
1 INTRODUCTION

Procedural shading is a proven graphics rendering technique in the production anima-

tion industry, and has been effectively used for years in commercials and feature films. For

procedural shading, a short user-written procedure, called a shader, determines the shad-

ing and color variations across each surface. This gives great flexibility and control over

the surface appearance. These animations are created with an off-line renderer, taking

anywhere from seconds to hours per frame. The resulting frames are replayed at 24–30

frames per second.

Polygon-per-second performance has been the major focus for interactive graphics

hardware development during most of the time that procedural shading has been in use.

Only in the last few years has attention been given to surface shading quality for interac-

tive graphics. Today, even low-end PC products include image-based texture mapping as

part of their fixed shading model. Instead of creating more and more complex fixed shad-

ing models, we would like to use procedural shading for images rendered at interactive

rates (defined, for our purposes, as at least 10 frames per second and preferably 30 frames

per second). Similar procedural techniques have also been used in off-line rendering at

other points in the graphics process. We would like to use these same techniques through-

out the interactive graphics rendering pipeline.

One important factor in procedural shading is the use of a shading language. A shading

language is a high-level special-purpose language for writing shaders. The shading lan-

guage provides a simple interface for the user to write new shaders. Pixar’s RenderMan

shading language [Upstill90] is the most popular, and several off-line renderers use it. A

shader written in the RenderMan shading language can be used with any of these render-

ers.

2

Interactive graphics machines are complex systems with relatively limited lifetimes.

Just as the RenderMan shading language insulates the shading writer from the implemen-

tation details of the off-line renderer, we would like to present a simplified view of the in-

teractive graphics system. We do this in two ways. First, we create an abstract pipeline of

procedural stages. This abstract pipeline gives the user a consistent view of the graphics

process that can be mapped onto the machine. Second, a special-purpose language allows

a high-level description of each procedure. Through these two, we can achieve device-

independence – so procedures written for one graphics machine have the potential to

work on other machines or other generations of the same machine.

The purpose of this dissertation is to design an abstract pipeline for interactive graph-

ics; to demonstrate that this pipeline can be mapped onto an interactive graphics system;

and to demonstrate that a special-purpose language can be used to write procedures that

run at interactive rates.

1.1. Thesis Statement

The decomposition of the graphics pipeline into a coherent set of user-

programmable procedures provides valuable new tools to the interactive

graphics programmer. In addition, a special-purpose language for writing

the procedures insulates the programmer from the details of the graphics

system while providing the system designer the opportunity to perform op-

timizations. This can be implemented efficiently on a graphics machine us-

ing current technology to yield a system that maintains interactive frame

rates

1.2. Procedural techniques

Procedural techniques have been used in all facets of computer graphics, but most

commonly for surface shading. As mentioned above, the job of a surface shading proce-

dure is to choose a color for each pixel on a surface, incorporating any variations in color

of the surface itself and the effects of lights that shine on the surface. A simple example

may help clarify this.

3

We will show a shader that might be used for a brick wall (Figure 1.3). The wall is to

be described as a single polygon with texture coordinates. These texture coordinates are

not going to be used for image texturing: they are just a pair of numbers that parameterize

the position on the surface.

The shader requires several additional parameters to describe the size, shape and color

of the brick. These are the width and height of the brick, the width of the mortar between

bricks, and the colors for the mortar and brick (see Figure 1.1). These parameters are

used to fold the texture coordinates into brick coordinates for each brick. These are (0,0)

at one corner of each brick, and can be used to easily tell whether to use brick or mortar

color. A portion of the brick shader is shown in Figure 1.2 (the full shader appears in Ap-

pendix A). In this figure, ss and tt are local variables used to construct the brick coordi-

nates. The simple bricks that result are shown in Figure 1.3a.

width

mortar

height

mortar

Figure 1.1. Size and shape parameters for brick shader

// find row of bricks for this pixel (row is 8-bit integer)

fixed<8,0> row = tt/height;

// offset even rows by half a row

if (row % 2 == 0) ss += width/2;

// wrap texture coordinates to get “brick coordinates”

ss = ss % width;

tt = tt % height;

// pick a color for this pixel, brick or mortar

float surface_color[3] = brick_color;

if (ss < mortar || tt < mortar)

surface_color = mortar_color;

Figure 1.2. Portion of code for a simple brick shader

One of the real advantages of procedural shading is the ease with which shaders can be

altered to produce the desired results. Figure 1.3b-e show a series of changes from the

4

simple brick shader to a much more realistic brick. The code for the final resulting shader

appears in Appendix A. Several of these changes demonstrate one of the most common

features of procedural shaders: controlled randomness. With controlled use of random

elements in the procedure, this same shader can be used for large or small walls without

any two bricks looking the same. In contrast, an image texture would have to be re-

rendered, re-scanned, or re-painted to handle a larger wall than originally intended. ��

a b c d e

Figure 1.3. Brick shader images.

a) simple version. b) with indented mortar. c) with added graininess. d) with varia-
tions in color from brick to brick. e) with color variations within each brick.

Procedural shading can also be used to create shaders that change with time or dis-

tance. Figure 1.4a and b are frames from a rippling mirror animated shader. Figure 1.4c

shows a yellow brick road where high-frequency elements fade out with distance. Figure

1.4d and e show a wood shader that uses surface position instead of texture coordinates.

Figure 1.4d is also lit by a procedural light, simulating light shining through a paned win-

dow. ��

Figure 1.4. Examples of shaders.

