
-1-

Deep Shadow Maps from Volumetric Data on the GPU

Adam J. Shook

University of Maryland Baltimore County

Abstract

A method of generating Deep Shadow Maps from a

3D data set is presented. This method uses ray

tracing on the GPU to accumulate opacity and store

them in a deep shadow map. The deep shadow map is

then sampled based on view direction to determine

how much light got to a particular fragment. The

shadow maps can also be used to cast shadows onto

other objects.

Introduction
Much research has gone into improving shadow

mapping techniques, from completely eliminating

shadow aliasing to allowing transparent objects to

cast shadows. Deep Shadow Maps (DSMs) improve

over the standard shadow mapping technique by

storing a representation of the visibility of all possible

depths. DSMs allow shadows from partially

transparent surfaces and volumetric objects, such as

hair and fog. DSMs are traditionally created by

rendering the scene from the light’s perspective to

build the shadow map based on an object’s material

properties. This paper presents a method of

generating DSMs from volumetric data stored in a 3D

texture. These shadow maps are then used to self-

shadow the volumetric data as well as cast shadows

onto other objects.

Related Works
Traditional shadow maps [6] are rendered by placing

a camera at the light source facing all of the objects

that are going to be casting shadows. The scene is

then rendered, storing the depth of each fragment into

the buffer, which is sometimes referred to as a depth

map. From here, the scene is rendered as usual. The

depth of each fragment is compared with the value

inside the shadow map. If the sampled depth is

greater than the current fragment’s depth, then the

fragment is considered to be in shadow and is shaded

as such.

Lokovic and Veach [5] introduced an extension of the

traditional technique called Deep Shadow Maps.

Instead of storing the depth of a fragment in the map,

DSMs store a representation of the visibility through a

pixel at all possible depths. While traditional shadow

maps can only tell you if a fragment is occluded by

another fragment, it cannot tell you anything about

the fragment itself. Deep shadow maps attempt to

remedy this by storing this representation. Because of

this, we can shade fragments that are partially

occluded by fog or sparse data like hair.

Amantatides and Woo [1] presented an algorithm to

quickly traverse a voxelization of primitive data. A

3D grid is created to form smaller 3D cubes or voxels.

From here, a scene is parsed and the primitives are

stored in individual voxels. The presented traversal

algorithm provides a way to quickly traverse this

voxelization for a great performance enhancement.

Eisemann and Décoret [2] presented a hardware

implementation of voxelization as well as many

applications of their technique. A scene is voxelized

in real time on the GPU into a 2D texture called a

slice map. Each bit in a pixel of a 2D texture

represents a voxel, where a value of 1 represents a

fragment is present in the voxel. This allows for a 3D

representation of a scene with a depth of 32 “voxels”

using a single texture. Using multiple render targets

will allow for greater depths. The related application

of this technique was using this voxelization to create

what they called Transmittance Shadow Maps. It

allows for colored shadows due to semi-transparent

objects such as glass.

-2-

Enderton et al. [3] offer a technique called Stochastic

Transparency to render accurate shadows with many

types of transparent geometry such as hair, smoke,

foliage, etc. It utilizes a stochastic sampling approach

that produces correct alpha-blended colors in a single

render pass with no sorting, but introduces noise.

Several smoothing methods were presented to reduce

the noise in the image. Comparisons were made to

other algorithms, specifically depth peeling which

requires many passes to produce a correct image. The

algorithm presented produces a correct image

extremely similar to depth peeling but in a much

shorter time.

Implementation
The chosen implementation uses 3D textures to store

volumetric data sets. Cubes are physically rendered

and then a hardware accelerated implementation of a

ray tracer is used to cast rays through the 3D texture

in order to both generate a deep shadow map and

produce the final shadowed rendering.

First, cubes are rendered utilizing the light’s view and

projection matrix. The bulk of the ray tracing

algorithm for the deep shadow map generation is in

the fragment shader. The RGB channels of the deep

shadow map store the depth of a chosen opacity,

while the alpha channel stores the maximum opacity

for the given fragment. The chosen opacities were

10%, 50%, and 90% respectively. These particular

values were chosen based off a presentation by

Kobayashi [4]. The following pseudocode segment

will outline the ray tracing routine to generate a deep

shadow map:

1. Determine the texture-space coordinates where a

ray enters the cube.

2. Determine the normalized direction the ray will

be cast through this cube based on the world-

space vertex coordinates and the position of the

light.

3. Choose an arbitrary scaling value to determine the

length of each step. The smaller this value, the

more samples but better results.

