
Glimmer: Multilevel MDS on the GPU

Stephen Ingram, Tamara Munzner, Member, IEEE, and Marc Olano, Member, IEEE

Abstract— We present Glimmer, a new multilevel algorithm for multidimensional scaling that accurately reflects the high-dimensional structure
of the original data in the low-dimensional embedding, and converges well. It is designed to exploit modern graphics processing unit (GPU)
hardware for a dramatic speedup compared to previous work. We also present GPU-SF, an efficient GPU version of a stochastic force algorithm
that we use as a subsystem in Glimmer. We propose robust termination conditions for the iterative GPU-SF computation based the filtered
sum of point velocities. Our algorithms can either compute high-dimensional Euclidean distance on the fly from a set of high-dimensional points
as input, or handle precomputed distance matrices. The O(N2) size of these matrices would quickly overflow texture memory, so we propose
distance paging and distance feeding to remove this scalability restriction. We demonstrate Glimmer’s benefits in terms of speed, convergence
and correctness against several previous algorithms for a range of synthetic and real benchmark datasets.

Index Terms—Multidimensional scaling, multilevel algorithms, optimization, GPGPU

!

1 INTRODUCTION

Multidimensional scaling, or MDS, is a popular technique for dimen-
sionality reduction, where data in a measured high-dimensional space
is mapped into some lower-dimensional target space while minimiz-
ing spatial distortion. Although some information will necessarily be
lost in this mapping, the goal is to retain as much structure as possible.
MDS is typically used when the true dimensionality of the dataset is
conjectured to be smaller than dimensionality of the measurements.

When dimensionality reduction is used for information visualization
applications, the low-dimensional target space is usually 2D or 3D and
the points in that space are drawn directly, in hopes of helping people
understand dataset structure in terms of clusters or other proximity
relationships of interest [3].

In MDS, the goal is to find coordinates for N points in a low-
dimensional space, where the low-dimensional distance di j between
points i and j is as close as possible to the corresponding high-
dimensional distance, or dissimilarity, δi j . Input can consist of high-
dimensional points, with δi j computed on the fly, or of an N ×N dis-
tance matrix, ∆, allowing an arbitrarily complex distance metric.

MDS algorithms work by minimizing an objective function based on
the discrepancy of these distances. A standard stress error metric is
the the normalized Kruskal Stress-1 metric:

stress1(D,∆)2 =
∑i j

(
di j −δi j

)2

∑i j d2
i j

(1)

If the embedded structure matches the original structure of the data,
then stress = 0. Stress becomes larger as the spatial distortion between
the embedding and the original data increases.

Several factors need to be considered when measuring the success of
an MDS algorithm. The most straightforward is the speed of the com-
putation, which is easy to measure and discussed explicitly in most of
the previous work, both in terms of asymptotic complexity and of wall-
clock timings. However, the correctness of the embedded layout, the
degree to which it reflects the high-dimensional structure of the orig-
inal data, is at least as important. It can be difficult to qualitatively
verify the correctness of a layout by simply viewing images of the
low-dimensional layout unless the ground truth is known in advance.
Some real or synthetic benchmarks have a known shape, while others

• Stephen Ingram and Tamara Munzner are with the University of British
Columbia, E-mail: {sfingram,tmm}@cs.ubc.ca.

• Marc Olano is with the University of Maryland, Baltimore County, E-mail:
olano@umbc.edu.

are pre-categorized into known clusters that should remain grouped in
the low-dimensional representation. The stress metric is a more quan-
titative measurement of correctness, but the O(N2) cost of computing
it has constrained past analyses.

Any iterative approach to optimization requires a termination condi-
tion used to decide when the computation has converged and should
halt, returning an answer. If the computation is not halted at the op-
timal time, then either correctness or speed suffers: halting too soon
delivers an incorrect layout, and halting too late wastes time with com-
putations that make no progress. If the function has local minima, it
can converge to a state that is different from, and less correct than, the
global minimum. We say that one algorithm has better convergence
properties than another if it does a better job of avoiding such local
minima. Stress is in fact a nonconvex function containing many local
minima, so standard nonlinear optimization methods fail to compute
acceptable solutions to modestly sized MDS problems in a reasonable
amount of time. As a result, a host of specialized MDS algorithms
have been proposed. Some previous algorithms are quite susceptible
to getting stuck in the local minima of the stress function rather than
finding the best possible layout of points.

The primary contribution of our work is a new multilevel MDS algo-
rithm, Glimmer, that is fast, correct, and converges well. Glimmer
was designed to exploit modern highly-parallel PC graphics process-
ing unit (GPU) hardware as a computational engine, for a dramatic
speedup compared to previous work. We also present GPU-SF, an
efficient GPU version of a stochastic force-directed MDS algorithm,
inspired by the work of Chalmers [3]. Glimmer uses GPU-SF as a
subsystem inside its multilevel architecture. Both Glimmer and GPU-
SF are equally fast, for example laying out an 8D dataset of 200,000
points in roughly 30 seconds. Our algorithms can either compute
high-dimensional Euclidean distance on the fly from a set of high-
dimensional points as input, or handle precomputed distance matri-
ces. The O(N2) size of these matrices would quickly overflow texture
memory, so we propose distance paging and distance feeding to re-
move this scalability restriction.

The speed of Glimmer and of GPU-SF allowed us to analyze their
behavior across a large number of datasets. We propose more robust
conditions for terminating the iterative GPU-SF computation that con-
fer both speed and correctness advantages over more brittle previous
approaches. The multilevel Glimmer approach nevertheless has better
convergence properties than GPU-SF alone. We compare the perfor-
mance of Glimmer and GPU-SF to many other MDS algorithms on
several datasets, showing that our methods are both faster and more
correct than previous work. Many previous MDS approximation ap-
proaches have sacrificed correctness for speed, producing incorrect
layouts.

