
Graphics Hardware (2003)
M. Doggett, W. Heidrich, W. Mark, A. Schilling (Editors)

Automatic Shader Level of Detail

Marc Olano,∗ Bob Kuehne† and Maryann Simmons†

∗ University of Maryland, Baltimore County
† SGI

Abstract

Current graphics hardware can render procedurally shaded objects in real-time. However, due to resource and
performance limitations, interactive shaders can not yet approach the complexity of shaders written for film pro-
duction and software rendering, which may stretch to thousands of lines. These constraints limit not only the
complexity of a single shader, but also the number of shaded objects that can be rendered at interactive rates.
This problem has many similarities to the rendering of large models, the source of extensive research in geometric
simplification and level of detail. We introduce an analogous process for shading : shader simplification. Starting
from an initial detailed shader, shader simplification automatically produces a set of simplified shaders or a single
new shader with extra level-of-detail parameters that control the shader execution. The resulting level-of-detail
shader can automatically adjust its rendered appearance based on measures of distance, size, or importance, as
well as physical limits such as rendering time budget or texture usage. We demonstrate shader simplification with
a system that automatically creates shader levels of detail to reduce the number of texture accesses, one common
limiting factor for current hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image generation
I.3.6 [Computer Graphics]: Methodology and Techniques I.3.7 [Computer Graphics]: Three-Dimensional Graph-
ics and Realism
Keywords: Interactive Rendering, Rendering Systems, Hardware Systems, Procedural Shading, Languages, Multi-
Pass Rendering, Level of Detail, Simplification, Computer Games, Reflectance & Shading Models

1. Introduction

Procedural shading is a powerful technique, first explored
for software rendering in work by Cook11 and Perlin35,
and popularized by the RenderMan Shading Language19. A
shader is a procedure written in a special purpose high-level
language that controls some aspect of the appearance of an
object to which it is applied. The term shader is used gener-
ically to refer to any such procedures, whether they compute
surface color, attenuation of light through a volume (as with
fog), light color and direction, fine changes to the surface
position, transformation of control points or vertices, or any
combination of these factors.

Recent graphics hardware can render procedurally shaded
objects in real-time, through shaders defined in a low-
level assembly language4, 30, 40 or a high-level shading
language27, 33, 34, 36. Even though the hardware is capable of
rendering these shaders interactively, the number of tex-

ture units, total texture memory used, number of instruc-
tions, or other factors can affect overall performance or pre-
vent a shader from running at all. Even on programmable
PC graphics hardware, it is easy to exceed the hardware’s
abilities for rendering of a single object. Such shaders may
be rendered using multiple passes through the graphics
pipeline, but choosing the partitioning into passes is a dif-

Figure 1: Shader simplification applied to a leather shader.

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

ficult compilation task and the final number of passes has a
direct impact on performance5, 8, 34.

Consider the leather shader in Figure 1. With a bump
map requiring three texture accesses per light and homomor-
phic BRDF factorization28 requiring two texture accesses
per light plus one additional texture access, it is complex
enough to benefit from the several automatically generated
simplification steps shown. An even more realistic leather
shader might include multiple measured BRDFs for worn
and unworn areas, bumps for the stitching, dust collected in
the crevices, scuff marks, and changes in color due to varia-
tions in the leather. The options are limited only by the imag-
ination and skill of the shader writer. But even though such a
complex shader might look good applied to a single closely
examined chair, it is overkill as you move away to see the
rest of the room, all the other furniture in the room, other
buildings, trees, cars and pedestrians — all using shaders of
similar or greater complexity.

In this paper, we introduce the automatic generation of
level-of-detail shaders (LOD shaders) from arbitrarily com-
plex shaders. Our examples use SGI OpenGL Shader run-
ning on an SGI Octane41. From each input shader, our sys-
tem automatically creates a single parameterized level-of-
detail shader that can adjust the shading complexity (and
thus number of rendering passes produced) based on a level-
of-detail input parameter. The application sets the level pa-
rameter to control detail for the current viewing conditions
and resource limits, thus allowing both interactive perfor-
mance and high-quality shading of many objects in the same
scene. The methods described in this paper could also be
applied to produce a series of shaders for an application to
select, or could be adapted for simplification of shaders on
commodity graphics hardware as suggested by Vlachos45.