4. Begin tracing through texture space. Sample the

3D texture at each step and attenuate the opacity

as you are tracing.

5. For 10% opacity, 50% opacity, and 90% opacity,

record the depth that has been traversed so far in

the RGB channels of the texture, respectively.

6. Once the entire cube has been traversed, store the

maximum opacity into the alpha channel of the

texture.

Our deep shadow map is now created. We have the

depths at 10%, 50%, and 90% opacity and the

maximum opacity value of the texture.

For Step 5 above, the previously calculated opacity

and depth were stored as each voxel was processed.

The previous opacity and current opacity were used to

determine when the borders of 10%, 50%, and 90%

were crossed. At each border, a smooth step was used

to determine at what location in the interval [0, 1] the

border was crossed. The previous depth and current

depths are then linearly interpolated based on this

value. This linearly interpolated value is then stored

in the appropriate channel.

Another approach to storing the depths would be to

just check if the current opacity is less than 10%,

50%, or 90% with a simple if-else if block. Store the

current depth in the channel that falls into the

particular “bucket”. For example, once the border is

crossed from 10% to 50%, the red channel will have

the greatest depth that is less than or equal to 10%.

This will produce less accurate results but increase

performance. In most cases, the decrease in accuracy

is not noticeable – especially with a large number of

steps through the data.

Once the deep shadow map is created, the scene is

rendered using the camera’s view and projection.

Ray tracing is used again to accumulate color through

the data set to use as the base for our final rendering.

A standard volume rendering technique is used in a

similar manner of how the DSM was generated.

-3-

1. Determine the texture-space coordinates where a

ray enters the cube.

2. Determine the normalized direction the ray will

be cast through this cube based on the world-

space vertex coordinates and the position of the

camera.

3. Choose an arbitrary scaling value to determine the

length of each step. The smaller this value, the

more samples but better results.

4. Begin tracing through texture space. Sample the

3D texture and accumulate color as we traverse.

The sampled value is used as each RGBA

channel.

5. Return the final color once parsing is complete.

Once we have the color, we now need to sample our

DSM along a ray to determine the appropriate opacity

for the fragment. Figure 1 shows a 2D visual

representation of the rays being used. The extension

to 3D is trivial.

1. Determine the texture-space coordinates where a

ray enters the cube.

2. Determine the normalized direction the ray will

be cast through this cube based on the world-

space vertex coordinates and the position of the

camera.

3. Using this direction and origin, calculate where

the ray intersects with the other side of the cube.

4. Calculate the length of this line segment and

divide it by the desired number of samples.

5. Begin stepping through the cube. For each sample

point in the cube, create a ray with this origin and

a direction towards the light position.

6. Determine where this ray will exit the cube.

7. Calculate the length between these two points.

This is the depth we will use to compare with our

DSM.

8. Project the point in the cube into shadow map

space using the light’s WVP matrix and sample.

9. Determine the opacity for this point based on the

DSM (explained below).

10. Average all the sampled opacities to determine

the lighting.

Figure 1: Yellow represents the ray inside the cube that is

based on two points and a direction from the eye. Red are

the projections of a sample point on the yellow line to their

associated point on the cube. These points are then

projected into light space texture coordinates and used to

sample our deep shadow map.

You may recall the RGB channels are storing depths

at 10%, 50% and 90% opacity, respectively. We use

these stored depth values to find which two channels

the current depth lies between. From here, the

smooth step operation is used to determine a value

between [0, 1] as to where the current depth lies

between the two depths in the channels. This value is

then used to linearly interpolate between the

appropriate opacities (10%, 50%, or 90%). This

interpolated value is then returned as the opacity at

that particular location in the cube. If the depth is less

than the closest depth (red channel), a value of 0 is

returned, anything greater than the furthest recorded

depth (blue channel) returns the maximum opacity

stored in the alpha channel.

All of these opacities are averaged together for each

ray to determine the final lighting at that fragment.

The number of samples is up to the user to hit the

balance between performance and quality.

The final lighting value is used in coherence with the

color from the initial volume ray trace to darken the

fragment.

-4-

Finally, the DSM can be used to cast shadows on

arbitrary objects outside of the volumetric data set.

The value stored in the alpha channel is the maximum

opacity of each ray cast through the volume. This

value can be retrieved in a fragment shader and used

to shadow a plane where appropriate.

