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Figure 1: Sample images rendered without and with photon-mapping

Abstract

This paper presents a hybrid photon-mapping approach for global
illumination . It represents a significant improvement over a previ-
ously described approach, both with respect to speed and accuracy.

Using OptiX for ray tracing provides a considerable improvement
in the speed of ray tracing and would keep synchronization to a min-
imum by using texture memory to cache access to the photon infor-
mation. [Parker et al. 2010]. Recent developments in processor
design towards multi-core systems do not favor the tree based pho-
ton map approach. So, instead we use the Spatial Hashing Method
[Fleisz 2009] to store and retrieve a photon map. Also, the den-
sity of photon maps is reduced by storing photons selectively on a
local required density criterion, while preserving the correct illu-
mination. At some selected locations with high photon density, we
pre-compute the irradiance to speed-up the final gather stage.

We use the method to simulate some global illumination scenes and
objects. Comparision with existing photon mapping techniques in-
dicates that our method gives significant improvement in speed with
the same or better accuracy of the scene.
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1 Introduction

Fast and high quality global illumination has been a goal of com-
puter graphics since a very long time. A huge variety of algorithms
have been developed since the past twenty-five years and the tech-
niques for global illumination have evolved a lot, from bidirectional
path tracing, radiosity to photon mapping [Kajiya 1986; Lafortune
and Willems 1993; Keller 1997; Henrik Wann Jensen 2000; Jensen
2009; Jensen 1996] The photon map method is an extension of ray
tracing that makes it able to efficiently compute caustics and soft
indirect illumination on surfaces and in participating media. As
[Christensen 2000] describes, photon mapping has the following
desirable properties for computation of Global Illumination

1. It can handle all combinations of specular, glossy, and diffuse
reflection and transmission (including caustics).

2. Since the photon map is independent of surface representa-
tion, the method can handle very complex scenes, instanced
geometry, and implicit and procedural geometry.

3. Itis relatively fast.
4. Ttis simple to parallelize.

Photon mapping method in the simplest way can be divided into
three steps: photon tracing, photon map sorting, and rendering. In
the photon tracing step, photons are emitted from the light sources
and traced through the scene and stored at the diffuse surfaces they
intersect on their path. In the next step, the stored photons are sorted
in such a way that they can be quickly accessed. The final step
consists of rendering, where specular reflections and incident illu-
mination on diffuse surface is computed. To compute the incident
illumination a final gather is performed by shooting many rays to
sample the hemisphere above the point. Each final gather is quite
time-consuming since numerous rays are shot.

With recent developments in processor design, parallel computing
has become the latest way of creating high performance applica-
tions. GPUs, with their enormous computation power are now eas-
ily available in a lot of consumer machines these days. [Fleisz
2009] To make use of the real potential of this processing power, all
the algorithms need to be parallelized. [nVidia Corporation 2009]

Parallelizing the task of photon mapping can be a real challenge
due to various reasons. A simple Photon mapping places an enor-
mous burden on the memory hierarchy. Rendering a normal image
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of a simple scene can require hundreds of Gigabytes of raw band-
width to the photon map data structure. This bandwidth is a major
obstacle to real-time photon mapping. Also, Jensen discusses par-
allelization of photon search in [Davis et al. 2000a], but it is a quite
straightforward way to do it and not too fast either. A data structure,
for storing the photon map, is usually a balanced kd-tree [Bentley
1975] and each radiance lookup needs to find the k nearest neigh-
bors in the kd-tree, which can be more costly than shooting sev-
eral rays. Therefore, the nearest-neighbor queries often dominate
the rendering time of a photon map based renderer. Moreover, all
threads have to access the same data structure, so it is difficult to
parallelize the tree construction.

2 Background and Previous work

To create a 2D image of a 3D world, the Ray Tracing technique
is used. The first ray tracing algorithm was introduced by Arthur
Apple [Appel 1968] and with some modifications is still used in
current ray tracers. The problem with Ray Tracing and Radiosity
is that they are not able to model all possible lighting effects in a
scene. Ray tracing only simulates indirect illumination by adding
constant ambient term in the lighting calculation, whereas Radios-
ity only simulates diffuse reflections, completely ignoring mirrored
surfaces. Therefore, approaches were made combining both the
methods, so that each technique would complement the other. How-
ever, such approaches are still not sufficient as they both fail to
model focused light effects, like caustics. Solutions to this problem
were presented by [Wallace et al. 1987; Rushmeir and Torrance
1990; Sillion et al. 1991] but they introduced other problems as
[Jensen and Christensen 1995] explains.