1.1. Background

Automatic transformation of non-procedural surface appear-
ance has been explored by a number of researchers. Ka-
jiya was the first to pose the problem of converting large-
scale surface characteristics to a bump map then lighting
model22. Fournier used nonlinear optimization to fit a bump
map to a sum of several standard Phong peaks13. Cabral,
et al. addressed the conversion from bump map to BRDF
through a numerical integration pre-process7, and Becker
and Max solved it for conversion from RenderMan-based
displacement maps to bump maps and then to a BRDF
representation6. Kautz approached the problem in reverse,
creating bump maps to statistically match a chosen fractal
micro-facet BRDF24.

Fewer researchers have attempted to tackle automatic an-
tialiasing of arbitrary shading language code. The primary
form of antialiasing provided in the RenderMan shading lan-
guage is manual transformation of the shader, relying on
the shader-writer’s knowledge to effectively remove high-
frequency components of the shader or smooth the sharp

transitions from an if, by instead using a smoothstep (cu-
bic spline interpolation between two values) or filterstep
(smoothstep across the current sample width)12. Perlin de-
scribes automatic use of blending wherever if is used in the
shading code12. Heidrich et al. also did automatic antialias-
ing, using affine arithmetic to estimate the frequency and er-
ror while computing shading results20.

Thus far, creation of shaders at multiple levels of detail for
rendering speed or computational efficiency has been pri-
marily a manual process. Goldman manually created mul-
tiple independently written level-of-detail versions of a fur
shader for movie production17. Apodaca and Gritz describe
several general options for manually creating shaders with
multiple complexity levels3. Olano and Kuehne provided a
set of building block functions with manually created levels
of detail, so shaders using these building blocks inherit those
levels of detail32. Guenter et al. automatically created spe-
cialized shaders, when only some shader parameters were
expected to vary18. Expressions using other parameters were
evaluated into textures.

While most of this prior work is in the context of off-line
rendering systems like RenderMan, our work is set specif-
ically within the context of recent advances in interactive
shading languages. The first interactive shading system was
a low-level assembly-like language for the Pixel-Planes 5
machine at UNC38. Later work at UNC developed a full in-
teractive shading language on UNC’s PixelFlow system33.
Peercy and coworkers at SGI created a shading language
that runs using multiple OpenGL Rendering passes34. The
Real-Time Shading group at Stanford has created another
high-level shading language, RTSL, that can be compiled
into one or more rendering passes on SGI, NVIDIA, or
ATI hardware8, 36. Many aspects of these research efforts
appear in the several recent commercial shading languages
and compilers, NVIDIA’s Cg language, Microsoft’s HLSL,
ATI’s Ashli, and the OpenGL shading language27, 29, 5, 25.

Several aspects of interactive shading languages moti-
vate the need for shader simplification and level-of-detail
shaders. The languages they use share some features with
traditional shading languages like RenderMan, but tend to be
simpler, with operations that graphics hardware can and can-
not do a major factor in their design. Hardware limits bound
shader complexity and encourage the use of results precom-
puted into textures. Both of these factors make the simpli-
fication problem more tractable. Additionally, the desire to
have the appearance of high-quality shaders on every ob-
ject creates the need for shaders that can transition smoothly
from high quality to fast rendering while maintaining inter-
active frame rates.

2. Automatic Simplification

Shader simplification automatically creates multiple levels
of detail from an arbitrary source shader. Our simplification

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

process draws on two major areas of prior work — geometric
simplification and compiler optimization.

Specifically, our shader simplification strategy is mod-
eled after operations from the topology-preserving geomet-
ric level-of-detail literature. Schroeder and Turk both per-
formed early work in automatic mesh simplification using a
series of local operations, each resulting in a smaller total
polygon count for the entire model39, 44. Hoppe used the col-
lapse of an edge to a single vertex as the basic local simpli-
fication operation. He also introduced progressive meshes,
where all simplified versions of a model are stored in a form
that can be reconstructed to any level at run-time21. These
ideas have had a large influence on more recent polygonal
simplification work26.

From this work we take several desired properties for our
shader simplification algorithm. It should perform only local
simplification operations for computational efficiency. Each
operation should move monotonically toward the goal. Each
simplification operation has an associated cost and the sim-
plification of lowest remaining cost should be chosen at each
step. The outline of our algorithm becomes:

for each candidate simplification site
find simplification cost

while (simplifications remain)
choose site with lowest remaining cost
perform simplification
re-compute costs for area local to site

The second area we draw on in developing our simplifi-
cation algorithm is classic compiler peephole optimization1.
Peephole optimization occurs toward the end of the compila-
tion process when the program has already been reduced to
blocks of simple instructions. The optimizer looks at small
windows of instructions for certain patterns to replace.