2 PREVIOUS WORK

The foundational ideas behind multidimensional scaling were first pro-
posed by Young and Householder [15], then further developed by
Torgerson [14] and given the name of MDS. In the interests of space
we focus on the foundational work and the three most competitive
categories of current techniques: single-step spectral methods, nonlin-
ear optimization, and force-directed approaches. In the descriptions
below, N is the number of points, and L is the dimensionality of the
low-dimensional target space, while H is the dimensionality of the
high-dimensional input space.

Classic MDS [14, 15] computes coordinates in O(N3) time using sin-
gular value decomposition of a transformation of ∆ called the Gram
matrix. By using the largest L singular values of this matrix, it effec-
tively finds the global minimum for the strain function for a config-
uration of points in a space of dimensionality L. Although strain is
closely related to stress, it may have a very different minimum. More-
over, it has been demonstrated that Classic MDS is one of the least ro-
bust methods with respect to input noise [2]. Due to these drawbacks
and its high computational complexity, it is not competitive today, al-
though it is sometimes used on a subset of the data as the input to other
MDS methods.

Spectral methods accomplish the same work as classic MDS, but avoid
the full singular value decomposition by estimating its first few eigen-
values. A host of Nyström methods [12] have recently been proposed
to avoid the O(N2) computation of ∆ altogether, using a subset of that
matrix to estimate the eigenvalues. While these techniques achieve
dramatic speed improvements over the classic approach and remain
globally convergent, they also optimize strain rather than stress We
use Landmark MDS [5] as an exemplar in the Glimmer performance
comparison of Section 5, since it was recently shown [12] to be the
fastest and most accurate classic MDS approximation algorithm.

Optimizing the stress function using gradient descent to find a low-
error embedding was pioneered by Kruskal [9]. De Leeuw’s SMA-
COF [4] attempts to avoid local minima by minimizing a quadratic
approximation at each iteration to fix the gradient step, resulting in an
O(N2L) cost per iteration and provably linear convergence in O(N)
iterations.

The recent Multigrid MDS [1] algorithm employs the multigrid
method for discretized optimization problems, using SMACOF as a
relaxation operator and terminating in a small, constant number of it-
erations. The hierarchical approach avoids local minima and makes
substantial speed improvements, but the largest example shown in the
paper was a layout of 2048 points taking 116.8 seconds. We were in-
spired by the power of a hierarchical multigrid approach in the design
of Glimmer, but use very different operators for the three multigrid op-
erations of restriction, relaxation, and interpolation (described in more
detail in Section 3.1).

Force-based MDS algorithms use a mass-spring simulation to opti-
mize the stress function, generating forces in proportion to the resid-
ual between low and high-dimensional distances. The basic force-
directed approach has a complexity of O(N3), with an O(N2) cost per
iteration for N iterations. The stochastic force (Stochastic) approach
introduced by Chalmers [3] reduces the per-iteration cost to O(N),
for a total O(N2) cost. This Stochastic algorithm is used as a sub-
system to two further refinements, with complexity O(N5/4) [10] and
O(N logN) [7]. Glimmer uses a GPU variant of the Stochastic ap-
proach as a subsystem, with an improved termination condition, and
we discuss its limitations with respect to correctness and convergence
below. We compare Glimmer against three of these approaches in Sec-
tion 5.

GPUs have been shown to improve the speed of many general purpose
algorithms, but have not been previously applied to the problem of
MDS. Frishman and Tal [6] take advantage of GPU parallelization to
increase the speed of their dynamic graph layout algorithm. Force-

Restrict

Interpolate

Relax

(a) Multigrid algorithms

Reuse
GPU-SF

Restrict
Relax

Relax

Interpolate

(b) Glimmer algorithm

Fig. 1. a) The multigrid v-cycle. b) The Glimmer multilevel algorithm. The
restriction operator builds the hierarchy by sampling points. GPU-SF is used
as the relaxation operator at each level, with all points allowed to move, and
as the interpolation operator, with only new points allowed to move. Lower
levels untwist complex layouts while higher levels converge quickly because
of computation at the lower levels.

directed graph layout does have deep similarities to force-directed
MDS. However, their edge-collapsing coarsening stage relies on the
graph topology as input, which would require a costly O(N3) precom-
putation for the more general case of arbitrary MDS data. The energy
function they compute on the GPU ignores pairwise distances, and
thus does not minimize stress. They use the CPU for initial placement
and for spatial partitioning, whereas Glimmer runs all stages entirely
on the GPU.

3 GLIMMER MULTILEVEL ALGORITHM

Glimmer is a force-based MDS algorithm which uses a recursive hier-
archical framework to improve correctness and to reduce computation.
Unlike other hierarchical MDS algorithms, Glimmer is specifically de-
signed to exploit GPU parallelism at every stage of the algorithm. We
use the multigrid vocabulary, because we were inspired by those meth-
ods, but we call our algorithm multilevel because our final formulation
differs from the strict definition of multigrid algorithms.

3.1 Multigrid/Multilevel Terminology

In our description of the multilevel hierarchy, we consider the highest
level to be the input data, with lower levels being nested subsets of that
data reduced in size by a fixed decimation factor. Multigrid methods
use three operators at each level: restriction, relaxation, and interpo-
lation, as shown in Figure 1. Loosely speaking, restriction performs
the decimation to build the hierarchy, relaxation is the core computa-
tion operator that reduces the error at a specific level, and interpolation
passes the benefit of the latest relaxation computation up to the next
level. In typical multigrid methods, a so-called v-cycle of restriction,
relaxation, and interpolation is repeated several times. However, the
Glimmer operators were designed to converge in a single cycle.