Jensen [Jensen 1996] introduced photon mapping, which has
since been expanded by several methods. All of these simulate
light transport forward along rays from emitters through multiple
bounces (i.e., scattering events) against the scene, and represent
the resulting incident radiance samples as a photon map of stored
photons at the bounce locations. At each bounce scattering is per-
formed by Russian roulette sampling against the surfaces bidirec-
tional scattering distribution function (BSDF). To produce a visi-
ble image, a renderer then simulates transport backwards from the
camera and estimates incident radiance at each visible point from
nearby samples in the photon map. Traditional photon mapping
algorithms, [Jensen 1996; Jensen 2009]; simulate transport by ge-
ometric ray tracing and implement the radiance estimate by gather-
ing nearest neighbors from a k-d tree photon map. This approach
represents a significant improvement of a previously described ap-
proach for global illuminations both with respect to speed, accu-
racy and versatility. In the first pass two photon maps are created
by emitting packets of energy (photons) from the light sources and
storing these as they hit surfaces within the scene. One high resolu-
tion caustics photon map is used to render caustics that are visual-
ized directly and one low resolution photon map that is used during
the rendering step. The scene is rendered using a distribution ray
tracing algorithm optimized by using the information in the photon
maps. Shadow photons are used to render shadows more efficiently
and the directional information in the photon map is used to gen-
erate optimized sampling directions and to limit the recursion in
the distribution ray tracer by providing an estimate of the radiance
on all surfaces with the exception of specular and highly glossy
surfaces. The results presented demonstrate global illumination in
scenes containing procedural objects and surfaces with diffuse and
glossy reflection models.

Since the process of final gathering was quite time consuming, in
[Christensen 2000] it was speeded up by pre-computing the irradi-
ance at selected locations. The irradiance is pre-computed at photon
positions, since the photons are inherently dense in areas with large

illumination variation. Storing the computed irradiance and surface
normal consumes about 28

Two approaches were investigated in [Steinhurst et al. 2008] for
reducing the required bandwidth for photon mapping : 1) reorder-
ing the kNN searches; and 2) cache conscious data structures.
An approximate lower bound of 15MB of bandwidth, reduced
from 196GB was demonstrated using a Hilbert curve reordering.
This improvement of four orders of magnitude needs a prohibitive
amount of intermediate storage. Two more cost effective algorithms
that reduce the bandwidth by one order of magnitude to 24GB
with IMB of storage were demonstrated. It was explained why
the choice of data structure cannot, by itself, achieve this reduction.
Irradiance caching, a popular technique that reduces the number of
required kNN searches, receives the same proportional benefit as
the higher quality photon gathers. The techniques used were more
amenable to hardware implementation and capture a large portion
of the possible gains. With the fast GPU memory bandwidth rates,
the kNN search reordering will enable the development of interac-
tive photon mapping hardware.

The two pass approach to Global illumination by Jensen is extended
to a 3 pass solution by [Peter et al. 1998]. In the first pass, particle
tracing of importance is performed to create a global data structure,
called importance map. Based on this data structure importance
driven photon tracing is used in the second pass to constrict a pho-
ton map containing information about the global illumination in the
scene. In the last pass, the image is rendered by distributed ray trac-
ing using the photon map. The photon tracing process, improved by
the use of importance information, creates photon-maps with an up
to 8-times higher photon density in important regions of the scene.
This allows a better use of memory and computation time resulting
in better image quality. The importance of a global illumination
algorithm is emphasized. It also shows that importance driven con-
struction of photon maps leads to better results. The photon maps
thus constructed possess a high density at the points where they are
used for global illumination calculation.

