
Volume xx (200y), Number z, pp. 1–9

GPU Random Numbers via the Tiny Encryption Algorithm

Fahad Zafar, Marc Olano, Aaron Curtis

University of Maryland, Baltimore County

Abstract
Random numbers are extensively used on the GPU. As more computation is ported to the GPU, it can no longer
be treated as rendering hardware alone. Random number generators (RNG) are expected to cater general purpose
and graphics applications alike. Such diversity adds to expected requirements of a RNG. A good GPU RNG should
be able to provide repeatability, random access, multiple independent streams, speed, and random numbers free
from detectable statistical bias. A specific application may require some if not all of the above characteristics at
one time. In particular, we hypothesize that not all algorithms need the highest-quality random numbers, so a good
GPU RNG should provide a speed quality tradeoff that can be tuned for fast low quality or slower high quality
random numbers.
We propose that the Tiny Encryption Algorithm satisfies all of the requirements of a good GPU Pseudo Random
Number Generator. We compare our technique against previous approaches, and present an evaluation using
standard randomness test suites as well as Perlin noise and a Monte-Carlo shadow algorithm. We show that the
quality of random number generation directly affects the quality of the noise produced, however, good quality
noise can still be produced with a lower quality random number generator.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Probability and Statistics]: Random number
generation— I.3.7 [Computer Graphics]: Three-dimensional Graphics and Realism—Color, shading, shadowing,
and texture E.2 [Data Encryption]: —

Keywords: cryptographic hash, noise, shadows

1. Introduction

Random numbers have many uses in computer graphics,
from Monte-Carlo sampling for realistic image synthesis to
noise generation for artistic shader construction. The mod-
ern Graphics Processing Unit (GPU) is a high performance
programmable parallel processor. While many randomized
shading effects can be accomplished through textures, the
increasing bias of GPUs towards computation over texture
lookups, especially potentially uncorrelated texture lookups,
leads to a desire for more computational solutions.

In particular, generation of random numbers on the GPU
should not require valuable texture storage and texture band-
width. Since changes in random sampling can introduce
dancing or shimmering artifacts, we need the same ran-
dom numbers from the RNG given the same seed position
in space or on a surface. Additionally we require indepen-
dent parallel streams of random numbers. For some appli-
cations, these streams are per-GPU thread, while for oth-

ers they are based on either position in space or on the sur-
face, with a single GPU thread potentially pulling numbers
from several streams. For spatial streams, several threads
may access numbers from the same stream, and should get
the same results. The numbers should be statistically inde-
pendent within each stream and between streams. Multiple
calls should also not halt for some shared memory object
that maintains the state of the RNG.

This leads to a set of desired properties for GPU random
number generation: repeatability to avoid frame-to-frame
coherence artifacts, independent random streams and ran-
dom access within the stream for parallel consistency, ran-
dom numbers free from noticeable statistical bias, and gen-
erator speed. Like other authors, we find a cryptographic
function satisfies all of these requirements [TW08]. By run-
ning a seed and possible sequence number through the cryp-
tographic function, we get repeatable, randomly accessible
parallel streams of random numbers. One of the primary

submitted to COMPUTER GRAPHICS Forum (5/2010).

2 Zafar et al. / GPU Random Numbers via TEA

contributions of this paper is identifying the Tiny Encryp-
tion Algorithm (TEA) [WN94] as a particularly good fit for
GPU random number generation. TEA uses only simple op-
erations that are fast on modern GPUs and has minimal state
and internal data tables. Additionally, We can vary the num-
ber of TEA rounds to provide a speed/quality tradeoff.

We evaluate the statistical quality of TEA as a ran-
dom number generator for varying number of rounds us-
ing the DIEHARD and NIST randomness test suites [Mar95,
RSN∗08]. We show that TEA is faster for equivalent quality
than previous high-quality alternatives such as MD5 [TW08,
Riv92a] as well as previous fast but low-quality alternatives
like modified Blum-Blum-Shub(BBS) [Ola05, BBS86].In
addition, we observe that many visual applications of ran-
dom numbers do not exhibit visible artifacts, even with a
generator that does not pass all of the NIST or DIEHARD
tests.

A second contribution of this paper is the idea that fewer
rounds of TEA are sufficient in many visual applications,
supported by two examples. The first example is an im-
proved Perlin noise [Per02] with modifications by Kensler
et al. [KKS08]. We compare both the spatial appearance of
the noise and its frequency spectrum for differing rounds of
TEA, and against several reference Perlin-like noise func-
tions. The second example is a Monte-Carlo soft shadow al-
gorithm that blurs the sample results across a neighborhood
of several pixels [Cur09]. We compare shadowing results
with this algorithm for differing numbers of TEA rounds.

