the PixelFlow architecture, see

[Molnar91][Molnar92][Eyles97]. We also cover some intermediate levels of abstraction

between PixelFlow and our abstract graphics pipeline and explain how our procedural

stages fit into the real PixelFlow pipeline.

Because the stages of the abstract pipeline can be programmed completely independ-

ently, it is possible (and expected) that a particular hardware implementation may not have

procedural interfaces for all stages. While PixelFlow is theoretically capable of program-

mability at every stage of the abstract pipeline, our example implementation only provides

high-level language support for surface shading, lighting, and primitives. The underlying

PixelFlow software includes provisions for programmable testbed-style atmospheric and

image warping functions, but we have not supplied any special-purpose language support

for these. In the following chapters, we will look at the shading, lighting, and primitive

stages in more detail.

3.1. High-level view

PixelFlow consists of a host workstation, a number of rendering nodes, a number of

shading nodes, and a frame buffer node. The hardware and lower level software handle the

scheduling and task assignment between the nodes, so we can consider the flow of data in

the system as the pipeline shown in Figure 3.1. This view is based on the passage of a sin-

gle displayed pixel through the system. Neighboring pixels may have been operated on by

35

different physical nodes at each stage of this simplified pipeline. This will be covered in

more detail later in this chapter. For the purposes of mapping the abstract pipeline onto

PixelFlow, the simplified view of the physical PixelFlow pipeline is sufficient.

frame buffer
node

rendering
node

shading
node

Figure 3.1. Simplified view of PixelFlow system

3.1.1. Applying the abstract pipeline

The mapping of the abstract pipeline of Chapter 2 onto PixelFlow is shown in Figure

3.2. The modeling, transformation, primitive, and interpolation stages are handled by the

rendering node. The shading, lighting, and atmospheric stages are handled by the shading

node. Finally, the image warping stage is handled by the frame buffer node.

interpolate

light

image pixels

3D geometry

transform

image

atmospheric

model

shade

primitive

frame buffer

shading

rendering

Figure 3.2. Procedure pipeline

When mapping the abstract pipeline onto PixelFlow, we maintain the interfaces to the

pipeline stages. Thus, the procedures written for PixelFlow should look exactly the same

as the procedures written for a different machine with a different organization. The code

36

for each stage is written just as if it were part of some arbitrary rendering system imple-

menting the abstract pipeline of Chapter 2.

It is important to notice that the abstract pipeline only provides a conceptual view for

programming the stages. It allows the procedure programmer to pretend that the machine

is just a simple pipeline instead of a large multicomputer. The real stages do not need to be

executed strictly in the order given. The user writing code for one of the stages does not

need to know the differences between the execution order given in the abstract pipeline

and the true execution order. The mapping of the abstract pipeline onto PixelFlow exhibits

several different forms of this.

The first example is the overall organization of the processes on PixelFlow. PixelFlow

completes all of the modeling, transformation, primitives, and interpolation in the render-

ing nodes before sending the shading parameters for the visible pixels on to a shading

node. PixelFlow then completes all of the shading, lighting, and atmospheric effects before

sending the completed pixels on to the frame buffer node for warping. On a different

graphics architecture, it might make more sense to complete all of the stages for every

pixel in a primitive before moving on to the next primitive. Either choice appears the same

to users who write the procedures. The abstract pipeline does not include information

about the stage scheduling to allow just such implementation flexibility.

The procedures running on the PixelFlow rendering nodes provide another example.

The abstract pipeline presents transformation, primitive, and interpolation as if they were a

sequential chain of processes. On PixelFlow, the primitive stage drives transformation and

interpolation. A procedural primitive function is invoked for each primitive to be rendered.

This function calls both transformation and interpolation functions on demand as needed.

The results stored for each pixel include its depth, an identifier for which procedural

shader to use and the shading parameters for that procedural shader. Once again, the user

writes procedures as if they were independent sequential stages and is not aware of the

true ordering within the PixelFlow implementation.