3.2 Multilevel Algorithm

Figure 1 shows a diagram of the Glimmer multilevel algorithm as a
v-cycle, and the pseudocode is given in Figure 2. The restriction op-
erator we use to construct the multilevel hierarchy simply extracts a
random subset of points from the current level. In Glimmer, we use
a decimation factor of 4 between each level, and stop when the size
of the lowest level is less than than 1000 points. Then, we traverse
upwards to the top, alternating runs of the relaxer for the current level
with interpolating the results up to the next level. In this traversal,
we use stochastic force as our relaxation operator; that is, we per-
form iterations of a stochastic force MDS algorithm for all the points
at a particular level until the system converges. Perhaps surprisingly,
we also use the stochastic force algorithm as our interpolation opera-
tor. We fix the locations of previously relaxed points, moving just the
newly added points to fit the current configuration. Again, we stop the
interpolation step when the stochastic force subsystem converges. We
continue with the traversal, freeing the formerly fixed points for the
relaxation step. We halt after running the relaxation operator on the
highest level that contains all points.

restrict (p o i n t s) :
i f (s i z e (p o i n t s) < t h r e s h o l d)

re turn e m p t y s e t ;
re turn r a n d o m s u b s e t (p o i n t s) ;

runGPUSF (f i x e d , f r e e) :
whi le (! conve rged)

f o r (p o i n t i n f r e e)
s t o c h a s t i c f o r c e (p o i n t)

glimmer (p o i n t s) :
i f (p o i n t s == e m p t y s e t)

re turn ;
s u b s e t = r e s t r i c t (p o i n t s) ; / / r e s t r i c t
gl immer (s u b s e t) ;
runGPUSF (s u b s e t , p o i n t s − s u b s e t) ; / / i n t e r p
runGPUSF ; / / r e l a x

Fig. 2. Pseudocode for the Glimmer algorithm.

At the low levels, only a small subset of the points are involved in the
computation, so the system converges very quickly. The higher levels
converge in few iterations because the points placed at lower levels
are likely to be close to their final positions. In particular, although the
relaxation step at the highest level involves running stochastic force on
all the points in the input dataset, the system converges more quickly
than it would if the stochastic force algorithm were run with the points
at random initial positions.

The average total time across all levels is roughly the same as with
GPU-SF, as we show in Figure 8. The major difference between Glim-
mer and the GPU-SF subsystem alone is correctness and convergence.
When the GPU-SF approach does fall into a local minimum, it will
either take longer than Glimmer, or when no further progress can be
made it will terminate with an incorrect solution. The multilevel ap-
proach usually succeeds in avoiding local minima, which give rise to
twisted manifolds in the low-dimensional placement, as shown in Fig-
ure 7. Susceptibility to local minima is often cited as a weakness of
the force-based methods, but the multilevel approach allows the cor-
rect global structure of the point set to be found during the cheap it-
erations at the lower levels. At the higher levels, the local structure is
refined within the global context inherited from lower levels through
interpolation.

3.3 GPU Considerations

The Glimmer algorithm can run on a CPU, and we have implemented
a MATLAB prototype as a proof of concept. However, our restriction,
relaxation, and interpolation operators are all carefully designed to ex-
ploit GPU parallelism. Our use of the GPU does not affect conver-
gence or correctness, but brings a dramatic speed improvement over
previous MDS approaches.

Modern GPUs include a pipeline of programmable processing stages,
each of which is highly parallel. We primarily use the pixel stage,
which runs a program, or shader, on a stream of pixels. The GPU
pixel processors can be considered as a single-instruction multiple-
data (SIMD) unit operating in parallel on a subset of pixels in the
stream, where the SIMD size varies from 16 to 1024 in recent GPUs.
This unit has random read/write access to data stored in texture mem-
ory, so textures can be used in place of arrays. Computation occurs
when a textured polygon is rendered using a shader. Typical compu-
tations take multiple rendering passes, where the only communication
channel between processing units is writing a texture in one pass, then
reading from it in a later pass.

Glimmer and GPU-SF are general approaches that do not depend on
specific hardware features of a particular GPU. They run on any card
that supports pixel shaders.

3.4 Restriction

The restriction operator creates a multilevel hierarchy from nested sub-
sets of the input data, randomly sampled from the enclosing set. We
first run an O(n) preprocessing step to randomly permute the input
data on the CPU before loading it into texture memory on the GPU.
We then can easily access nested rectangles in texture memory to solve
the sampling problem. Traversing the hierarchy from bottom to top in
the second leg of our v-cycle is handled by merely enlarging the size of
the rendering polygon, with no shader code or extra storage required to
create the hierarchy of levels. Our solution avoids the need to do ran-
dom sampling on the GPU, which would be slow. Moreover, handling
stochastic operations through permutation is critical for our distance
paging approach, as discussed in Section 4.5.

Our restriction operator does not require any explicit extra computa-
tion, and specifically does not rely on having any geometric locality
information. In contrast, the previous Multigrid MDS approach [1]
must carry out an expensive O(N3) preprocess to find nearest neigh-
bors. In our approach, neighborhoods around each point are gradually
discovered during the stochastic interpolation and relaxation opera-
tions.