2. Related Work

2.1. Random Number Generation

The most common CPU pseudo-random number generators
are based on a recurrence with a small amount of state and a
relation that transforms the state and produces a new random
number each iteration [Knu97]. These include the fast Lin-
ear Congruential Generator (LCG) [Knu97] and the high-
quality Mersenne Twister [MN98]. Many algorithms avoid
pseudo-random number generation on the GPU by precom-
puting a set of numbers on the CPU and storing them in a
GPU buffer or texture. This approach allows random access,
but uses valuable texture resources and limits the length of
the random number sequence and number of streams due
to storage limitations. Pang et al. [PWH06] compare classic
PRNG implementations in shaders, though these methods
do not provide random access. There are implementations
available for PRNGs on the NVIDIA [NVI07] CUDA archi-
tecture for General Purpose GPU techniques, but they focus
more on generating random numbers in bulk, so do not allow
random access to the stream.

Lagae et al. [LLDD09] use an LCG, with separate seeds to
provide independent spatial streams. This was surprisingly
effective, despite their use of sequential seeds and the fact

that the first several numbers from an LCG have almost a lin-
ear relationship with seed value. The success was likely due
to their discarding hundreds of initial numbers, moving well
past the less random startup region. Also, a variable number
of pseudo-random numbers were consumed from the begin-
ning of the stream to generate a single Poison distributed
random number, which has less visual impact on the result
than later numbers and allows nearby streams to get out of
step.

A couple of recent methods have used a cryptographic
hash as the basis of a random number generator [Ola05,
TW08]. Olano [Ola05] used a variation of BBS PRNG in
order to create purely computational noise. His variation
changed the modulus of the generator from the product of
two large primes to a single small prime, to be computable
in a 16-bit half float. This results in a fast generator, but as
Tzeng and Wei [TW08] note, not a particularly high qual-
ity one. Tzeng and Wei used the MD5 hash as a PRNG,
confirming its randomness through the DIEHARD test suite
[Mar95].

2.2. Applications

Monte-Carlo methods are a class of computational algo-
rithms that use random sampling to estimate a function that
would otherwise be infeasible or too computationally expen-
sive to solve. We refer the reader to Keller et al. [KHN06] for
more in depth coverage. Monte-Carlo methods are popular
for solving light transport problems [CPC84, VG97, Jen96].
Many Monte-Carlo algorithms are particularly sensitive to
correlation amongst generated random numbers. To avoid
artifacts, no correlations or clumps should exist in the pair
sampled graph of those values. Using a series of numbers
that possess a correlation or are not statistically random will
negatively affect results.

One of the most important uses of random numbers in
computer graphics is noise. The original gradient noise pro-
posed by Perlin required lookups for a spatial hash and per-
mutation table values [Per85, EMP∗98]. The many alterna-
tives to Perlin’s original noise function can be roughly di-
vided into those that compute large textures in an offline
process [CD05,GZD08], those that use a different algorithm
to generate a random function with a similar donut-shaped
band-limited frequency spectrum [Lew89, Per04, LLDD09],
and those that improve Perlin’s original algorithm [Per02,
Gre05, Ola05, TW08, KKS08]. The first class uses valuable
texture resources, presents inherent limits on the size before
the noise repeats, and has natural limitations when extending
to 3D and 4D noise variations. The second class allows com-
putational run-time evaluation and usually less frequency
bleeding than Perlin’s original noise, but without the speed
and simplicity of the original. We focus on the last class.

Perlin’s original noise defines an integer lattice over the
N-D input space (commonly 1D, 2D, 3D and 4D). Each in-

submitted to COMPUTER GRAPHICS Forum (5/2010).

Zafar et al. / GPU Random Numbers via TEA 3

teger point is hashed to a random gradient vector using nest-
ing lookups into a 1D hash table followed by a lookup into
a table of random vectors. Each cell is uniquely determined
by its integer corners to give a smooth piecewise polyno-
mial function with the given gradients and a value of zero
at the cell corners [Per85]. Perlin’s Improved Noise used a
higher order polynomial interpolant and avoided the final
lookup by using bits of the hash to define a limited set of
gradients [Per04]. Green created a straightforward GPU im-
plementation, collapsing each pair of 1D lookups into a 2D
texture lookup [Gre05]. Olano’s Modified Noise removed all
GPU texture lookups by using a PNRG seeded with each in-
teger coordinate as the hash [Ola05]. Tzeng and Wei [TW08]
used MD5 as their hash, providing better randomness and
avoiding axis-aligned artifacts caused by chaining 1D hash
functions to create an N-D hash. We are inspired by their
work to explore cheaper cryptographic hash functions as al-
ternatives to MD5. Finally, Kenseler et al. [KKS08] use a
larger neighborhood around each cell to improve the fre-
quency discrimination.