A modified photon mapping algorithm that is capable of running
entirely on GPUs is presented in [Purcell et al. 2003]. The im-
plementation uses breadth-first photon tracing to distribute photons
using the GPU. Methods to construct a grid-based photon map and
how to perform a search for at least k-nearest neighbors using the
grid, entirely on the GPU are demonstrated. The photons are stored
in a grid-based photon map that is constructed directly on the graph-
ics hardware using one of two methods: the first method is a mul-
tipass technique that uses fragment programs to directly sort the
photons into a compact grid. The second method uses a single ren-
dering pass combining a vertex program and the stencil buffer to
route photons to their respective grid cells, producing an approx-
imate photon map. They also present an efficient method for lo-
cating the nearest photons in the grid, which makes it possible to
compute an estimate of the radiance at any surface location in the
scene. Finally, they describe a breadth-first stochastic ray tracer
that uses the photon map to simulate full global illumination di-
rectly on the graphics hardware. All of the algorithms are compute
bound, meaning that photon mapping performance will continue to
improve as next-generation GPUs increase their floating point per-
formance. Also several refinements for extending future graphics
hardware to support these algorithms more efficiently is proposed.

In [Suykens and Willems 2000] they introduce a method to control
the density of photon maps by storing photons selectively based on
a local required density criterion and while ensuring a correct il-
lumination representation in the map. This reduces memory usage
significantly since less photons are stored in unimportant or over-
dense regions. Benefits of the original method like, the ability to
handle complex geometry and materials are preserved. Results for



caustic photon maps and global photon maps representing full illu-
mination show a decrease in number of photons of a factor of 2 to 5.
The required density states how accurate the photon map should be
at a certain location and determines how many photons are needed
in total. They use only a fixed number of nearest photons in the
reconstruction.

Two data layout techniques for dynamically allocated data struc-
tures are mentioned in [Truong et al. 1998]: field reorganization,
and instance interleaving. The application of these techniques may
be guided by program profiling. This allows significant cache be-
havior improvements on some applications. To support instance
interleaving a specific memory allocation library called ialloc was
created. An ialloc-like library may be of great help in a toolbox for
performance tuning of general-purpose applications. Field reorga-
nization consists in regrouping together the most frequently used
fields of a structure to fit them in a single cache line. This may re-
duce cache line space wasted. However there are generally only a
few fields frequently used in a structure, not enough to fill a cache
line. Therefore instance interleaving would be helpful here. It con-
sists in grouping the most frequently used fields of several instances
to fit them into the same cache line. Instance interleaving can be an
efficient way to improve the memory behavior and the overall per-
formance of the application.

In [Fabianowski and Dingliana 2009b], they first present a compact
representation for BVH and then demonstrate and analyze its appli-
cation in ray tracing and photon mapping. They give a compact rep-
resentation for binary hierarchies of Axis aligned bounding boxes.
By eliminating only redundant information, full bounding tightness
is maintained while reducing the BVHs memory footprint by 43-
50Image space photon mapping described in [McGuire and Lue-
bke 2009] achieves real-time performance by computing the first
and last scattering using a GPU rasterizer.

In [Fabianowski and Dingliana 2009a] they present a highly paral-
lel photon mapping algorithm that utilizes CUDA architecture and
computes diffuse and specular indirect lighting at interactive frame
rates, but the geometry is static. By handling diffuse reflections
using photon differentials, footprints are generated at all photon
hit-points. This enables illumination reconstruction by density es-
timation with variable kernel bandwidths without having to locate
k-nearest photons hit first. The BVH builds termination criterion is
automatically tuned to the scene and illumination conditions using
a special heuristic.

In [Havran et al. 2005] they accelerated the search for final gath-
ering by reorganizing the computation in reverse order. Using two
trees, the position of photons as well as final gather rays is orga-
nized spatially. By doing this the computation time for normal
photon mapping is reduced by more than an order of magnitude,
and the algorithmic speedup comes from the logarithmic factor of
searching using trees and highly coherent access pattern to the data.
It requires more memory but only small portion of data needs to be
in main memory. This idea was again utilized in [Singh 2006]
where they proposed a pipelined architecture for fast global illu-
mination, which exploited fine-grain pipelining, parallelism, effi-
ciency and good cache behavior. This paper was then revised with
small changes in [Shawn Singh 2007]

[Grauer-Gray 2008] took an initiative in describing Photon-
mapping entirely on a GPU using CUDA. It goes gradually from
nave implementation to several modifications for improved render-
ing and effects. [Fleisz 2009] describes a spatial hashing approach
instead of the usual tree based approaches and compared it with the
benchmarks to display that the spatial hashing approach was much
faster with the same image quality.