The final example is with the shading and lighting stages. The abstract pipeline pres-

ents shading and lighting as if the shading stage called the lighting stage for each light. On

37

PixelFlow, the linkage between these stages is not as direct. These two stages run with an

interleaved execution scheduled by the PixelFlow software system. This interleaving is ex-

plained in more detail in Chapter 4. And again, the interleaved scheduling is hidden from

anyone who writes a shading or lighting procedure.

3.1.2. Parameter manager

Supporting this pipeline is a software framework that handles the details of the ren-

dering process and the communication between the programmable procedures. That com-

munication is assisted by a global parameter manager, implemented on PixelFlow by Rich

Holloway. The parameter manager allows each node in the system to find values or pixel

memory addresses of the parameters. It also keeps track of other attributes of each pa-

rameter – its type and size, default values, whether it needs to be transformed (and how),

etc. Whenever a procedure is compiled, an extra load function is generated. This load

function is run when the procedure is loaded by the application. The load function regis-

ters all of the parameters used or produced by the procedure. The parameter manager

collects this information and makes sure each parameter is available when it is needed.

This global parameter space is similar to the shared memory “blackboard” idea used by

MENV [Reeves90].

3.2. Low-level view

The PixelFlow system data-flow was show in Figure 3.1. A view of the hardware at

that level was sufficient to understand how the abstract pipeline maps onto PixelFlow. We

must delve deeper to understand some of the issues that impacted our implementation.

Where Figure 3.1 showed only a single stage for rendering and shading, PixelFlow may

have many nodes (see Figure 3.3). There are also two networks connecting the nodes in

the PixelFlow system, the geometry network and composition network. The rendering

nodes and shading nodes are identical, so the balance between rendering performance and

shading performance can be decided on an application by application basis. The frame

buffer node is also the same, though it includes an additional daughter card to produce

video output.

38

host
workstation

frame buffer
node

ge
om

et
ry

 n
et

w
or

k rendering
node

shading
node

co
m

po
si

ti
on

 n
et

w
or

k

Figure 3.3. PixelFlow machine organization.

Each rendering node is responsible for rasterizing an effectively randomly chosen sub-

set of the primitives in the scene. The rendering nodes work on one 128x64 pixel region at

a time (or 128x64 image samples when antialiasing). Many of our examples and tests are

based on either an NTSC video screen size of 640x512 pixels with four samples per pixel,

or a high-resolution screen size of 1280x1024 pixels. There are 40 regions in an NTSC

image with no antialiasing. With antialiasing using four samples per pixel, the NTSC image

has 160 regions. Without antialiasing, the high-resolution image also has 160 regions.

Therefore, our target is to be able to handle 160-128x64 regions at NTSC video rates of

30 frames per second.

Since each rendering node has only a subset of the primitives, a region rendered by one

node will have holes and missing polygons. The different versions of the region are

merged using image composition. PixelFlow includes a special high-bandwidth network

called the composition network with hardware support for these comparisons. As all of the

rendering nodes simultaneously transmit their data for a region, the network hardware on

each node compares, pixel-by-pixel, the data it is transmitting with the data coming in

from the upstream nodes. It keeps only the closest of each pair of pixels to send down-

stream. By the time all of the pixels reach their destination, one of the shading nodes, the

composition is complete.

Once a shading node has received the data, it does the surface shading for the entire

region. The technique of shading after the pixel visibility has been determined is called

deferred shading [Deering88][Ellsworth91]. Deferred shading only spends time shading

the pixels that are actually visible, and allows us to do shading computations for many

39

more pixels in parallel. With non-deferred shading, each primitive is shaded separately.

With deferred shading, all primitives in a region that use the same procedural shader can

be shaded at the same time.

In a PixelFlow system with n shading nodes, each shades every nth region. Once each

region has been shaded, it is sent over the composition network (without compositing) to

the frame buffer node, where the regions are collected and displayed.