3. Pseudo-Random Number Generator Selection

Our goal is to find a pseudo-random number generator that
is sufficiently random and free of statistical artifacts, repeat-
able given the same seed, and allows parallel streams of
numbers with good randomness between streams as well as
within each stream. In addition, for applications like Perlin
noise, we would like to be able to get unique random num-
bers based on an N-D position, either through random access
to numbers within a single stream or easy reseeding without
start-up artifacts that affect some generators like LCG.

One of the standard analyses in GPUbench [HJK∗04]
shows how many MAD (Fused Multiply and Add) instruc-
tions are required before a shader with specific number
of texture fetches becomes compute bound (Figure 1). Of
course, results differ on different GPUs, but we can easily
see that a computational low-cost PRNG is preferable to us-
ing texture accesses, especially since those accesses are of-
ten likely to be incoherent and unable to take full advantage
of hardware texture caching.

3.1. Cryptographic Functions as a Hash

Cryptographic functions are designed to turn a coherent
plaintext signal into an incoherent encrypted form. Ideally,
the encrypted form should look as much as possible like ran-
dom noise, without any identifiable statistical characteristic
that might be used to tell something about the original mes-
sage. This is the core feature that allows cryptographic func-
tions to be used for random number generation. Yet crypto-
graphic functions serve the purpose of encryption while our
goal is randomness with as little computational cost possi-
ble. For example, MD5 uses four different types of rounds
each of which are executed 16 times [Riv92a]. The S-Boxes

(a) Sequential texture access pattern

(b) Random texture access pattern

Figure 1: GPUbench shader analysis on an NVIDIA 8600M
GT to identify how many instructions before a shader be-
comes compute bound.

continually mix the input bits to remove any correlation be-
tween them to make it hard for someone to break its cipher.
These measures add to the security of the algorithm, making
it more difficult for a malicious attacker to generate a dif-
ferent plain text to produce a predetermined MD5 result, but
also add to the complexity of the algorithm.

Other candidates incuded RC4 [Riv92b], which requires
a lookup table; CAST-128 [Ada97], which requires a large
amount of data for initialization; Blowfish [Sch94], which is
fast but each new key requires pre-processing equivalent to
encrypting nearly 4 kilobytes of data. A short survey of some
other cryptographic hash functions is presented by Tzeng
and Wei [TW08]. The authors justify their decision for se-
lecting MD5 on the basis of their requirements which are
similar to ours.

We found the Tiny Encryption Algorithm (TEA) and
its extension XTEA to be ideal for our purposes [WN94,
Red03]. TEA was designed for fast execution and minimal
memory footprint. Its use for encryption is limited due to its
security holes and weaknesses in the output cipher, but it is
a simple algorithm that provide randomness comparable to
any good RNG. This property of TEA has been discussed
by Reddy [Red03] finding that the Avalanche Effect exists at
just 6 rounds, causing a drastic change to the output when
any one bit of the input is changed.

3.2. TEA, XTEA and XXTEA

TEA is a Feistel type cipher. A Feistel cipher is a symmetric
iterative structure used in block ciphers. A dual shift in a sin-

submitted to COMPUTER GRAPHICS Forum (5/2010).

4 Zafar et al. / GPU Random Numbers via TEA

UInt32 [2] e n c r y p t (UInt32 v [2]) {
UInt32 k [4] , sum=0 , delta=0 x9e3779b9
k ={A341316C , C8013EA4 , AD90777D , 7E95761E}

f o r N ro un ds
sum + = delta
v0 + = ((v1� 4)+ k0)∧ (v1 + sum)∧ ((v1� 5)+ k1)

v1 + = ((v0� 4)+ k2)∧ (v0 + sum)∧ ((v0� 5)+ k3)

re turn v
}

Figure 2: Pseudo-code for N rounds of TEA. Typically the
loop would be unrolled for the desired N. Input a seed and
sequence number to use as a random number generator.

gle round allows the data and key to be mixed continuously
per round. After weaknesses were found in the original TEA,
it was extended to XTEA and XXTEA [Red03]. In XTEA,
the key scheduling is modified to slowly introduce the key
while the shifts, XORs, and additions are also rearranged.