1.3. Abstract pipeline

We are interested in procedural techniques for more than just surface shading, so we

decompose the rendering process into a pipeline of procedural stages. This pipeline casts

the tasks of a traditional graphics pipeline into a form where every stage can be replaced

by a user-written procedure. We call this pipeline of procedural stages the abstract pipe-

line because it provides a model of the graphics process. It is unlikely to exactly match the

5

organization of any particular graphics system, yet can be mapped onto the true structure

of the system. Thus, it provides a convenient mental model for the user who will be writ-

ing new procedures.

The stages are independent and orthogonal, so the introduction of a new procedure for

one stage does not require any changes in the other stages. This is an advantage for the

procedure writer since it allows them to only write one procedure at a time. The inde-

pendence and orthogonality also are an advantage for the system designer. A particular

graphics system does not need to support user-written procedures for every stage of the

abstract pipeline to be useful. It can support procedures at any number of the stages. Even

a system that supports procedures at only one stage still appears to follow the abstract

pipeline.

The stages in the abstract pipeline are: model, transform, primitive, interpolate, shade,

light, atmospheric, and image warp. Procedures in the model stage correspond to objects

in the scene. A modeling procedure creates the rendering primitives necessary to draw

these objects. The transform stage handles positioning of objects as well as bending,

twisting, and other changes to the object shape. A transformation procedure converts a

point, vector, surface normal, or plane into a new one in its new position. Primitive pro-

cedures are responsible for drawing the geometric primitives. Interpolation procedures

interpolate shading parameters across the rendered primitives. Shading procedures have

already been mentioned, they determine the color and shading of a surface. Light proce-

dures compute the direction and color of light that hit a surface, and can include effects

like shadows or refraction. An atmospheric procedure changes the color of a pixel based

on fog or other atmospheric effects that happen between the surface and the eye or cam-

era. Finally, an image warping procedure can warp, filter, or modify the colors of the final

image. Chapter 2 presents each of these stages in more detail, and uses the abstract pipe-

line as a taxonomy for the previous work.

1.4. Procedure language

Procedures can be written using one of two interface styles, which we call testbed and

language interfaces. With a testbed interface, the user writes new procedures using the

6

internal library and data-structures of the graphics system. With a language interface, the

user writes new procedures using a special-purpose high-level language. For either style of

procedure, the abstract pipeline allows the user to ignore the details of the rest of the

graphics system.

It is easier to provide a testbed interface for writing new procedures, but it requires the

user to learn the internal details of the system. Because testbed interfaces rely on internal

system libraries and architectures, testbed procedures are difficult to port to other graphics

systems, even others that use the abstract pipeline. In contrast, the same language interface

can be shared by many different graphics systems. The language provides an additional

layer of abstraction, and the work of porting to the new graphics system is done by the

procedure language compiler. This compiler can hide details of the graphics system while

performing optimizations to improve performance.

We have created a language, pfman, for writing shading, lighting, or primitive proce-

dures. Pfman is based on the RenderMan shading language, though we have added some

features to the language. For shading and lighting, most of the features we added now ap-

pear in newer revisions of the RenderMan language standard. Because users often have a

prior familiarity with the RenderMan shading language, we recommend future efforts use

it for all procedure stages that RenderMan supports. The only language feature that we

would still add to the current RenderMan language is a fixed point type. The pfman lan-

guage and its features for shading and lighting are covered in Chapter 4.

We also have defined new pfman language features to support primitive and interpo-

lator procedures, given in Chapter Primitives and Interpolation. This is an area not cov-

ered by RenderMan or the RenderMan shading language. Even if a future system uses the

RenderMan language instead of pfman, it would still need these additions for the extra

procedure types.

1.5. Demonstration

We have demonstrated several of these ideas on the PixelFlow graphics system. Pix-

elFlow demonstrates the effectiveness of a procedure language interface for shading and

7

lighting computations, shows that the results can run at real-time rates of up to 30 frames

per second, and explores some of the possible optimizations that can be performed.

PixelFlow supports a testbed interface for the primitive, surface shading, lighting, at-

mospheric, and image warp stages of the pipeline. It also supports a language interface for

the shading and lighting stages and has preliminary support for a language interface for

primitives. The pfman compiler produces C code for the existing testbed interface for each

of these procedures.

As a special-purpose language, pfman, provides a high-level view that hides the system

details from the user. The pfman compiler can do optimizations the user would otherwise

have to do by hand. Memory allocation is the most critical optimization performed by the

pfman compiler. Memory is a scarce resource on PixelFlow; without the pfman compiler’s

memory optimizations, shaders would not run. Other key areas of optimization deal with

the communication bandwidth limits and the time limits imposed by the interactive per-

formance goal. All of these optimizations are covered in more detail in Chapter 4.

Having a special-purpose language and compiler also introduces an extra layer be-

tween the user’s intentions and the system. This introduces a potential source of ineffi-

ciency. The PixelFlow implementation of the language interface for primitive procedures

exhibits some of these problems.

Thus far (March 1998), six people, other than the author, have written new procedural

shaders in pfman. Having actual users of the system has guided us in the decisions of

which features and optimizations to explore. It has also provided a great sense of satisfac-

tion when a user produces new results that are not possible on any other current graphics

machine.

1.6. Organization

The remainder of this dissertation will be organized as follows:

� Chapter 2 covers our abstract pipeline.

� Chapter 3 provides some details on the PixelFlow hardware, necessary to understand

our PixelFlow demonstration system.

8

� Chapter 4 gives details on the surface shading and lighting stages on PixelFlow.

� Chapter 5 gives details on our implementation of the primitive and interpolation

stages.

� Chapter 6 covers the experiences of our users who have created shading procedures

on PixelFlow.

� Chapter 7 presents our conclusions and lists some areas of future research.