Peephole optimization performs only local operations. If
several optimizations overlap the optimizer will choose be-
tween them based on a set of costs. The golden rule for op-
timizations is to never change the program output. Shader
simplification is in effect an optimization process but is one
that may or may not break this rule. We can classify the sim-
plifications into three categories:

Lossless: Obeying the strict compiler definition of opti-
mization. This can be expanded to include some specializ-
ing shader-like optimizations18 where certain non-constant
parameters are assumed to be constant for the simplification.
The geometric level of detail equivalent is simplification of
highly tessellated, but flat regions of a model.

Resolution-specific lossless: Producing numerically or
visually identical results but only at a specific resolution.
This would include the majority of specializing shader sim-
plifications and any others that evaluate results into tex-
tures. The equivalence is dependent on the texture resolu-
tion and minimum viewing distance. It also includes simpli-
fications that replace textures with computed results, where

Figure 2: Band-limited noise texture, noise almost blended
away at a distance, and noise replaced with average value.

the computed results fit a specific MIP-level of the texture.
In geometric simplification, the equivalent is Simplification
Envelopes or Appearance Preserving Simplification, with
strong guarantees on geometric deviation9, 10

Lossy: Not identical, but not noticeably or objectionably
different. This includes many approximations that would
never be considered for traditional optimization, but produce
visually similar results at lower cost. Most geometric simpli-
fications would fall in this category, as they minimize visual
impact without making any guarantees, and assume slight
changes in shape for distant objects are acceptable in ex-
change for interactive performance.

2.1. Simplifications

One of the most severe restrictions of current hardware is the
cost of each texture access, with limits on either accesses or
active textures per rendering pass in the tens at most.

Shaders that make heavy use of textures for precomputed
expressions, for math and shading functions, and as actual
textures can easily exceed these limits8. We have chosen the
reduction of texture accesses as our simplification goal. Re-
duction by multiples of the single-pass hardware texturing
limit provides an obvious speedup by reducing the number
of passes required, but reductions by less than the single pass
limit can also be beneficial as some hardware has higher ren-
dering rates if fewer texture units are used, and fewer texture
accesses indirectly leads to fewer operations and fewer ac-
tive textures.

Many geometric simplifications use a single simplifica-
tion rule, for example collapsing an edge to a point. We pro-
ceed using a choice of two simplification rules. The first is
a lossy simplification that replaces a texture access with a
simple non-texture-based approximation (Figure 2); the sec-
ond is a lossless simplification that replaces one or more
textures accesses and other operations with a single texture
(Figure 3).

Texture Removal: Our first simplification rule clearly
moves us toward the goal as it results in the direct removal
of one texture access at each application. Our measure of

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

error for this simplification is the least-squares difference
between the texture and non-texture approximation at each
MIP-MAP level. The use of scale-based MIP filtering in-
troduces a frequency and distance factor, while the least-
squares error provides a measure of the contrast between
pre- and post-simplification representations.

In the work presented here, we only approximate a tex-
ture by its average color. The most blurred level of a MIP
map is just the average color, so applying this simplification
switches to this constant color earlier than would be done by
standard MIP filtering. For example, replacing

FB *= texture("marble.tx");

with

FB *= color(.612,.618,.607,1);

The least-squares error between texture and average color
is the standard deviation of the texture, but we prefer the
least-squares error interpretation since it generalizes more
easily for future approximations. For example, an environ-
ment map may be well approximated by one or more light
sources using the built-in Phong model, with light sources
located at peaks of the environment map. The least-squares
error between environment map and Phong lighting mea-
sures the error in this approximation, with lower error ex-
pected at larger MIP levels due to the closer fit of the ap-
proximation to the texture.

While the texture removal operation alone is theoretically
sufficient to eventually remove all texturing operations from
any complex shader, it does not always reduce texture uses
as quickly as should be possible. The problem is not the lo-
cal error metric, but with the global effect of the introduced
error. Subsequent operations using the removed texture may
amplify or attenuate the computed error. Directly computing
this propagation of error can be done, as was shown in the
sampling of RenderMan shaders by Heidrich et al.20. In our
experience, global error measures were not necessary, even
for shaders that did have fairly significant amplification of
texture results like the watermelon in Plate 2(a). We attribute
this to the common practice of writing complex shaders in
layers3.