XXTEA is more efficient for encrypting longer messages.
It operates on variable-length blocks that are some arbitrary
multiple of 32 bits in size (minimum 64 bits). The total num-
ber of cycles depends on the block size. XXTEA uses a more
involved round function which makes use of both immediate
neighbors in encrypting each word in the block. Due to the
increased complexity and conditionals in the XXTEA func-
tion, we do not consider it further here. For more detailed
analysis, refer to Zafar [Zaf10].

We implemented our TEA random number generator in
CUDA [NVI07], and in shaders using GLSL and HLSL
[Ros04]. We propose TEA for graphics as well as GPGPU
applications. The CUDA implementation helps gauge per-
formance for a threaded algorithm regardless of rendering.
The shader implementations are used to test the PRNG for
graphical use. Performance analysis is conducted for the
shaders invoking the noise function or making direct calls
to the PRNG from within the shaders. The TEA port to ei-
ther languages is simple and straightforward. No specialized
API functions are required that might need implementing be-
fore use. Any language that supports bitwise operations will
execute the TEA algorithm with ease.

We restrict the input for TEA and XTEA to a fixed 64-
bit block, consisting of two 32-bit integers. Pseudo-code for
the TEA generator is shown in Figure 2. The constant delta
is a binary representation of the golden ratio, as specified
by the original TEA algorithm. The key is one suggested by
Reddy [Red03]. Other choice of key could work, though the
analyses would need to be re-run. In the text, we will indicate
the number of rounds as T EAN for N rounds.

Figure 3: Frame time (in ms) for a shader with one RNG
call, with increasing number of rounds. Resolution: 1440 ×
900, Triangles: 220,000, GPU: NVIDIA 9800GT

4. TEA as a Random Number Generator

Random numbers used in numerical analysis need to be
unbiased for good results. This factor determines the type
of PRNG that should be used for specific applications. We
judge quality of numbers using the NIST randomness tests
and the DIEHARD tests.

Random numbers were generated for the DIEHARD tests
by passing the range of integers 1 - 67108889 for the first 32-
bit input and fixing the remaining bits to 0. The encrypted
numbers resulted in a 512 MB dataset for TEA functions.
The NIST dataset was created by passing the whole range of
1-10485670. The resulting input for the NIST tests is around
80 MB. The DIEHARD dataset is substantially larger in or-
der to cater to the minimum size requirement for some tests
in the new DIEHARD test suite.

We compare against MD5 and the modified BBS genera-
tor. The MD5 in our experiments is the optimized MD5GPU
presented by Tzeng and Wei [TW08]. Unlike the typical
CPU implementation, this version does not store the array
of sine values, but instead calculates them using the GPU
sin() function, thus the rotational storage is reduced to 16
unique numbers. All rounds for all hash functions used were
unrolled and inlined for optimal performance, and to present
a fair comparison of results.

Both the NIST and DIEHARD test suites include a com-
bination of statistical tests on the number stream and random
processes with known expected results. Since these are sta-
tistical tests of a random stream, success or failure is not a
binary result, but is provided in the form of a p-value for each
test or subtest, indicating the probability that the result is due
to random chance. We use a significance level of 0.01. As
discussed by Marsaglia [Mar95], some tests produce mul-

submitted to COMPUTER GRAPHICS Forum (5/2010).

Zafar et al. / GPU Random Numbers via TEA 5

Figure 4: DIEHARD randomness test results

Figure 5: NIST randomness test results

tiple results, and may still generate one or two failing p-
values due to random chance. For example, the DIEHARD
Bit Stream Test produces a p-value for each individual range
of bits. Marsaglia suggests considering such a test to have
passed if fewer than six p-values fail. We adopt a stricter cri-
teria: if a test outputs ten or fewer p-values, we consider a
test failed if any single p-value is out of range; if the test
outputs more than ten p-values, we accept one out-of-range
p-value, but consider any second out-of-range p-value a fail-
ure. Tzeng and Wei [TW08] use the Kolmogorov-Smirnov
test (KS-test) [DS86] in their analysis to resolve multiple
conflicting p-values. This criteria may pass some tests that
we consider to fail, but if sufficient for an application, may
allow even fewer rounds of TEA than we recommend.