In order to reduce the cache misses and have higher cache utiliza-

tion [Moon et al. 2010] propose an approach to compute a coherent
ordering of rays, using hit points between rays and scene as ray or-
dering measure. They show that the approach is quite modular and
produces a magnitude of improvement in performance not only in
photon mapping but various other models and machines with dif-
ferent cache parameters too.

3 Implementation

Like any other rendering technique, the only goals of Photon-
mapping are: to be as accurate as possible while achieving frame-
rates that could render in real-time. In our implementation of pho-
ton mapping, we perform the entire set of computations on the
GPU, and to achieve the best performance we utilize OptiX Ray
tracing engine and the OptiX API. Due to the various limitations
for OptiX we implement a set of approaches for different phases
of photon mapping and compare them to the traditional or cur-
rently popular approaches, concluding our combination gives the
best frame rates for photon mapping.

OpenGL and Direct3D were built on the basis that programmable
rasterizations can be implemented using a small set of operations.
The conception of OptiX [Parker et al. 2010] was based on a sim-
ilar analogy applied to implement fast ray-tracing. With the devel-
opment in ray tracing it has been possible to perform real-time ray
tracing, but when it becomes a part of a more complex rendering,
the overall rendering time is far from real-time. NVIDIA released
OptiX, a ray tracing engine in Nov09. [Parker et al. 2010]. The
OptiX engine focuses exclusively on the fundamental computations
required for ray tracing only and avoids embedding rendering spe-
cific constructs, and demonstrates that most ray tracing algorithms
can be implemented using a small set of light-weight programmable
operations. It provides a very simple and abstract ray tracing execu-
tion model with the most accustomed execution mechanisms and a
domain specific compiler. Moreover, OptiX uses a mega-kernel ap-
proach [Aila and Laine 2009] which minimizes kernel launch over-
head. Using OptiX for photon mapping we can keep synchroniza-
tion to a minimum and use texture memory to cache access to the
photon information.

With all these advantages we opted to use OptiX for our implemen-
tation but using it entirely, for all the phases of the photon mapping
is not feasible due to the following limitations. The OptiX buffer
mechanism currently does not have extensions for append, reduc-
tion and sorting value operations. The OptiX acceleration structures
only support triangle data. It would have been better if the acceler-
ation structure was generalized, allowing additional programmable
operations or provide a mechanism for the user to implement their
own acceleration structures. These reasons, create a major impact
over the accuracy and speedup of photon mapping, hence we fuse
other techniques with it to produce close to accurate global illumi-
nation in real-time.

OptiX in Photon Mapping

An OptiX implementation essentially requires two things: a ray
generation program and a material program, which gets called when
aray intersects geometry. Exactly as the words sound, the ray gen-
eration program generates rays and is called for each pixel of the
programs dimensions. The ray cast by this program traverses the
scene for intersections, and once a ray intersects geometry it calls
the material program. In a classic ray tracer, the material program
is responsible for shading. In our case, it is responsible for the com-
putations and creation of the photon map. For all the phases of pho-
ton mapping various such programs are required such as program
to read scene geometry, ray generation, ray-hit program, ray-miss
program, photon pass program, photon gather program etc.



Different acceleration structures have their own advantages and
drawbacks. Furthermore, different scenes require different kinds of
acceleration structures for optimal performance. The most common
tradeoff is construction speed vs. ray tracing performance. OptiX
has a few built in acceleration structures, which could be used in
the program, but we build our own a spatial hashing technique for
storing and retrieving data in a photon map. The Spatial Hashing
method provides faster recording and retrieval in cases when there
is large amount of data involved. Hence we use it in Photon Map
creation and access. At other places where acceleration structures
are required, such as for scene objects and bounds storing, the built
in kd-tree acceleration structures are used, since they are more suit-
able and faster.

The Photon Mapping Implementation

Given the time limitations and other restrictions, the concepts have
been implemented as modifications in an already existing open
source project MNRT http://www.maneumann.com . The compari-
son of our approach to the existing approach in the source code has
been described in the last section.