4 GPU STOCHASTIC FORCE

We present GPU-SF, a GPU-friendly stochastic force MDS solver used
as a subsystem in Glimmer, inspired by the Chalmers [3] algorithm.

4.1 GPU-Friendly MDS

Glimmer’s relaxation and interpolation operators both require rapid
execution of a simple MDS subsystem, so we need a GPU-friendly
MDS algorithm. In general, algorithms whose iterations exploit a form
of sparseness perform best on graphics hardware. By sparse, we mean
a limited number of computations and non-local accesses per point, a
number far less than the total number of points N. This restriction im-
mediately disqualifies most MDS algorithms because of their reliance
on dense matrices or submatrices for matrix-matrix or matrix-vector
operations.

On the other hand, most of the accelerated MDS algorithms that ex-
ploit sparseness fail to achieve correctness. For example, LMDS and
the parent-finding approaches of accelerated force-directed MDS [7,
10] achieve their speedups by only considering a small subset of rows
of the input distance matrix. While distance matrices frequently ex-
hibit considerable redundancy, these algorithms provide no guarantee
that important information is not discarded in the selection of these
rows. Section 5 shows that these strategies often yield incorrect re-
sults.

We have identified the stochastic force algorithm [3] as especially ap-
propriate for our requirements. Each point only references a small
fixed set of other points during an iteration step, and the selection of
this fixed set is not limited to any subset of the input. Thus, in a single
iteration of the stochastic force algorithm, each point performs a con-
stant amount of computation and accesses only a constant number of
other points, regardless of dataset size.

4.2 Stochastic Force Algorithm

The stochastic force algorithm iteratively moves each point until a
stable state is reached, but the forces acting on a point are based on
stochastic sampling rather than on the sum of all pairwise distance
residuals. More specifically, two sets of a small, fixed size are main-
tained for each point: a Near set, and a Random set. The forces acting
on a point are computed using only the pairwise distances between the
points in its two associated sets. Each set initially contains random
points. After each iteration, any members of the Random set whose
high-dimensional distance to the point is less than those in the Near
set are swapped into that Near set. The Random set is then replaced

Fig. 3. We use the normalized sum of point velocities in our termination con-
dition. This metric converges shortly after the normalized stress and requires
only minimal overhead to compute.

Fig. 4. Velocity is useful in detecting convergence only after filtering. The raw
velocity signal is shown in orange, and the filtered in magenta. We also use
a heuristic to address mid-frequency noise, and then check against a relative
threshold that is smaller than the amplitude of the high frequencies in the
original signal.

with a new set of random points. After many iterations, the Near set
will converge to the actual set of nearest neighbors.

4.3 Termination

Some previous iterative MDS algorithms do not have an explicit termi-
nation criterion, and depend on the user to monitor the layout progress
and halt the computation when deemed appropriate [13]. Because
we use the GPU-SF algorithm as a subsystem in Glimmer, we need
to quickly and automatically determine the correct time to terminate
computation. In other approaches [7, 10], the computation is run for
a fixed number of iterations, usually N. Although linear convergence
was proven for the SMACOF algorithm [4], it has been generally as-
sumed for many force-directed approaches. We show that this assump-
tion is not safe to make, frequently leading to overkill that wastes time,
or underkill that halts computation before the layout is correct.

A third approach is to terminate when the stress error metric given by
Equation (1) stabilizes. Computing stress for a configuration requires
N iterations of N2 computation. Computing stress at each iteration
would be far more expensive than the Glimmer algorithm itself.

We instead use a statistic based on point velocities, which are al-
ready computed as part of the Stochastic algorithm. Morrison and
Chalmers [10] first proposed halting when velocity change is under
a specified threshold. The statistic that we use is based on the nor-
malized sum of the velocities of all moving points. Figure 3 shows a
representative example of the behavior of velocities versus stress. Al-
though the magnitude of the velocities does not necessarily match the
stress, the velocity sum converges shortly after stress. We have empir-
ically verified this property across all datasets that we tested. Velocity
is an intuitive metric to use when checking force-directed methods:
when the points slow down, the system is probably converging.

While previous approaches simply check for a change smaller than a

threshold value, our analysis shows that there is there is high- and mid-
frequency noise in the signal, with amplitudes larger than the desired
threshold value. Figure 4 shows a typical signal, with high-frequency
noise every few iterations, and mid-frequency noise every few dozen
iterations that lead to two local minima. We solve the high-frequency
noise problem by low-pass filtering with a Hann-windowed sinc func-
tion. Using the same strategy for the mid-frequency noise would re-
quire a very large window size. We instead use a heuristic where we
check if the low-pass filtered signal increases within a second, smaller
window. We use a fraction of the highest value from the current in-
vocation of GPU-SF as a relative threshold, rather than an absolute
threshold number.

In summary, we use the summed normalized velocities of the moving
points as our signal, and after removing high- and mid-frequency noise
we check against a threshold relative to the work done in the current
level. After empirical testing across many datasets, we arrived at the
values of 21 iterations for the high-frequency filter window, 10 iter-
ations for the mid-frequency slope window, and 1/32 of the current
maximum for the relative threshold value. On the relaxation stage on
the largest level of the hierarchy, we instead use 1/1000. Our termi-
nation criteria could benefit any iterative, force-based MDS algorithm,
including the Stochastic algorithm [3] and others that use it as a sub-
system [7, 10].

4.4 Stochastic Force on the GPU

GPU-SF is a version of the stochastic force algorithm that runs on the
GPU as a series of pixel shaders, with data storage in texture mem-
ory. The first stage of GPU-SF updates the random index set of each
point. Next, the set of high and low dimensional distances are com-
puted or fetched. This information is reorganized to update the near
index set. The final series of steps uses this information to calculate
the proper force to apply to the point and move it accordingly. Control
is then shifted back to the first step unless the termination condition is
triggered.