Results
The results presented in this paper were generated

using DirectX 9 and HLSL 3.0 on an NVIDIA

GeForce GTX 465, an Intel Core 2 Duo processor at

2.66 GHz, and 4 GB of DDR2 RAM. A maximum of

512 steps were used to create the DSM and the

volume rendering, while 128 steps were used to

sample the DSM. All images were produced in real

time on the above hardware configuration – between

180 and 330 FPS based on the size of the data set.

Figure 2 shows renderings of deep shadow maps for

four different volumetric data sets – a standard box

that gets more opaque towards the center of the box

(64x64x64), a set of bucky balls (32x32x32), crossed

rods (64x64x64), and clouds (512x512x32). The

DSM itself is shown on the far left, and the individual

RGBA channel values are also represented. For the

RGB channels, brighter pixels represent a greater

depth until the 10%, 50%, or 90% opacity was met for

a particular fragment. For the alpha channel, brighter

values represent a higher maximum opacity for the

fragment.

Figure 3 shows renderings of the box data set. Here,

we can a straight accumulation of the data, the final

lighting value accumulated from traversing the DSM,

and the data darkened with this value.

Figure 4 shows shadows cast on a plane using the

maximum opacity stored in the DSM.

Due to the nature of these volumetric sets, there is

often noise that is sampled where usually there would

be empty space. 3D textures usually contain a single

value at each voxel. Often, 2D textures are sampled

to return a color and opacity based on the sampled

value. This will allow for volumetric data to contain

colors and opacities determined by an artist. For this

paper, the sampled value was used across the board

for the RBGA channels, resulting in blurrier

renderings of the data itself. These artifacts can be

seen as streaks and blurred data in the volume

renderings in Figure 4.

Future Work
The presented algorithm can be extended to allow for

colored data as well as colored shadows. By using

multiple render targets, the RGB channels can be used

to store depth information related to the amount of

red, green, and blue at each pixel. These values can

then be attenuated in a similar manner to color the

shadows instead of just darkening them. These color

values can also be used to color shadows cast onto

other objects.

Currently, two ray tracing steps are used during the

final render stage to acquire the volume rendering and

the opacity rendering. These two could be reduced

into one, thus slightly increasing performance.

Further research can be done to extend this ray tracing

approach to generate and utilize shadow maps for

more than one volumetric data set.

Acknowledgments
Data sets initially retrieved from the University of

Erlangen Volume Library. The provided utility was

then used to turn the native PVM format into a raw

binary format. The raw data set was then converted

by hand to a 3D texture in a DDS format with DXT5

compression to be used for this paper.

-5-

References
[1] John Amanatides and Andrew Woo. 1987. "A

Fast Voxel Traversal Algorithm for Ray

Tracing.", In Proceedings of Eurographics '87.

Eurographics Association, pp. 3-10.

[2] Elmar Eisemann and Xavier Décoret. 2006. "Fast

Scene Voxelization and Applications." In

Proceedings of I3D'06: the Symposium on

Interactive 3D Graphics and Games. ACM, New

York, NY, USA. 71-78.

[3] Eric Enderton, Erik Sintorn, Peter Shirley, and

David Luebke. 2010. "Stochastic Transparency."

In Proceedings of I3D '10. ACM New York, NY,

USA. 157-164.

[4] Mach Kobayashi. 2001. “Deep Shadows.” Stupid

RenderMan Tricks.

[5] Tom Lokovic and Eric Veach. 2000. "Deep

Shadow Maps." In Proceedings SIGGRAPH

2000. ACM Press/Addison-Wesley Publishing

Co., New York, NY, USA. 385-392

[6] Lance Williams. 1978. "Casting Curved Shadows

on Curved Surfaces." In Proceedings of

SIGGRAPH '78. ACM, New York, NY. 270-274.

Figure 2: 512x512 Deep Shadow Maps of four volumes: Box, Bucky Ball, Crossed Rods, Clouds.

From left to right: 1) Entire Deep Shadow Map 2) Red Channel (depth at 10%) 3) Blue Channel (depth at 50%) 4) Green

Channel (depth at 90%) 5) Alpha Channel (Maximum Opacity at each pixel).

Brighter values represent greater depths and a larger maximum opacity

-6-

Figure 3: Renderings of a volumetric box that gets more transparent as the distance grows from the center. From left to

right: 1) The volumetric rendering without any shadowing. 2) Combination of the volumetric rendering and the sampled

opacity. 3) The opacity generated from sampling the DSM.

Figure 4: Renderings showing the shadow on a plane taken from a DSM.

From left to right: 1) Crossed rods 2) Bucky Balls 3) Box