The implementation can be divided into distinct components as
shown in the figure below. Photons are sent out from direct light
sources and traced thorough the scene. The objects of the scene are
stored in the inbuilt OptiX Kd-tree acceleration structure. For each
photon-surface interaction the position, incoming direction and flux
of the photon is recorded in a photon map, which would technically
be a spatial hash table. These photons can then be used to estimate
the indirect illumination using density estimation. The detailed spa-
tial hashing implementation is described in a separate section be-
low.
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Figure 2: Stages of Photon mapping

To handle direct lighting, ray tracing techniques are used. Sec-
ondary rays are traced in a similar manner. At every point of in-
tersection, the indirect illumination has to be calculated, which is
done using the photons of the photon maps to estimate the incom-
ing radiance from indirect light sources. To improve the quality of
this process a final gathering is applied, where gather rays are sent
out from each sample point into random directions over the sam-
ple point. The incoming radiance due to indirect illumination from
the rays direction is estimated for each gather ray, and is used to
estimate the incoming indirect illumination using Monte Carlo in-
tegration. To have a proper image and avoiding noise it is important
to use enough number of gather rays. Creation and processing of
rays is handled by the OptiX API.

Using modern hardware and a framework like OptiX, the efficiency
of Ray tracing has increased by bounds. Having to include dynamic
geometry requires a rebuild of the data structure, that stores the
ray-object intersection, for each frame. Hence, we use a Spatial
Hashing method to store and retrieve these intersections in a Hash
table, which in this context would mean a photon map. [Wang et al.
2009] propose two photon maps: The caustics photon map, which
stores all photon interactions that were reflected in a specular way
before hitting the surface the interaction represents. Caustics can
be captured by performing the density estimation directly without

final gathering. All other photon interactions are stored in the global
photon map, which is queried only by the use of final gathering.
Local photon density is required for precise density estimation. A
fixed query radius for the range search can blur out sharp caustics
patters. [Jensen 2009] proposed kNN search to look for the closest
k photons only. The use of spatial hashing data structure for storing
photon data enables fast retrieval of data.

The final gathering stage collects all the sample points for render-
ing. This process can be speeded up by reducing the total number
of sample points where we have to execute the final gathering algo-
rithm. citeWardRub88 proposed the idea to sparsely sample the in-
direct illumination, observing that indirect illumination in a diffuse
environment changes in a smooth way. A sample selection scheme
can be used to choose all interpolation samples within a single pass,
where the first step would select initial samples using an adaptive
approach. The shading points (points of intersection) are classified
according to the pixel they represent based on a geometric variation
metric. It captures illumination changes by considering the geo-
metric properties of the scene, which would mean more samples
are assigned to regions of high geometric variation. The selection
of samples can be improved by using a clustering algorithm like
k-means iteratively.

To improve temporal coherence for sequences of images, it is advis-
able to retain sample points from the previous image for generating
the next image. It improves performance and avoids possible flick-
ering. The new shading points can be classified to the old shading
points and only those that have a large error difference would be
considered for gathering new samples.

Spatial Hashing:

Creation of a photon map data structure is one of the most signif-
icant tasks in photon mapping. For performance reasons this data
structure is usually a kd-tree. [Bentley 1975], which helps in speed-
ing up the photon search. However, the process of constructing
the tree is quite difficult to be done in parallel since all the threads
have to access the same data-structure. It puts a lot of synchroniza-
tion overhead and defeats the main purpose of parallel processing.
Davis et.al. discuss parallelization of photon search in [Davis et al.
2000b], but it is not one of the best solutions to the overall problem.

Tree construction and traversing has a significant problem which is
it highly irregular memory access pattern. To find photons in a kD-
Tree, lots of scattered memory reads have to be performed, which
is not at all optimal. The interdependent operations that have to be
performed during tree traversal entail that the hardware is not able
to hide these memory latencies.

In his masters thesis Martin Fleisz describes a new photon map-
ping technique for GPUs. This approach is based on spatial hash-
ing for organizing the photons in the photon-map. It is claimed that
this technique uses the parallel computation power more efficiently
than the other techniques. So, the main goal would be to use as
many threads as possible for the photon map creation and photon
search, while trying to avoid any synchronization and having mini-
mum scattered memory access.

The Spatial hashing approach is based on the CUDA particles pa-
per [Green 2008]. It uses a hash table, that allows us to look up
a set of potential neighbor photons in O(1) time and which can be
easily created and accessed in parallel. Each entry in the hash table
references a spatial cell in the scene (# 1 to 16 in fig 1), containing
photons. So, to find the right cell, we have to calculate the hash
value for the sample point and locate the right cell using the hash
table.