In order to minimize GPU overhead and to work within system con-
straints, GPU-SF has a quite different organization of code and data
from the original Stochastic algorithm. Each point in the stochastic
force algorithm maintains a fixed-size cache of state information such
as low-dimensional position and near-set membership.

The per-point state information is divided into vectors and tables. The
vectors are posHi and posLo, the high- and low-dimensional posi-
tion of the points. Each element of posHi has size H, where H is the
dimensionality of the high-dimensional space. The size of posLo ele-
ments is L, the dimensionality of the low-dimensional space, which in
Glimmer is 2. The velocity texture keeps track of point velocities in
the low-dimensional space, and also has size L elements. The tables
all have 8 elements, divided into two equal sections for points in the
Near and Random sets. The distHi and distLo textures contain the
high- and low-dimensional distance between the point in question and
the items in the Near and Random sets. The index table contains the
pointers to the items in these sets. The total size of all these textures
is the number of elements times N, the number of points in the input
dataset.

The remaining three textures are used as resources in the computation.
The perm texture contains a permutation of all indices that was pre-
computed on the CPU, of total size N. The 2HN scratch texture is
used for intermediate storage. If the input is a distance matrix instead
of high-dimensional points, we use the 4N distPage texture instead
of posHi.

Figure 4.3 summarizes the overall organization of GPU-SF, showing
the seven stages and which textures they update. A single iteration step
is carried out in 10 + #log4(L ∗H ∗N)% texture rendering passes. The
number of pixels, Ni, processed in each pass is also given in Figure 4.3,
as an estimate of the total work involved. When GPU-SF is invoked
as a subsystem of Glimmer, the memory footprint of these textures is

Stage Passes Pixels Input Textures Output Textures
1 Random Update 1 Ni perm index
2a HighD Distance Calc log4 H Ni posHi, index, scratch distHi, scratch
2b HighD Distance Load 1 Ni distPage distHi
3 LowD Distance Calc log4 L Ni posLo, index, scratch distLo, scratch
4 Near Sort 6 Ni distHi, distLo, index distHi, distLo, index
5 Force Calc 1 Ni ∗L index, distHi, distLo, posLo, velocity scratch
6 Velocity Calc 1 Ni ∗L scratch velocity
7 Position Update 1 Ni ∗L velocity postLo
8 Termination Check log4 Ni Ni/4 j ∗L velocity -

Fig. 5. The GPU-SF algorithm carries out a single layout iteration in eight stages. We list the number of rendering passes each stage requires, the number
of pixels affected by each pass, the textures read as input arrays, and the textures written as output arrays. These stages repeat until the termination check
succeeds.

always a function of the entire dataset size N, but the number of pixels
processed in each pass changes depending on the Glimmer level.

Stage 1 The first step of GPU-SF is to update the Random section
of the index set using perm. We acquire new random indices by sam-
pling at a location in this resource determined by P[P[x] + iteration]
where P is the permutation array, x is the cardinality of the point, and
iteration is the overall iteration number. This strategy is inspired by
the Perlin noise algorithm [11].

Stages 2 & 3 We need to compute distHi, the Euclidean dis-
tances in high-dimensional space. We indirectly reference the points
in posHi using the index set, compute the differences between these
points and the current point into the scratch texture. We square each
item in scratch, sum them together, and put the square root of that
number into distHi. The fast approach to summing k values on the
GPU is a reduction shader that takes log4 k passes, which is far cheaper
than looping through the values. If the input data is specified as a ma-
trix, as discussed in Section 4.5, the distances are simply copied from
the distPage texture into distHi. A similar computation produces
distLo from posLo, with log4 L passes.

Stage 4 Updating the Near set with points in Random that are
closer is not easy to accomplish on the GPU, because conditionals and
loops are expensive. If we simply sort by distance and pick the first 4 to
be in the Near set, then an item that appears in both Near and Random
would be duplicated in the Near set. To avoid this problem, we first
sort by index, mark duplicates as having infinite high-dimensional
distance, and then resort by distHi. We sort each of the three textures
index, distHi, and distLo twice, using six rendering passes. We
combine the duplicate-marking operation with the first sorting pass.

Stage 5 To do the force calculation, we compute the vectors be-
tween the point and the 8 others in the Near/Random sets using index
to look up their low-dimensional positions in posLo. We scale these
vectors by the difference between distLo from distHi, then use the
velocity texture for damping as described by Chalmers [3]. We
sum these damped force vectors, and save the resulting vector into
the scratch texture.

Stages 6 & 7 We integrate the scratch forces into velocity in
one pass, then integrate velocity and update posLo in another pass.

Stage 8 The final step of the algorithm checks the termination
condition. We can calculate the normalized sum of velocities for our
termination condition in log4(N) rendering passes using a reduction
shader on velocity. The 4 j factor in the pixel size indicates the size
reduction by a factor of four each pass, for a total of 4/3Ni ∗L pixels
processed.

In the Stochastic algorithm, forces are applied symmetrically between
two points, so that point i is affected not only by forces from its own
Near and Random sets, but also by any forces from other points that
contain i in their Near or Random sets. In our GPU-SF version, forces

are applied from points in the Near/Random sets to point i, but not vice
versa. We abandon this explicit symmetry because it would require
a scatter random access write operation, which is not supported on
GPUs. The effect of those symmetric forces emerges implicitly as the
Near sets of neighboring points gradually converge to include each
other.