The NIST randomness tests contain a set of 15 tests while
the new version of DIEHARD tests contains 17 tests. One
of our goals was to show that TEA and its extensions can
be used in place of MD5 and use less GPU time. Therefore,
we need to find the minimum number of rounds required for
TEA and XTEA to produce the best results so we are not
wasting GPU clock cycles on extra work. The results (Fig-
ure 4 and Figure 5) show that T EA8 is one of the best op-

Figure 6: Time (in milliseconds) to complete all threads
on NVIDIA 8600M. Some intervals were too short for the
counter

tions as a cryptographic hash function for generating fast and
extremely high quality random numbers. The results Fig-
ure 3 show how the workload increases when MD5 is used
as a general purpose PRNG when rendering. TEA however
performs much better even with a higher number of rounds
and multiple calls. With fewer than eight rounds, TEA pro-
duces numbers less random than MD564 (Figure 4). Since
the avalanche effect for TEA starts at six rounds [Red03],
fewer than six rounds are not expected to produce numbers
that are random in all bits.

A simple and tunable PRNG can find many uses in
GPGPU applications. We benchmarked our CUDA imple-
mentation of TEA to show how many random numbers can
be produced per second. In our tests, an output array ele-
ment consists of 64 random bits. One CUDA kernel exe-
cutes for an entire array and generates random numbers us-
ing the TEA algorithm with a 64-bit input. We provide tim-
ing results for an NVIDIA 8600M in Figure 6. These re-
sults show that we can generate roughly 400 million T EA2
random numbers per second, or 151 million T EA8 random
numbers per second, even on this mobile GPU. We observe
that sixteen calls to T EA1 is the same computation as one
call to T EA16 (not counting the code between TEA calls),
so a more predictive statistic is that this mobile GPU can run
approximately 1.2 billion TEA rounds per second. A similar
test is conducted from within a shader when rendering at a
resolution of 1440 × 900 (Figure 7).

5. TEA for Perlin Noise

The Perlin noise function is a common primitive in proce-
dural shaders. Figure 8 shows several examples of typical
use. The noise function is designed to be deterministic, fre-

submitted to COMPUTER GRAPHICS Forum (5/2010).

6 Zafar et al. / GPU Random Numbers via TEA

Figure 7: Frame time (in ms) to render one frame with dif-
ferent number of calls to PRNGs from within a shader. Res-
olution: 1024 × 800, Triangles: 220,000, GPU: ATI 3870
X2

Figure 8: Four GPU shaders using T EA2-based noise
(bump, marble, wood, erosion)

quency band limited, and isotropic. It is deterministic to en-
sure the same input always produces the same result and
noise-generated surface features will not change from frame
to frame. It is band limited to one octave (power of two in
frequency) to allow tailoring a desired frequency spectrum
by weighted sum of noise functions at different scales. Fi-
nally, it is isotropic to avoid directional artifacts, though re-
cent noise functions have allowed controlled anisotropy that
can be summed to an isotropic noise [GZD08, LLDD09].

Several recent GPU variations of Perlin noise use a cryp-
tographic hash to select the random gradient vectors at the
corners of each integer cell without the lookup tables present
in the original algorithm [Ola05, TW08]. Our test code is
based on the online reference implementation by Olano. We
use Olano’s code for the modified BBS hash, and Tzeng and
Wei’s code for the MD5 hash.

Given the success of even poor random number genera-

2-D Noise 4 × 4 Kernel
RNG HD 4870 8600M HD 4870 8600M
BBS 3077 1628
MD564 173 61 27 10
T EA8 1000 322 281 81
T EA2 3243 1305 1000 364
XT EA16 635 184 187 40
XT EA2 3529 1551 1143 419

Table 1: 2D Perlin Noise speed in MPixels/second for AMD
Radeon HD 4870 and NVIDIA 8600M GT.

tors at making reasonable noise [Ola05, LLDD09], we sug-
gest that the random number quality can be tailored to the
application. In particular, that the number of rounds might
be reduced without hurting the quality of the Perlin noise.

5.1. 2D Noise

Table 1 gives timing data for 2D noise with a range of hash-
based random number generators. We ran our speed tests us-
ing the AMD GPU Shader Analyzer on an AMD Radeon
HD 4870 and the NVIDIA Shader Perf tool on an NVIDIA
8600M GT .The results show that all TEA and XTEA (2D
and 3D) noise implementations are faster than equivalent
MD564, with T EA2 and XT EA2 producing the fastest re-
sults, faster even than Olano’s BBS-based modified noise
[Ola05]. Figure 3 shows how TEA, XTEA and MD5 perform
with increasing number of rounds. MD5 is most expensive
per round. election of either TEA or its extension (XTEA)
depends on the application. XTEA is the fastest function to
use for graphics noise. With this implementation a 4 ker-
nel noise implementation can be used with maximum per-
formance benefits. TEA can be used as a fast all purpose
RNG and can be used for noise as well as random number
generation with just 8 rounds.

