Adaptive Supersampling Using Machine Learning Techniques

Kevin Winner
winnerkl @umbc.edu

Abstract

Previous work in adaptive supersampling methods have utilized al-
gorithmic approaches to analyze properties of the object space or
image space which might benefit from increased supersampling.
These techniques generally increase the computational complex-
ity of simple supersampling, reducing the potential performance
gain from employing adaptive supersampling. In this paper, we de-
scribe an experimental technique which creates a learned model of
the adaptive supersampling problem in a given domain using tech-
niques from the field of machine learning. This model can then be
used to quickly and efficiently compute a distribution of samples in
the adaptive supersampling problem.

1 Introduction

Supersampling techniques are simple yet powerful tools for per-
forming antialiasing in ray tracing by increasing the sampling res-
olution of the image. Each pixel of the image is divided into many
subpixels, which are each sampled independently. These samples
are then combined to produce a single color which is used for the
final pixel value rendered.

Unfortunately, supersampling techniques require significant addi-
tional computation for every pixel in the image. In order to sam-
ple at a resolution fine enough to properly antialias the complex
regions of the image, it is also necessary to sample the simplest re-
gions equally. Since additional samples are not necessary in these
regions, a great deal of computation time is wasted sending rays
through these extraneous samples.

This leaves us the problem of deciding which samples are necessary
and which can be skipped. Solutions to this problem are known as
adaptive supersampling techniques. This has been a productive area
of research, the majority of which fall into one of two categories:
image space strategies and object space strategies. Image space
strategies use information about pixel colors and image information
to select samples, while object space strategies analyze the scene
and possible near-misses of objects by rays.

Most image space techniques suffer from one of two problems.
They can require a user to tweak a threshold or similar variable
to control the sensitivity of the algorithm. This threshold is often
difficult to determine efficiently and can vary from one scene to an-
other. Additionally, the ideal threshold might vary across the image,
which is difficult to control. Image space techniques can also differ
significantly from the “true” image which would be produced by
standard supersampling at the same depth as the adaptive method.

In this paper, we present an experimental image space technique
which selects samples based on an observed history of which types
of samples actually yielded changes to the final pixel value. We
represent this history using a classifier constructed using machine
learning techniques. The classifier is constructed using a large
collection of samples from the scene as training data. Once con-
structed, the classifier represents an approximate codification of the
knowledge gleaned by performing the complete high-depth super-
sampling of the image.

With a learned classifier, we are able to query the classifier cor-
rectly about the expected impact of a potential sample. This query
does not require any additional data collection and is exceptionally
quick when using the methods we describe here. The classifiers we
construct are able to accurately predict as many as 99.9% of the
samples in our test scenes, in a fraction of the time taken by the
more thorough supersampling techniques.

Section 2 describes relevant related work in more detail. Section 3
presents the details of our adaptive supersampling method. Sections
4 and 5 include and discuss the results of our experiments with this
technique. Section 6 shows the next steps for research with this
technique.

2 Related Work

Adaptive supersampling in image space has been a popular tech-
nique for easily and quickly performing adaptive supersampling.
The image space technique was introduced by Turner Whitted, who
used what is now referred to as an image space approach to adap-
tive supersampling to reduce the cost of supersampling. [Whitted
1980] They cast four rays into the corners of each pixel. If the col-
ors returned from each of these rays does not differ by much, then
no more sampling is performed. Otherwise, the pixel is subdivided
and more rays are sent out. This technique typically had many prob-
lems with missing small objects or shadows which did not cover at
least one corner of a pixel.

Recently, there have been a number of papers on improving the
image space approach to adaptive supersampling. The primary re-
search focus has been on intelligent strategies for deciding whether
to subdivide a pixel. In 2002, Jaume Rigau et al. developed a tech-
nique which characterized the contrast of a pixel with its neighbors
in order to determine important boundaries. [Rigau et al. 2002] In
2003, they refined this idea to represent the entropy of a subpixel
and the information gain of a subdivision. [Rigau et al. 2003]

3 Implementation

Our system presents a two-pass implementation of a machine learn-
ing adaptive supersampling solution. The first pass of the system
generates the data necessary to build a machine learning model us-
ing a standard supersampling implementation. Once the data has
been collected, we construct a predictive model (or classifier) us-
ing machine learning techniques. This model takes as input for an
instance the vector of colors of each of the sampled subpixels and
predicts the probability that the final color of that subpixel would
change by recurring again. With this model constructed, we run a
second pass of the renderer which uses an adaptive supersampling
strategy defined by the predictions of this model. In the following



subsection we go into further detail about each of the steps of the
implementation.