4.5 Distance Paging for Matrices

In many MDS applications, the input data is given as a precomputed
distance matrix. The O(N2) size of this matrix quickly outstrips avail-
able memory, leading to a fundamental scalability challenge. For ex-
ample, when N is only 4096 points, the matrix would overflow 512MB
of texture memory. Our solution, which we call distance paging,
draws inspiration from texture paging. Because we use a precomputed
random number resource when updating our Random set, we know in
advance the precise sequence of high-dimensional distances the pro-
gram will access per iteration. We arrange the required distances in
order of access, either in advance or online, and a pager running on
the CPU loads these blocks from main memory into texture memory
at every GPU-SF iteration. In this case, we replace the posHi texture
with the smaller distPage texture and distances are simply fetched
instead of computed.

Distance paging solves the memory scalability problem of quadratic
storage. The time required to precompute distance matrices can be
another scalability bottleneck. Because we use a stochastic method,
many pairwise distances are not needed at all. Our use of precomputed
permutations allows us to know in advance which distances will be
required in the computation. We support lazy evaluation in the form of
a distance feeder, a CPU process that takes two points as an argument
and returns a distance. Glimmer can thus handle distance matrices far
larger than the limits of texture memory on the graphics card.

5 RESULTS AND DISCUSSION

We provide an asymptotic analysis of our algorithms, compare our
approaches to previous work in terms of speed and correctness, and
compare the time required for the distance pager versus the distance
feeder.

5.1 Complexity

The cost of one GPU-SF iteration is proportional to the number of
rendering passes multiplied by the number of pixels affected at each
pass. Multiplying these values from Table 4.3 yields a per-iteration
cost of (7 + log4 H + log4 L + 5.33 L) ∗Ni = O(Ni log4 H). The cost
of a full GPU-SF invocation is O(C Ni log4 H) where C is the number
of iterations performed before the system converges. As we discuss
in Section 4.3, C is not necessarily N. We have observed that it varies
depending on dataset characteristics, can range from constant to O(N).

The number of points Ni supplied to GPU-SF at each Glimmer level
ranges from 1000 up to N, where Ni−1 = Ni/4, and the number of

Fig. 6. Log-log small multiples of stress vs. time show the performance for all
7 measured algorithms, across 9 benchmark datasets.

levels is log4 N. The total number Nt of points processed across all
Glimmer levels is bounded above by 4/3 N, the infinite sum of 1/4i ∗
N. The cost of each Glimmer level is two invocations of GPU-SF,
one for interpolation and one for relaxation. The restriction stage of
Glimmer does not incur any extra costs that we need to consider in our
asymptotic analysis, because the sampling is built into the algorithm.
Thus, the total complexity of Glimmer is O(C N log4 H).

We now discuss the effects of GPU parallelism. To oversimplify, a
GPU with a SIMD size of k, where k ranges from 16 to 1024 on cur-
rent cards, speeds up computation up to a factor of k. Since we care-
fully designed our shaders and render passes to avoid conditionals and
loops, our actual speedup is close to this theoretical maximum.

5.2 Performance Comparison

We compare Glimmer and GPU-SF to each other and to several previ-
ous MDS algorithms, across a range of real and synthetic datasets. All
benchmarks are run on a Pentium 4 3.2 GHz with 1.5 GB of memory
and an nVidia 7800GS graphics card with 256MB of texture memory.
All timings are averaged across three runs. Unless we explicitly state
otherwise, the time includes computing high-dimensional distances on
the fly. The timings for Glimmer and GPU-SF includes only layout
time, so that they can be directly compared with the other MDS lay-
out algorithms. In our accompanying video, the timings also include
render time for interactive display. Stress computations use the nor-
malized metric given in Equation (1).

Fig. 7. Glimmer exhibits more stable convergence behavior than GPU-SF
alone, which is caught in a local minimum with a twisted grid.

5.2.1 Comparison Algorithms

The MDS algorithms that we chose to compare against are a mix of
foundational algorithms and the most-competitive exemplars of the
major approaches. The foundational algorithms are a MATLAB ver-
sion of Classic MDS 1, our MATLAB implementation of SMACOF,
and a Java implementation of Stochastic2. These three foundational
approaches are known not to be speed-competitive, the main metric of
interest for these algorithms is layout stress. We use 40 iterations for
the SMACOF algorithm, as suggested by Bronstein [1].

We use our MATLAB implementation of Landmark [5] as the best-
of-breed spectral approach, using 15 landmarks as suggested by
Platt [12]. We use Jourdan’s O(N logN) Hybrid [7] as the fastest
force-directed approach3. Bronstein’s Multigrid MDS [1] is not pub-
licly available, but we know that it is not speed-competitive with Hy-
brid or Landmark from the timings given in the paper.

5.2.2 Datasets

We use a mix of of synthetic and real-world benchmark datasets. The
small cancer dataset from the UCI ML Repository3 has 683 points
and 9 dimensions. The shuttle small dataset, also from UCI, has
14,500 points and 9 dimensions, with shuttle big having the same
structure but 43,500 points. We generated the well-known synthetic
swissroll benchmark, a 2D nonlinear manifold of 1089 points em-
bedded in 3 dimensions. We generated a set of synthetic datasets of
smoothly varying cardinality, where a 2D grid is embedded in 8 di-
mensions. We also tested the effects of adding noise to those grids,
specifically 1% noise in the third dimension. The sparse dataset
is a real-world example of a large collection of unordered document
metadata used to study specialized clustering algorithms4 [8]. These
collections can be represented as highly sparse matrices where a row
represents a document and a column represents a text feature. In Glim-
mer and GPU-SF, we store this matrix compactly in texture memory
as a value-index pair.