Texture Collapse: Our second simplification rule is the
collapse of one or more textures and the operations per-
formed onto them into a single new texture. We guarantee
to never increase the total texture accesses by including at
least one existing texture in any set of collapsed operations.

Transformation of textures within a collapse, as illustrated
in Figure 3, introduces resolution-specific error through re-
sampling of the source textures into the collapse texture. In
our current version, we support only lossless collapse (with
no relative rotation or scaling of either texture).

By limiting ourselves to lossless collapse, texture collapse
operations will happen immediately, at no additional cost.

Figure 3: An illustration of the collapse of two textures and
the associated computations into a single texture. Left to
right: the original dust (top) and scratch (bottom) textures;
the textures as transformed and overlaid by the shader (the
scratch texture is compressed, rotated and repeated, only
two copies of the repeated texture are shown); the collapsed
single-texture result; and an example of the collapsed texture
in use as dust and scratch wood detail.

However, texture removals at one scale may enable further
collapses. For example:

FB = texture("silk.tx");
FB *= texture("cone.tx");
FB += color(0.1,0,0,0);
FB *= environment("flowers.env");

is reduced first by texture collapse creating a new temporary
texture loctx 0 silk.tx (naming of generated textures is
explained in Section 3.1), producing

FB = texture("loctx_0_silk.tx");
FB *= environment("flowers.env");

then by texture removal to

FB = texture("loctx_0_silk.tx");
FB *= color(.264,.238,.279,1);

then by a second collapse creating new temporary texture
loctx 1 loctx 0 silk.tx producing

FB = texture("loctx_1_loctx_0_silk.tx");

and finally by texture removal to

FB = color(.111,.076,.090,1);

2.2. LOD Shader Representation

While each simplified block could be provided as a single
stand-alone unit, we assemble all simplified blocks for a
shader into a single unit, the LOD shader. We replace the
full shader with an if. The true branch is the original shader
while the false branch is the shader after one step of sim-
plification. We iterate the simplification process on this false
branch producing an LOD shader of the following form:

if(autoLOD < threshold0)
original_shader

else

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

if(autoLOD < threshold1)
simplified_once

else
simplified_twice

Within OpenGL Shader, such parameter-based condition-
als control which portions of the shader are executed by the
hardware. The threshold levels monotonically increase with
each level of simplification and provide a simple means to
choose between levels of detail within the shader itself. The
resulting LOD shader can be directly substituted as a re-
placement for the original shader. If autoLOD is not set, the
original shader will be executed every time, but if autoLOD
is set the appropriate level of detail will be used instead.

The existence of level-control parameters are the one as-
pect that distinguishes the interface to an LOD shader from
other shaders. We control our LOD levels through the single
parameter, autoLOD. This parameter represents the degree
of texture scaling and is a function of object size, object pa-
rameterization, and object distance. As with geometric level
of detail, other parameter choices are possible, including ob-
ject importance, distance, size, time budget, or any of the
hardware resources mentioned above. Several of these pa-
rameters could be combined into more complex conditionals
selecting simplified blocks, collected into a single aggregate
parameter, or controlled through an optimization function as
done by Funkhouser and Séquin15.

3. System Design

The bulk of this paper has focused on shader simplification
and creation of levels of detail for arbitrary shaders. These
capabilities must fit into the larger context of a shading sys-
tem. In this section of the paper we will explore how our
shading system architecture has been modified to allow both
generation and usage of automatic level of detail.

3.1. Compile and Simplify

The first step for using any interactive shader is to compile it
into a form executable by the graphics hardware. During the
compilation we also perform any simplifications. Simplifica-
tions are only performed on shaders that define an autoLOD
parameter. The existence of this parameter triggers use of the
simplifier.

The simplification process also needs to know the size and
contents of each texture, information not normally needed
during shader compilation. Our system leaves the applica-
tion in control of all aspects of texture loading and paging,
so we require an application-provided image data callback
function to get this data. The simplifier may call the image
data callback during compilation to get a copy of texture data
to analyze. Textures are identified to this callback by their
string name. The callback can return the texture data or an
error code indicating that the texture is unknown or dynamic
and cannot be removed or simplified.

Texture collapse operations may require new textures to
hold the combined textures and operations. Since the ap-
plication is in charge of texture allocation and paging, we
ask for image data for a local texture with a name begin-
ning loctx %d . For example loctx 1 stone would be a
copy of a texture named stone that the simplifier is free
to write and replace. Later requests for loctx 1 stone
should return the modified data (for analysis for tex-
ture removal or further collapse). Since a texture collapse
may build on a previous collapse, these names may also
build, so loctx 5 loctx 1 stone is a writable copy of
loctx 1 stone.