Figure 9 shows the spatial appearance and frequency
spectrum for a representative subset of tested noise algo-
rithms. The spatial appearance should consist of random
blobs of uniform size, free from directional and clumping
artifacts. The frequency plot should be a well defined donut
shape, with a ring of uniform white noise and little energy
inside or outside the ring. Figure 10 shows the effect of vary-
ing the number of rounds in frequency space for MD5 and
XTEA. Though six rounds are needed for the avalanche ef-
fect, the nearby integer grid coordinates differ in the bottom
bits, and we only use the bottom two of the generated bits, a
couple of rounds are sufficient when using TEA and XTEA.
MD5, however, exhibits serious artifacts and only becomes
usable for noise starting at about 6 rounds.

Both Perlin noise [Per02] and the modified noise [Ola05]
use Perlin’s hash nesting to construct a 2D hash from a 1D
one:

hash2D(Pi) = hash1D(hash1D(x)+ y). (1)

submitted to COMPUTER GRAPHICS Forum (5/2010).

Zafar et al. / GPU Random Numbers via TEA 7

(a) Perlin [Per02] (b) BBS [Ola05] (c) MD564 [TW08] (d) T EA2 (e) 4×4 Kernel T EA2

Figure 9: Perlin-style noise and its Fourier transform for selected PRNG choices

RNG HD 4870 8600M
MD564 55 30
T EA8 359 102
T EA2 1250 481
XT EA16 235 40
XT EA2 1412 604

Table 2: 3D Perlin Noise Speed in MPixels/second for AMD
Radeon HD 4870 and NVIDIA 8600M GT

This causes the vertical stripe artifacts in the frequency spec-
tra for these two cases and directional artifacts in the noise
images. The other hash functions can take two (or more) co-
ordinates directly. We use the x and y integer coordinates for
two of the hash inputs, avoiding these directional problems.
We also show results using a 4×4 neighborhood around each
cell, as described by Kensler et al. [KKS08]. This requires
four times as many calls to TEA than the original 2×2 neigh-
borhood, but gives a better defined frequency profile.

5.2. 3D Noise

3D noise uses a 2×2×2 neighborhood around each integer
cell. Since our single 64-bit block TEA takes only two in-
puts, we use a nested hash as in Equation (1). The MD5 hash
takes a four-component vector as input. Thus, we need only
8 calls to the MD5 hash as compared to 12 for TEA. Even
so, Table 2 shows that TEA significantly outperforms MD5.

6. TEA for Monte-Carlo Shadowing

Curtis [Cur09] describes a method for rendering high-quality
soft shadows in real time using Monte Carlo ray tracing
on the GPU. As in methods derived from backprojection
[GBP06], a shadow map is used as a discretized represen-
tation of all the occluding geometry in a scene. When pro-
jected into world space, each texel in the shadow map rep-

(a) MD54 (b) MD55 (c) MD56

(d) XT EA1 (e) XT EA2 (f) XT EA3

Figure 10: Fourier Transforms for MD5 and XTEA Noise
with increasing number of rounds. Notice that MD5 is usable
for noise with at least 6 rounds. XTEA however can be used
for noise with just 2 rounds. TEA results are similar to XTEA.

resents a patch of micro-geometry that a shadow ray might
intersect. In this method, the Z-buffer, plus front and back
surfaces from the light are combined to give a more accurate
approximation to the occluding geometry. For each point to
be shaded, an occlusion test is performed by tracing a ray
through these depth maps to a randomly sampled point on
the surface of an area light source. Figures 11a-c shows an
intermediate result in the algorithm, directly after the occlu-
sion test.

To achieve realistic shadowing, the algorithm adds a vari-
ance reduction stage, in which a depth-sensitive Gaussian
filter is applied to the occlusion test results in screen space.
This effectively hides the randomization, though in scenes

submitted to COMPUTER GRAPHICS Forum (5/2010).

8 Zafar et al. / GPU Random Numbers via TEA

(a) T EA1
1 ray, no filtering

(b) T EA2
1 ray, no filtering

(c) T EA4
1 ray, no filtering

(d) T EA1
9 rays, filtered

(e) T EA2
9 rays, filtered

(f) T EA4
9 rays, filtered

Figure 11: Monte-Carlo shadow algorithm, (a-c) one ray per pixel; (d-f) nine rays per pixel with final screen-space filtering

(a) T EA1 (b) T EA2 (c) T EA4

Figure 12: Monte-Carlo shadow algorithm on the dragon model

with wide penumbrae, it is also necessary to trace multiple
rays per pixel (4 or 9 are generally sufficient). The shadow
algorithms is a perfect example to demonstrate the visual
quality and speed tradeoff advantage offered by TEA. Re-
ducing the number of rounds for the PRNG has a direct
impact on the visual output of the shadow algorithm. Fig-
ures 11d-f shows the final result.For this algorithm, we once
again observe that fewer rounds are sufficient for good vi-
sual result. TEA-2 produces a noticeable pattern in the re-
sults prior to filtering, though it is largely hidden in the final
image. With more rounds TEA yields results that are nearly
indistinguishable. Figure 12 shows results on a more com-
plex model. The algorithm can be tuned for performance by
simply adjusting the number of TEA rounds employed.