3.1 Collecting image space data

Learning a classifier for machine learning requires a large collec-
tion of labeled training data. This means producing data which has
all the attributes we expect to have available when running the sys-
tem online as well as correctly labeled classes which represent the
answer to the question we are asking the model in the online case.
Since we are trying to approximate a supersampling solution with
very high depth, we use a pass of this high depth solution to gather
our data.

In our case, we used an open source ray tracing implementation
which included supersampling options called Sunflow which was
written by Christopher Kulla and is available under the MIT license.
[Kulla ] Sunflow implements a recursive solution to supersampling
wherein each pixel is divided into 4 subpixels. Each of these sub-
pixels is then sampled at their centers and recursively subdivided
until we reach the target depth, at which point the samples are then
aggregated into a single color and passed back up the recursion tree.

At each pixel (or subpixel) then we construct an instance of the
training data based on the following data we have available before
we divide and recur on the subpixels: the current recursion depth
and the colors of each of the 4 initial samples of the subpixels. We
also compute the color which the pixel would have been if we had
not subdivided it and the color which resulted from that subdivision.
This color difference is attached to each instance and used as the
class label for that instance.

3.2 Creating a classifier

Once the training data has been collected, we can use it to build
and train a machine learning classifier. Our implementations of
the various machine learning algorithms described here were bor-
rowed from Weka, an industry standard machine learning toolkit
with many contributors. [Mark Hall 2009] There are many classi-
fier types available, but we have selected two commonly used algo-
rithms: naive Bayes and C4.5 (a decision tree algorithm).

Naive Bayes is a probabilistic model which learns probabilities for
the possible class labels based on a derivation from Bayes theo-
rem. The implementation of naive Bayes in Weka builds a model
based on the maximum-likelihood process where the model is re-
fined until it makes correct predictions on the training data as often
as possible. The drawback to naive Bayes is that it assumes that
all the variables in the data are independent of each other, which
is clearly not true in our case. However, research has shown that
in spite of the simplifications naive Bayes makes, it very often per-
forms surprisingly well [Zhang 2004], which is why we chose it as
one of our algorithms.

The other algorithm we use is J48, which is an implementation
of the C4.5 decision tree algorithm included in the Weka toolkit.
Decision trees are binary trees where each node in the tree filters
each instances into one of two subtrees. When the instances reach
a leaf node, they are assigned a class. Each non-leaf node selects
instances based on a single variable, based on the principle of in-
formation gain for that variable.

Our application uses mostly default options for the Weka imple-
mentations of these algorithms, as the defaults are generally suffi-
cient for our purposes. When test data was needed (in some of our
experiments), we used a hold out set from the training data as the
training data was a complete sample and additional unlabeled data
was not available.

3.3 Supersampling with a classifier

In our recursive subdivision implementation of supersampling, the
switch to adaptive supersampling comes from sometimes choosing
not to subdivide a pixel which is unlikely to produce a noticeable
effect on the final image. The machine learning classifiers we con-
struct are built to predict which pixels will need to be subdivided.

Each top-level subpixel will always be sampled at least 4 times.
The original 4 samples will be used as input to the machine learn-
ing classifier, which predicts a probability that the resulting change
in color of the pixel will be above a certain threshold. In our case,
the threshold is user configurable, but we found that low values be-
tween 0.01 and 0.1 typically produced better models. In this case,
the threshold is the total absolute difference between the RGB com-
ponents of the colors, represented as floating point values from 0 to
1.

4 Results

We evaluate the results of running our system using both naive
Bayes and decision trees on supersampling depths of 1 and 2. Due
to memory limitations with our testing equipment, we were unfor-
tunately unable to construct training datasets when the supersam-
pling depth was any larger than 2. We show the accuracy of both
these methods using cross validation of the classifiers on the train-
ing data. We also provide a sample image produced using each of
these methods.

For each combination of machine learning algorithm and training
dataset, we also have both a high accuracy and low accuracy model.
The low accuracy model predicts whether instances will have a total
change over 0.1 as a result of subdivision and the high accuracy
model predicts whether those instances will change more than 0.02,
a harder problem.