3.2. Between Frames

The LOD shader may use different active textures on dif-
ferent frames depending on which level of detail is in use.
This is not inconsistent with our goal of reducing texture ac-
cesses rather than global texture memory use, but many ap-
plications already use enough textures to require some form
of texture paging. Adding an additional set of generated tex-
tures to that burden may be a problem for these applications.

We provide an optional snapshot function that an appli-
cation can call between frames. The snapshot evaluates all
run-time parameters and conditionals in the shader to pro-
vide a frozen version the application can store and use. In
the process of building the snapshot, the application can find
out exactly which textures will be used for a given set of
run-time parameters, including the autoLOD setting. The ap-
plication does not need to use the frozen shader that results
if it only wants to know future texture usage. It can take a
snapshot just one frame in advance or compute several spec-
ulatively to page textures for possible future views.

3.3. Draw and Shade

The final shaded object is drawn by the same mechanisms
as any unsimplified object. If the application does not set
the autoLOD parameter, it assumes the default value which
triggers the full unsimplified shader. If the application does
set an autoLOD value, the appropriate level of detail will be
selected and executed. Applications using frozen snapshots
must set their autoLOD values before taking the snapshot.

During the drawing of the shaded object, different textures
may need to be loaded and bound to texture units for ren-
dering. The draw action indicates which textures to load by
calling an application provided texture bind callback func-
tion. Like the image data function, this function identifies
textures by their string name. The texture bind callback also
indicates the texture unit to bind to the texture (if the hard-
ware supports multiple textures in each rendering pass). It
is then the application’s responsibility to load or page in the
texture if necessary and prepare it for use. The texture names
may be one of the names from the original shader source
code or one of the generated loctx textures.

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

LOD Active Accesses Reduction Speedup

0 14 45 0.00 1.0
1 11 23 0.49 1.8
2 5 9 0.80 1.9
3 0 0 1.00 2.3

Table 1: Results for test scene: LOD: A selection of sim-
plification levels for this scene, from most detailed (0) to
all constant colors (3). Active: number of active, unique
textures. Accesses: number of texture accesses. Reduction:
percentage of texture accesses removed. Speedup: framerate
speedup factor.

4. Results

We ran the automatic simplification on a number of shaders,
all of which were written independently from our work on
shader LOD. Once the user enables simplification by includ-
ing the autoLOD parameter, the process is entirely automatic.

Results are shown in Plates 1 and 2, with performance re-
sults for Plate 1(a) shown in Table 1. As these results show,
the automatically generated levels of detail are visually com-
parable to the fully detailed version at the appropriate view-
ing distances, at a significant reduction in texture accesses.
Even further reductions could be achieved within the current
framework by allowing more aggressive texture collapse.

5. Discussion

Using a single LOD shader that encapsulates the progression
of levels of detail provides many of the advantages for sim-
plified shaders that progressive meshes provide for geome-
try. In this section, we directly echo the points from Hoppe’s
original progressive mesh paper21. Not only does this place
our current system in context, but it also suggests some log-
ical extensions and more ambitious future work.

• Shader simplification: The LOD shader can be generated
automatically from an initial complex shader using auto-
matic tools. Our shader simplifier operates with the sole
goal of reducing the number of texture accesses. Other
valid simplification goals may include texture memory
used, instruction count, balance between direct textures
and dependent textures, or a weighted combination of
these. Reducing texture accesses also indirectly reduces
the number of active textures and instruction count, and
so is relevant across a wide range of hardware.

• LOD approximation: Like a progressive mesh, an LOD
shader contains all levels of detail. Thus it could include
the shader equivalent of Hoppe’s geomorphs to smoothly
transition from one level to the next. Within OpenGL
Shader, we have implemented continuous, per-pixel LOD
at the cost of an additional pass that renders the object

texture-mapped with a special MIP LOD texture that ap-
proximates the sampling rate of the shader43. The result is
read back and used to set a per-pixel LOD level, that can
also be used to smoothly blend between levels.