7. Conclusion

We have shown that TEA provides an effective GPU ran-
dom number solution with easy tradeoff between speed and
random number quality. Further, we show that lower qual-
ity random numbers can be used to generate a noise func-
tion, while still allowing higher quality random number gen-
eration for GPGPU applications. Based on DIEHARD and
NIST test results, as well as noise Fourier plots, we conclude
that TEA with eight rounds is faster than MD5 for produc-
ing equivalent high-quality random numbers, and that XTEA
with two rounds can be used in a fast and artifact-free gradi-
ent noise.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their helpful

comments. We would also like to thank the Stanford Com-
puter Graphics Laboratory for the dragon model, and Tzeng
and Wei for their GPU MD5 code. Finally, we would like to
thank AMD and NVIDIA for GPU donations.

References

[Ada97] ADAMS C.: The CAST-128 Encryption Algorithm. Tech.
rep., RFC Editor, United States, 1997. 3

[BBS86] BLUM L., BLUM M., SHUB M.: A simple unpre-
dictable pseudo-random number generator. SIAM Journal on
Computing 15, 2 (May 1986), 364–383. 2

[CD05] COOK R. L., DEROSE T.: Wavelet noise. In SIGGRAPH
’05: ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),
ACM SIGGRAPH, ACM, pp. 803–811. 2

[CPC84] COOK R. L., PORTER T., CARPENTER L.: Distributed
ray tracing. In SIGGRAPH ’84: Proceedings of the 11th annual
conference on Computer graphics and interactive techniques
(New York, NY, USA, 1984), ACM SIGGRAPH, ACM, pp. 137–
145. 2

[Cur09] CURTIS A.: Real-time Soft Shadows on the GPU via
Monte Carlo Sampling. Master’s thesis, University of Maryland,
Baltimore County, 2009. 2, 7

[DS86] D’AGOSTINO R. B., STEPHENS M. A.: Goodness of fit
techniques. CRC Press, 1986. 5

[EMP∗98] EBERT D. S., MUSGRAVE K., PEACEY D., PERLIN
K., ANDWORLEY S.: Texturing and Modeling, A Procedural
Approach. Morgan Kaufmann, 1998. 2

[GBP06] GUENNEBAUD G., BARTHE L., PAULIN M.: Real-
time soft shadow mapping by backprojection. In Eurographics
Symposium on Rendering (EGSR), Nicosia, Cyprus, 26/06/2006-
28/06/2006 (http://www.eg.org/, 2006), Eurographics, pp. 227–
234. 7

submitted to COMPUTER GRAPHICS Forum (5/2010).

Zafar et al. / GPU Random Numbers via TEA 9

[Gre05] GREEN S.: Implementing improved Perlin noise. In GPU
Gems 2, Pharr M., (Ed.). Addison-Wesley, 2005, ch. 26. 2, 3

[GZD08] GOLDBERG A., ZWICKER M., DURAND F.:
Anisotropic noise. In SIGGRAPH ’08: ACM SIGGRAPH
2008 papers (New York, NY, USA, 2008), ACM, pp. 1–8. 2, 6

[HJK∗04] HANRAHAN P., JEREMY S., KAYVON F., HOUSTON
M., FOLEY T., HORN D.: Gpu bench, 2004. ACM Workshop on
General Purpose Computing on Graphics Processors. graph-
ics.stanford.edu/projects/gpubench. 3

[Jen96] JENSEN H. W.: Realistic image synthesis using photon
mapping. In Proceedings of the Eurographics workshop on Ren-
dering Techniques (1996), pp. 21–30. 2

[KHN06] KELLER A., HEINRICH S., NIEDERREITER H.: Monte
Carlo and Quasi-Monte Carlo Methods. Springer-Verlag, 2006.
2

[KKS08] KENSLER A., KNOLL A., SHIRLEY P.: Better Gradient
Noise. Tech. Rep. UUSCI-2008-001, SCI Institute, 2008. 2, 3, 7

[Knu97] KNUTH D. E.: The Art of Computer Programming,
third ed., vol. 2. Addison-Wesley, 1997. 2