For reference, all of our experiments were performed on the scene
gumbo_and_teapot which is available from the Sunflow project as
part of their example package. It consists of many overlapping ob-
jects and shadows on a flat background. In our sample images, we
have cropped the image to a single teapot from the center of the
scene to highlight the effects of supersampling.

In the figures that follow, NB stands for naive Bayes, DT means de-
cision tree, and NB+/DT+ are the results from reducing the thresh-
old to 0.02 from 0.1.

0.89

0.98

0.97
0.96 —NB

0.5 —— B+

054 DT
0583 DT+

052

051

09

Figure 1: The results of the cross-validation test



Figure 2: No supersampling Figure 5: NB Supersampling depth 1

Figure 3: Supersampling depth 1 Figure 6: NB+ Supersampling depth 1

Figure 4: Supersampling depth 2 Figure 7: NB Supersampling depth 2



Figure 8: NB+ Supersampling depth 2

Figure 9: DT Supersampling depth 1

Figure 10: DT+ Supersampling depth 1

Figure 11: DT Supersampling depth 2

5 Analysis of Results

Our cross validation test showed several interesting results. One of
the most striking results is that the decision tree methods had excel-
lent results in every case. This means that adaptive supersampling
with this method should produce nearly identical pictures to the
equivalent supersampling technique, while requiring many fewer
samples during runtime.

Another notable result from the cross validation test is that naive
Bayes performed significantly worse than the decision tree meth-
ods. This is most likely a result of the assumptions made by the
naive Bayes learning algorithm that all the variables are indepen-
dent and distributed according to a gaussian distribution.

6 Future Work

The major limitation of this architecture is the prohibitive cost of
collecting the requisite training data. Collecting all the training data
requires a process which takes longer than the render itself. The
next step for this research is certainly to address this issue, and
there are several potential avenues for doing so.

The first approach would be to improve the process of data collec-
tion by reducing the number of samples needed to build an effective
classifier. This can be done by reducing the depth of the sampling
process used to collect the data, but this presumably has an effect
on the accuracy of the resultant classifier. Other methods might in-
clude an intelligent sampling solution or an aggregation strategy,
but many of these problems are analogous to the original adaptive
supersampling problem.

Another approach would be to improve the portability of the clas-
sifier. The collection of data is an expensive step, but only needs
to be done once for each model. Experiments with cross-training
classifiers on similar scenes might show that a single model can be
used for many views of the same scene.

Incorporating object-space knowledge into the classifier would also
potentially improve portability. This could also make the model ap-
plicable to real-time systems, but would require a representation of
the relevant object-space knowledge which could be used as input
for a classifier.

A final approach would be to perform online learning of the model.
In this situation, the classifier would be constructed and adjusted
in real time as the render was completed. Unfortunately due to
the nature of this approach, aliasing artifacts would appear at the
borders of regions which the classifier had not previously sampled.
These regions would likely be either oversampled or undersampled



until the model had been updated to handle them correctly, possibly
leading to visible artifacts.

In the future, we also hope to generate more experimental results
which examine the impact of cross training on multiple related or
unrelated scenes. We would also like to conduct similar experi-
ments to the ones included in this paper, but using much higher su-
persampling depths than we were able to produce with our current
equipment.

7 Conclusion

‘We have presented a new technique for performing adaptive super-
sampling which has the potential to be both cost-effective and ac-
curate. While the model is expensive to construct, queries are quick
and informative, creating a very powerful tool. Additionally, once
constructed, the classifier can be reused many times, distributing
the cost of building the model.

We consider this paper to be an important building block for other
techniques which further extend the concept of combining ma-
chine learning algorithms and supersampling strategies. Our results
demonstrate that this technique has significant potential, but there
are still open problems in the way of its adoption, which we out-
lined in the previous section.

References

KuLLA, C. Sunflow.

MARK HALL, EIBE FRANK, G. H. B. P. P. R. I. H. W. 2009. The
weka data mining software: An update. SIGKDD Explorations
11.

RIGAU, J., FEIXAS, M., AND SBERT, M. 2002. New contrast mea-
sures for pixel supersampling. In PROCEEDINGS OF CGI’02,
Springer-Verlag London Limited, 439—451.

RIGAU, J., FEIXAS, M., AND SBERT, M., 2003. Entropy-based
adaptive sampling.

WHITTED, T. 1980. An improved illumination model for shaded
display. Communications of the ACM, 343-349.

ZHANG, H. 2004. The Optimality of Naive Bayes.