• Selective Refinement: Selective refinement for meshes
refers to simplifying some portions of the mesh more
than others based on current viewing conditions, encom-
passing both variation across the object and a guided de-
cision on which of the stored simplifications to apply.
Within OpenGL Shader, we can treat per-pixel LOD as
noted above43. Programmable PC hardware does not real-
ize any benefit from shading variations across a single ob-
ject, but a single LOD shader will present a high quality
appearance on some surfaces while using a lower qual-
ity for others, based on distance, viewing angle or other
factors. The LOD shader could also apply certain sim-
plifications and not others based on pressure from hard-
ware resource limits, though our current implementation
does not. For example, if available texture memory is low,
texture-reducing simplification steps may be applied in
one part of the shader while leaving more computation-
heavy portions of the shader to be rendered at full detail.

• Retargetability: Retargetability is not found in mesh sim-
plification. Since shading simplification can be built into
a shading compiler, it gains the advantages of the com-
piler framework. Compilers consist of a sequence of mod-
ules that perform a simple operation on an intermediate
representation of the shader. Since simplification can be
dropped in as one or more modules in the chain, it is easy
to add to existing shading compilers and easy to add new
simplification modules. Further, since the shading com-
piler can be retargeted through multiple compiler back-
ends to different shading hardware, it is easy to create
simplifications for one hardware platform and use them
on another.

Many of these points depend on the storage of an LOD
shader. Our choice to combine all levels into a single LOD
shader would work well for most of the points mentioned,
with the added advantage that LOD shaders can easily be
dropped in as replacements for their non-LOD counterparts.

6. Conclusions and Future Work

We have presented a method for automatic simplification
of complex procedural shaders designed for use on graph-
ics hardware. The resulting LOD shaders automatically ad-
just their level of shading detail for interactive rendering. We
presented a general strategy for shader simplification, a spe-
cific example for reducing texture accesses, and a system
that provides a shader compiler and shader simplification to
an application.

6.1. Other Simplification Goals

The two simplifications discussed are specific to our goal
to reduce the number of texture accesses. Future work may

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

optimize other simplification goals, including the previously
suggested options of reducing total number of instructions
or texture memory used. We have not fully explored simpli-
fication operations appropriate for these other simplification
goals, but some directions inspired by prior research appear
particularly promising.

Texture-based simplification for both shaders and ge-
ometry provides examples of ways to move computations
into an increased number of textures. Guenter, Knoblock
and Ruf18 replaced static sequences of shading operations
with pre-generated textures18. Heidrich has analyzed texture
sizes and sampling rates necessary for accurate evaluation
of shaders into texture31. In a related vein, texture-impostor
based simplification techniques replace geometry with pre-
rendered textures, either for indoor scenes as has been done
by Aliaga2 or outdoor scenes as by Shade et al.42.

The body of BRDF approximation methods also suggests
approaches to reduce computation at the cost of increased
numbers of textures. Like shading functions, BRDFs are
positive everywhere. Fournier used singular value decompo-
sition (SVD) to fit a BRDF to sums of products of functions
of light direction and view direction for use in radiosity14.
Kautz and McCool presented a similar method for real-time
BRDF rendering, computing functions of view direction,
light direction, or other basis as textures using either SVD
or a simpler normalized integration method23. McCool, Ang
and Ahmad’s homomorphic factorization uses only prod-
ucts of 2D texture lookups, fit using least-squares28. In a re-
lated area, Ramamoorthi and Hanrahan used a common set
of spherical harmonic basis textures for reconstructing irra-
diance environment maps37. Many of these could be gen-
eralized to approximate blocks of shading code, which can
be seen as a black-box producing a result from an arbitrary
number of input variables.

6.2. Going Further

There are other promising overall research directions for
shader simplification. Following the lead of texture-based
simplification researchers like Aliaga and Shade et al.,
we could generate new textures for run-time parameter-
dependent texture collapse or other simplification on the fly,
warping them for use over several frames or updating when
they become too different2, 42.

Since rendering with LOD shaders will usually be ac-
companied by geometric level of detail, the two should be
more closely linked. Cohen et al.9, Garland and Heckbert16

and others have shown that geometric simplification can be
driven by appearance. Shader simplification should also be
affected by geometric level of detail, with a trade-off be-
tween performing the same operation per-vertex or per-pixel
depending on object tessellation.

Finally, our error metric measures the actual error in each

replacement but provides no hard guarantees on the percep-
tual fidelity of our simplifications. Many geometric simpli-
fication algorithms have been successful without providing
exact error metrics or bounds. However, algorithms such
as simplification envelopes by Cohen et al.10 provide hard
bounds on the amount of error introduced by a simplifica-
tion — guarantees that are important for some users. Further
investigation is necessary to bound the error introduced by
shader simplification.