5.2.3 Speed and Correctness

We use the synthetic grid dataset to compare algorithm speed across
a large sample of dataset cardinalities. Figure 8 shows that the al-
gorithms fall into three main categories. Glimmer and GPU-SF are
clearly the most scalable MDS algorithms, handling the 200,000 point
grid in under 30 seconds. Hybrid is the most competitive in terms of
speed, but has a much steeper slope than our algorithms. Landmark,
while very fast for small datasets, loses its speed advantage at approx-
imately 10,000 points. Glimmer and GPU-SF exhibit approximately
1 second of runtime overhead for data of any cardinality. As a re-
sult, they are slower than Hybrid at sizes of less than 3000 points, and
Landmark at sizes of less than 10,000 points. As expected, the foun-
dational Classic, SMACOF, and Stochastic algorithms do not scale
past roughly 1000 points. Relative to the other approaches, Glimmer

1cobweb.ecn.purdue.edu/~malcolm/interval/2000-025
2www.lirmm.fr/~fjourdan/Projets/MDS/MDSAPI.html
3www.ics.uci.edu/~mlearn/MLSummary.html
4Data courtesy of Aaron Krowne.

Fig. 8. Timings for synthetic grid datasets of increasing cardinality, with the same data shown at four different scales. On the left, we show the full range. Next,
we zoom in on the horizontal cardinality axis. We then show a log-log graph, and on the right is a zoom of the vertical time axis with just Glimmer and GPU-SF.

cancer N=683 D=9 shuttle big N=43,500 D=9 grid N=10,000 D=8 sparse N=23,433 D=28,374

Glimmer

1.11 s stress=0.026 10.41 s stress=0.005 2.84 s stress=0 27.43 s stress=0.271

Hybrid

0.43 s stress=0.076 44.23 s stress=0.030 5.53 s stress=0.124 12.10 s stress=0.468

Landmark

0.048 s stress=0.1. 44.89 s stress=0.020 1.79 s stress=0 2.17 s stress=3.710

Fig. 9. MDS layouts showing visual quality, time, and stress for the Glimmer, Hybrid, and Landmark algorithms. Dataset name, number of nodes (N), and
number of dimensions (D) appear above each column. Time in seconds appears at the bottom left of each entry, with normalized stress on the bottom right.

and GPU-SF are equally fast. However, when compared to each other
across many datasets, we can see that GPU-SF has many spikes where
it takes longer to converge than Glimmer. This behavior would be
hard to spot if we only tested a few datasets. The speed of our new
algorithms facilitated rapid testing and analysis, which was critical in
designing our robust termination condition for GPU-SF, and in under-
standing the different convergence properties of GPU-SF and Glim-
mer.

Figure 9 shows the quality and timing for Glimmer, Hybrid, and Land-
mark layouts on four datasets with known structure. Points in cancer
represent tumors, with malignant in red and benign in blue. Qualita-
tively, both Glimmer and Landmark indicate these two groups clearly
with spatial position. Quantitatively, the stress of Glimmer is an order
of magnitude lower. Hybrid does separate the two groups, but includes
misleading subclusters in the blue group. With shuttle big, Glim-

mer and Hybrid show the correct structure clearly. Artifacts from the
orthogonality constraints of the strain function are visible in Land-
mark, but it does separate the clusters. Glimmer is four times faster
than the other two, and again has significantly lower stress. The
10,000-point grid is correctly embedded with zero stress by Glimmer
and Landmark, but Hybrid terminated too soon. The quantitative stress
metric is non-zero, and the layout suffers from very obvious distortion.

The Glimmer layout of the sparse dataset took nearly 30 seconds and
has a stress of 0.271. It shows several spatially distinguishable clus-
ters, color coded by green, red, yellow, and purple. The black cluster
is split into three parts. Hybrid is nearly three times faster, but the
layout quality is much worse. The stress is nearly twice as high, and
the spatial embedding does not clearly separate any of the given clus-
ters. Landmark is very fast, but completely fails to show the dataset
structure. The reason is fundamental to the sparse nature of the dataset

and the orthogonality constraints of the algorithm. These sparse matri-
ces are handled very poorly by the approximation algorithms, which
achieve their speed improvements by considering only specific rows
of the distance matrix. In a sparsely populated document matrix there
is no inexpensive way to determine which rows contain enough in-
formation to minimize the distortion of the layout. Algorithms based
on random search such as stochastic force, which have full access to
the distance matrix, are more suited to finding these appropriate dis-
tances. Glimmer is the first such algorithm that can scale to datasets
of this size.

Although Glimmer and Landmark find the correct embedding, with
zero stress, the two approximate force-directed algorithms fail to con-
verge and show a misleading shape with much higher stress. Figure 7
shows that GPU-SF can also fail to converge correctly, whereas the
Glimmer multilevel approach succeeds at finding the true global mini-
mum configuration. GPU-SF can get caught in local minima where the
low-dimensional manifold is twisted, and will either take more time to
slowly unfold or stop before the correct solution is reached because the
termination condition is fulfilled. Glimmer combats such situations by
unfolding these twists at the highest tiers in the multilevel hierarchy.
Twists in layouts of small pointsets are higher energy states relative
to the overall energy of the dataset and more likely to be properly re-
solved before the termination condition is met.