3.3. PixelFlow node

The nodes on PixelFlow all look quite similar (See Figure 3.4). Each node of the Pix-

elFlow system has two RISC processors (HP-PA 8000’s), a 128x64 custom SIMD array

of pixel processors, and a texture memory store. Only the rendering nodes make use of the

second RISC processor, where the primitives assigned to the node are divided between the

processors. The existence of the second RISC processor does not impact our implementa-

tion, so we can take the simplified view that there is only one processor on the node and

let the lower level software handle the scheduling between the physical processors. The

RISC processors share 128 MB of memory, while each pixel processor has access to 256

bytes of local memory. The texture memory exists in several replicated banks for access

speed, but the apparent size is 64 MB.

texture/
frame buffer

memory co
m

po
si

ti
on

 n
et

w
or

kSIMD
array

ge
om

et
ry

 n
et

w
or

k RISC
processor

Figure 3.4. Simple block diagram of a PixelFlow node

Each node is connected to two communication networks. The geometry network, car-

ries information about the scene geometry and other data bound for the RISC processors.

This network is four bytes wide and operates at 200 MHz. It can simultaneously send data

in both directions, giving a total bandwidth of 800 MB/s in each direction. The composi-

tion network handles transfers of pixel data from node to node. It also operates in simulta-

neously in both directions at 200 MHz. However, the composition network is 32 bytes

40

wide, giving a bandwidth of 6.4 GB/s in each direction. Four bytes of every transfer is re-

served for the pixel depth, reducing the effective bandwidth to 5.6 GB/s.

3.3.1. Compiler target

Every procedural stage on PixelFlow has a testbed-style interface, which allows new

stage procedures to be created using the internal libraries of the PixelFlow system. Writing

code new procedures using this interface requires a deep understanding of the implemen-

tation and operation of PixelFlow, more than will be provided in this dissertation. We pro-

vide a high-level, special-purpose language so the users who write new procedures will

not need to have that level of understanding of PixelFlow. It also makes rapid prototyping

and porting procedures to other systems possible.

The compiler for our special-purpose language produces C++ code that exactly con-

forms to the testbed interface. This code consists of two functions, a load function

(mentioned in Section 3.1.2), and the actual code for the procedure. The code for the pro-

cedure is run on the RISC processor and includes embedded EMC functions. Each EMC

function puts one SIMD instruction into an instruction stream buffer. The EMC prefix that

appears on all of these functions stands for enhanced memory controller, from the Pixel-

Planes SIMD array’s origin as a processor-enhanced memory; we use it here just to iden-

tify the functions that generate the SIMD instruction stream.

When the C++ code for a procedure is run, the result is a buffer full of instructions for

the SIMD array. This instruction stream buffer can be sent to the SIMD array several

times without requiring the original C++ code to be re-executed.

There are two forms of EMC function used in PixelFlow. The form used on the shad-

ing nodes checks the available space in the instruction stream buffer with each instruction

and can re-allocate the buffer on the fly. The form used in the rendering nodes requires a

buffer of sufficient size to be allocated at the beginning of the procedure. The reason for

this difference, and the issues that result, are discussed in Section 5.5.3.

41

3.4. Machine suitability

Graphics machines of the size and complexity of PixelFlow take considerable devel-

opment resources. One contemporary machine is the Silicon Graphics InfiniteReality

[Montrym97]. It is similar in memory and processing power to PixelFlow. The Silicon

Graphics InfiniteReality includes four geometry engines operating in parallel, each with

three floating point arithmetic units. It has between one and four fragment generators,

which do the scan conversion. It has 80 to 320 image engines. For a 1280x1024 image,

there are 512 bytes available per pixel, twice what is available on PixelFlow. Exact and

directly comparable performance figures are not available, but the overall system perform-

ance shows that it has computational power similar to a seven node PixelFlow. For even

greater performance, a Silicon Graphics RealityMonster combines up to eight InfiniteRe-

ality systems.

However, these machines are not well suited to procedural techniques, while Pix-

elFlow is. This is primarily because programmability throughout the graphics machine was

one of the primary design goals of PixelFlow. We hope that our successes on PixelFlow

will influence the design goals of future commercial graphics machines. With PixelFlow,

we show that parts of the graphics system can be exposed to user programming at a high-

level without unduly constraining the system implementation. The experiments we do with

procedural techniques on PixelFlow will help define the requirements for future graphics

systems.