7. Acknowledgments

The leather BRDF was fit by homomorphic factorization by
Michael McCool to data from the Columbia-Utrecht Re-
flectance and Texture Database. The car paint BRDF is
also from Michael McCool, fit to data for Dupont Cayman
lacquer from the Ford Motor Company and measured at
Cornell University. The Porsche model was distributed by
3dcafe.com.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

2. D. G. Aliaga. Visualization of complex models using dynamic
texture-based simplification. In IEEE Visualization ’96, pages
101–106, October 1996.

3. A. A. Apodaca and L. Gritz. Advanced RenderMan: Creating
CGI for Motion Pictures. Morgan Kaufmann, first edition,
2000.

4. ATI. ATI OpenGL Extensions Specifications, 2001.

5. ATI. Ashli demo. http://www.ati.com, 2003.

6. B. G. Becker and N. L. Max. Smooth transitions between
bump rendering algorithms. In Proceedings of SIGGRAPH
93, ACM Computer Graphics Proceedings, Annual Confer-
ence Series, pages 183–190, August 1993.

7. B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflec-
tion functions from surface bump maps. In ACM Computer
Graphics (Proceedings of SIGGRAPH 87), pages 273–281,
July 1987.

8. E. Chan, R. Ng, P. Sen, K. Proudfoot, and P. Hanrahan. Effi-
cient partitioning of fragment shaders for multipass rendering
on programmable graphics hardware. In Graphics Hardware
2002. ACM SIGGRAPH / Eurographics, August 2002.

9. J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. In Proceedings of SIGGRAPH 98, ACM Com-
puter Graphics Proceedings, Annual Conference Series, pages
115–122, July 1998.

10. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. P. Brooks Jr., and W. Wright. Simplification
envelopes. In Proceedings of SIGGRAPH 96, ACM Computer
Graphics Proceedings, Annual Conference Series, pages 119–
128, August 1996.

11. R. L. Cook. Shade trees. In ACM Computer Graphics (Pro-
ceedings of SIGGRAPH 84), pages 223–231, July 1984.

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

12. D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and S. Wor-
ley. Texturing and Modeling: A Procedural Approach. Aca-
demic Press, second edition, 1998.

13. A. Fournier. Normal distribution functions and multiple sur-
faces. In Graphics Interface ’92 Workshop on Local Illumina-
tion, pages 45–52, May 1992.

14. A. Fournier. Separating reflection functions for linear radios-
ity. In Proceedings of Eurographics Workshop on Rendering,
pages 296–305, June 1995.

15. T. A. Funkhouser and C. H. Séquin. Adaptive display algo-
rithm for interactive frame rates during visualization of com-
plex virtual environments. In Proceedings of SIGGRAPH 93,
ACM Computer Graphics Proceedings, Annual Conference
Series, pages 247–254, August 1993.

16. M. Garland and P. S. Heckbert. Simplifying surfaces with
color and texture using quadric error metrics. In IEEE Visual-
ization ’98, pages 263–270, October 1998.

17. D. B. Goldman. Fake fur rendering. In Proceedings of SIG-
GRAPH 97, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 127–134, August 1997.

18. B. Guenter, T. B. Knoblock, and E. Ruf. Specializing shaders.
In Proceedings of SIGGRAPH 95, ACM Computer Graphics
Proceedings, Annual Conference Series, pages 343–350, Au-
gust 1995.

19. P. Hanrahan and J. Lawson. A language for shading and light-
ing calculations. In ACM Computer Graphics (Proceedings of
SIGGRAPH 90), pages 289–298, August 1990.

20. W. Heidrich, P. Slusallek, and H. Seidel. Sampling procedural
shaders using affine arithmetic. 17(3):158–176, July 1998.

21. H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH
96, ACM Computer Graphics Proceedings, Annual Confer-
ence Series, pages 99–108, August 1996.

22. J. T. Kajiya. Anisotropic reflection models. In ACM Computer
Graphics (Proceedings of SIGGRAPH 85), pages 15–21, July
1985.

23. J. Kautz and M. D. McCool. Interactive rendering with arbi-
trary BRDFs using separable approximations. In Eurographics
Rendering Workshop, June 1999.

24. J. Kautz and H. Seidel. Towards interactive bump mapping
with anisotropic shift-variant BRDFs. pages 51–58. ACM
SIGGRAPH / Eurographics / ACM Press, August 2000.

25. J. Kessenich, D. Baldwin, and R. Rost. The OpenGL Shading
Language. 3Dlabs, Inc. Ltd., February 2003. Version 1.05.

26. D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson,
and R. Huebner. Level of Detail for 3D Graphics. Morgan
Kaufmann / Elsevier Science, 2003.