[Lew89] LEWIS J. P.: Algorithms for solid noise synthesis. In
SIGGRAPH ’89: Proceedings of the 16th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1989), ACM Press, pp. 263–270. 2

[LLDD09] LAGAE A., LEFEBVRE S., DRETTAKIS G., DUTRÉ
P.: Procedural noise using sparse gabor convolution. In SIG-
GRAPH ’09: ACM SIGGRAPH 2009 papers (New York, NY,
USA, 2009), ACM, pp. 1–10. 2, 6

[Mar95] MARSAGLIA G.: The MARSAGLIA random number
cdrom including the DIEHARD battery of tests of randomness
v0.2 beta, 1995. http://i.cs.hku.hk/ diehard/. 2, 4

[MN98] MATSUMOTO M., NISHIMURA T.: Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random num-
ber generator. ACM Transactions on Modeling and Computer
Simulation 8, 1 (1998), 3–30. 2

[NVI07] NVIDIA: NVIDIA CUDA com-
pute unified device architecture, 2007.
http://developer.download.nvidia.com/
compute/cuda/1_0/NVIDIA_CUDA_Programming_
Guide_1.0.pdf. 2, 4

[Ola05] OLANO M.: Modified noise for evaluation on graphics
hardware. In GH ’05: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS Symposium on Graphics Hardware (New York,
NY, USA, 2005), ACM, pp. 105–110. 2, 3, 6, 7

[Per85] PERLIN K.: An image synthesizer. In SIGGRAPH ’85:
Proceedings of the 12th annual conference on Computer graph-
ics and interactive techniques (New York, NY, USA, 1985),
ACM, pp. 287–296. 2, 3

[Per02] PERLIN K.: Improving noise. In SIGGRAPH ’02: Pro-
ceedings of the 29th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 2002), ACM,
pp. 681–682. 2, 6, 7

[Per04] PERLIN K.: Implementing improved perlin noise. In
GPU Gems, Fernando R., (Ed.). Addison-Wesley, 2004, ch. 5.
2, 3

[PWH06] PANG W. M., WONG T. T., HENG P. A.: ShaderX5:
Advanced Rendering Techniques. Charles River Media, 2006,
ch. 9.8: Implementing High-Quality PRNG on GPU. 2

[Red03] REDDY V.: A cryptanalysis of the Tiny Encryption Algo-
rithm. Master’s thesis, University of Alabama, 2003. 3, 4, 5

[Riv92a] RIVEST R.: The MD5 Message-Digest Algorithm. Tech.
rep., RFC Editor, 1992. 2, 3

[Riv92b] RIVEST R. L.: The RC4 Encryption Algorithm. Tech.
rep., RSA Data Security, Inc., March 1992. 3

[Ros04] ROST R. J.: The OpenGL Shading Language. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
2004. 4

[RSN∗08] RUKHIN A., SOTO J., NECHVATAL J., SMID M.,
BARKER E., LEIGH S., LEVENSON M., VANGEL M., BANKS
D., HECKERT A., DRAY J., VO S.: A Statistical Test Suite for
the Validation of Random Number Generators and Pseudo Ran-
dom Number Generators for Cryptographic Applications. Tech.
rep., NIST Special Publication, August 2008. 2

[Sch94] SCHNEIER B.: Description of a new variable-length key,
64-bit block cipher (blowfish). In Fast Software Encryption,
Cambridge Security Workshop (London, UK, 1994), Springer-
Verlag, pp. 191–204. 3

[TW08] TZENG S., WEI L.-Y.: Parallel white noise generation
on a GPU via cryptographic hash. In I3D ’08: Proceedings of the
2008 symposium on Interactive 3D graphics and games (New
York, NY, USA, 2008), ACM, pp. 79–87. 1, 2, 3, 4, 5, 6, 7

[VG97] VEACH E., GUIBAS L. J.: Metropolis light transport.
In SIGGRAPH ’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques (New York,
NY, USA, 1997), ACM Press/Addison-Wesley Publishing Co.,
pp. 65–76. 2

[WN94] WHEELER D. J., NEEDHAM R. M.: TEA, a tiny en-
cryption algorithm. In Lecture Notes in Computer Science. Fast
Software Encryption: Second International Workshop (1994),
pp. 363–366. 2, 3

[Zaf10] ZAFAR F.: Tiny Encryption Algorithm for Cryptographic
Gradient Noise. Master’s thesis, University of Maryland, Balti-
more County, 2010. 4

submitted to COMPUTER GRAPHICS Forum (5/2010).