Figure 6 shows log-log scatterplots of the timing and stress of nine
datasets: the five benchmark datasets, two grids of 1,000 and 10,000
points, and two more of the same sizes with noise. We use small multi-
ples, with one scatterplot for each algorithm, to illustrate many speed-
accuracy tradeoffs. The Glimmer and GPU-SF scatterplots have the
dots on the left high-quality side. The Hybrid and Landmark scatter-
plots have many dots on the low-quality right. The patterns show the
these two approaches sacrifice quality for speed, except in the zero-
stress grid case for Landmark. The foundational Stochastic, Classic,
and SMACOF algorithms are known to be slow, and, unsurprisingly,
the few dots representing the small datasets that they can handle are
near the top. We note that these approaches often do not yield ground
truth, with the dots on the low-quality right side in many cases. In-
specting a dataset dot of a particular color across the multiple scatter-
plots shows that those algorithms faster than Glimmer or GPU produce
a less correct layout for that dataset. We can also see that GPU-SF is
not simply faster than the Stochastic algorithm that inspired it; thanks
to the more robust termination condition, it is far more correct.

5.3 Paging and Feeding

We compare the performance of our distance matrix pager and feeder
schemes with an example from graph drawing. We use a graph of
over 5,000 nodes, where the O(N2) size of the distance matrix is too
large to fit into texture memory. MDS can be used to lay out the graph
because stress is closely related to the Kamada-Kawaii force-directed
placement energy. Graphs are a good example of datasets where pre-
computing the full distance matrix is expensive: solving the all pairs
shortest path problem is O(N3), taking 623 seconds. When we use the
pager to work with this distance matrix, there is no slowdown in the
performance of Glimmer; in fact, loading the texture is cheaper than
computing the high-dimensional distances. Computing the layout with
paging took only 5.5 seconds. In contrast, the feeder-based layout took
172 seconds. Without precomputation, the layout runs slower, but less
work is done in total because unused pairwise distances never need be
computed.

6 CONCLUSION AND FUTURE WORK

Glimmer and GPU-SF provide dramatic speedups compared to pre-
vious work by exploiting GPU parallelism at every stage of their ar-
chitectures. Our new termination criteria for GPU-SF detects conver-
gence cheaply and accurately. GPU-SF is roughly as fast as Glimmer,

but is more prone to getting caught in local minima, whereas the multi-
level architecture of Glimmer converges well. The distance pager and
distance feeder mechanisms allow us to handle far larger distance ma-
trices than would fit into texture memory. Glimmer avoids the speed-
accuracy tradeoff of previous approximation algorithms, as we show
on a mix of synthetic and real-world datasets.

It would be interesting future work to adapt the Glimmer approach
for optimized force-directed graph placement, to exploit the graph-
theoretic connectivity that we must do without for MDS. Glimmer
should be straightforward to generalize from the current L = 2 im-
plementation to handling target spaces of any dimension. The force
calculation pass at stage 5 of GPU-SF might be the main bottleneck,
possibly taking more passes as dimensionality increases.

7 ACKNOWLEDGEMENTS

We thank Dan Archambault, Aaron Barsky, Heidi Lam, Peter
McLachlan, James Slack, and especially Ciarán Llachlan Leavitt, for
feedback on paper drafts.

REFERENCES

[1] M. M. Bronstein, A. M. Bronstein, R. Kimmel, and I. Yavneh. Multigrid
multidimensional scaling. Numerical Linear Algebra with Applications
(NLAA), 13:149–171, March-April 2006.

[2] L. Cayton and S. Dasgupta. Robust euclidean embedding. In Proc.
23rd Intl. Conf. on Machine Learning (ICML ’06), pages 169–176. ACM
Press, 2006.

[3] M. Chalmers. A linear iteration time layout algorithm for visualising high
dimensional data. In Proc. IEEE Visualization, pages 127–132, 1996.

[4] J. de Leeuw. Applications of convex analysis to multidimensional scaling.
Recent developments in statistics, pages 133–145, 1977.

[5] V. de Silva and J. Tenenbaum. Sparse multidimensional scaling using
landmark points. Technical report, Stanford, 2004.

[6] Y. Frishman and A. Tal. Online dynamic graph drawing. In Proc. Euro-
graphics/IEEE VGTC Symp. on Visualization (EuroVis’07), 2007.

[7] F. Jourdan and G. Melancon. Multiscale hybrid MDS. In Proc. Intl. Conf.
on Information Visualization (IV’04), pages 388–393, 2004.

[8] A. Krowne and M. Halbert. An initial evaluation of automated organiza-
tion for digital library browsing. In Proc. of the 5th ACM/IEEE-CS Joint
Conf. on Digital Libraries (JCDL ’05), pages 246–255, 2005.

[9] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[10] A. Morrison, G. Ross, and M. Chalmers. Fast multidimensional scaling
through sampling, springs and interpolation. Information Visualization,
2(1):68–77, 2003.

[11] K. Perlin. An image synthesizer. In Proc. ACM SIGGRAPH ’85, pages
287–296, 1985.

[12] J. Platt. FastMap, MetricMap, and Landmark MDS are all Nyström al-
gorithms. In Proc. 10th Intl. Workshop on Artificial Intelligence and
Statistics, pages 261–268. Society for Artificial Intelligence and Statis-
tics, 2005.

[13] G. Ross and M. Chalmers. A visual workspace for constructing hybrid
multidimensional scaling algorithms and coordinating multiple views. In-
formation Visualization, 2(4):247–257, Dec. 2003.

[14] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psy-
chometrika, 17:401–419, 1952.

[15] G. Young and A. S. Householder. Discussion of a set of points in terms
of their mutual distances. Psychometrika, 3(1), January 1938.