27. W. R. Mark, S. Glanville, and K. Akeley. Cg: A system for
programming graphics hardware in a C-like language. ACM
Transactions on Graphics (Proceedings of SIGGRAPH 2003),
22(3), August 2003.

28. M. D. McCool, J. Ang, and A. Ahmad. Homomorphic fac-
torization of BRDFs for high-performance rendering. In Pro-
ceedings of SIGGRAPH 2001, ACM Computer Graphics Pro-
ceedings, Annual Conference Series, pages 171–178, August
2001.

29. Microsoft. DirectX Graphics Programmers Guide. Microsoft
Developers Network Library, DirectX 9 edition, 2002.

30. NVIDIA. NVIDIA OpenGL Extensions Specifications, March
2001.

31. M. Olano, J. C. Hart, W. Heidrich, E. Lindholm, M. McCool,
B. Mark, and K. Perlin. Real-time shading. In ACM SIG-
GRAPH 2001 Course Notes, August 2001.

32. M. Olano, J. C. Hart, W. Heidrich, and M. McCool. Real-time
Shading. AK Peters, 2002.

33. M. Olano and A. Lastra. A shading language on graphics hard-
ware: The PixelFlow shading system. In Proceedings of SIG-
GRAPH 98, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 159–168, July 1998.

34. M. S. Peercy, M. Olano, J. Airey, and P. J. Ungar. Interac-
tive multi-pass programmable shading. In Proceedings of SIG-
GRAPH 2000, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 425–432, July 2000.

35. K. Perlin. An image synthesizer. In ACM Computer Graphics
(Proceedings of SIGGRAPH 85), pages 287–296, July 1985.

36. K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A
real-time procedural shading system for programmable graph-
ics hardware. In Proceedings of SIGGRAPH 2001, ACM
Computer Graphics Proceedings, Annual Conference Series,
pages 159–170, August 2001.

37. R. Ramamoorthi and P. Hanrahan. An efficient representa-
tion for irradiance environment maps. In Proceedings of SIG-
GRAPH 2001, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 497–500, August 2001.

38. J. Rhoades, G. Turk, A. Bell, A. State, U. Neumann, and
A. Varshney. Real-time procedural textures. In 1992 Sympo-
sium on Interactive 3D Graphics, pages 95–100. ACM, March
1992.

39. W. J. Schroeder, J. A. Zarge, and W. E. Lorensen. Decimation
of triangle meshes. In ACM Computer Graphics (Proceedings
of SIGGRAPH 92), pages 65–70, July 1992.

40. M. Segal and K. Akeley. The OpenGL Graphics System: A
Specification. SGI, 2002.

41. SGI. OpenGL shader. http://www.sgi.com/software/shader,
2003. Version 3.0.

42. J. Shade, D. Lischinski, D. H. Salesin, T. D. DeRose, and
J. Snyder. Hierarchical image caching for accelerated walk-
throughs of complex environments. In Proceedings of SIG-
GRAPH 96, ACM Computer Graphics Proceedings, Annual
Conference Series, pages 75–82, August 1996.

43. M. Simmons and D. Shreiner. Per-pixel smooth shader level
of detail. In Computer Graphics (Conference Abstracts and
Applications SIGGRAPH 2003), 2003.

44. G. Turk. Re-tiling polygonal surfaces. In ACM Computer
Graphics (Proceedings of SIGGRAPH 92), pages 55–64, July
1992.

45. A. Vlachos. Designing a portable shader li-
brary for current and future APIs. In Game De-
velopers Conference Presentation, March 2003.
http://www.ati.com/developer/gdc/GDC2003-ShaderLib.pdf.

c© The Eurographics Association 2003.



Olano et al. / Automatic Shader Level of Detail

(a) A selection of LOD Levels for this scene (0-3) at typical viewing distances. Performance numbers in Table 1.

(b) Close-up of level 0: Highest level
of detail.

(c) Close-up of level 1: Various noise
and highlight details have been re-
moved.

(d) Close-up of level 2: Extra de-
tail on wall, bowl, watermelon and
teapot removed.

Plate 1: A simple scene showing the interaction of multiple automatically simplified level-of-detail shaders.

(a) A slightly different watermelon
shader

(b) A car shader (c) A tile shader

Plate 2: Individual examples of shader simplification.

c© The Eurographics Association 2003.