Since the sample point can be located close to an edge of the cell,
we also need to process photons from the neighboring cells in all
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Figure 3: Immediate lookup of photons in the same cell
as the sample point x using hash table

three dimensions. Finally we collect the closest k photons, using a
sorted list that we implement using the fast on-chip shared mem-
ory. Photon collection has a time complexity of O(n), where n is
the average number of photons in a cell and its neighbors. Photon
maps would rarely contain more than a million photons, so there is
no problem with the time complexity due to extremely large pho-
ton maps. Moreover, the number of photons in a cell grows only
at a fraction of the actual photon map size since photons will be
distributed over many cells.

The algorithm has several kernels executed after each other. The
first kernel would calculate the hash value for each photon in the
photon map and store the resulting values in an array along with
the associated photon index. The next step is to sort the array based
on the hash values, suing radix sort from [Grand 2007]. The final
step would be to find start indexes for each entry in the sorted array
to create the hash table.
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Figure 4: Photon hashes are calculated from their photons(left),
final hash table(right)

Since the sorted list contains only a reference ID to the actual pho-
ton data in the photon table, it would be an overhead. To get rid
of it, we reorder the photons data according to their position in the
sorted array. Now, simply by looking up its index in the hash table,
we can access the data of the first photon in a cell directly and the
other photons can be easily iterated in sequence. The array of the
reordered photon data is finally bound to texture memory. Texture
lookups are cached and the sorted sequential order will improve the
coherence when accessing the photons during the photon search
stage. Since all hashing functions require a grid position as input,
the grid position p for a photon with position p can be calculated
from:

p=Ip- 7] (1)

Where the scaling vector 5 specifies the scaling factors for a cell
in each dimension. p can now be used to calculate value for our
new photon position. Green suggests two different hash functions
in his paper. The first one calculates the linear cell id for the given
grid position p using the following equation:

frash(p) = pz-gridSizeY - gridSizeX + py - gridSizeX + px
@)

The gridSize factors in the formula specify the number of grid
cells along x, y and z axes. Alternatively, Green suggests using
hash function, based on the Z-order curve [Morton 1966] to im-
prove coherence of memory access. We can use the sampling points
coordinate to calculate its grid position and hash value, in order to
find the cell it is located in. All we have to do is to collect the clos-
est k photons from all neighboring cells and we are able to calculate
our radiance estimation.

Spatial Hashing implementation

The first step would be to specify the world origin, which would
be the minimum coordinate values for the x, y and z dimension,
stored in our photon-map, since we support photons with nega-
tive coordinate values. For the grid position calculation we add the
world coordinates to the input position to transform all photon posi-
tions into positive coordinate system. We use the maximum photon
query radius for the grid cell size therefore, our scaling vector s-;, is
(1/rmax 1/rmax 1/rmax). Finally, we calculate the number of grid
cells along each axis, using the cell size and the bounding box ex-
tents of the photon map. To ease the handling of border cells, we
add two grid cells along each axis, allowing us to avoid any expen-
sive checks, otherwise required for clamping grid positions. The
last step during the initialization phase is the creation of the neigh-
bor offset lookup table. The table is used to calculate the neighbor
cells grid positions during the photon search. Fig 3.
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Figure 5: After calculating the hashes the photon
list is sorted and the hash table is created

Then we execute the first kernel which creates the unsorted hash
value array, where each entry also contains hashed photons index.
After sorting the array based on the photon hashes, using the radix
sort algorithm, we then have to determine the start photon index
for each grid cell, to create the final hash table. This is done by
executing a kernel function for each entry in the sorted array that
checks, if the previous photons hash value is different from its own.
If it is, we know that the current entry marks the start of a cell and
the previous entry marks the end of another cell, which can be ef-
ficiently exchanged using the GPUs on chip shared memory. After
the resulting indexes have been written to our hash table we reorder
the photons to improve memory access coherence and finally we
have a hash table that can be indexed using a points hash value and
a sorted photon table.

To find the required photons, we execute our parallel search kernel
for each point in query set. First, calculating the query points grid
position and initializing our photon list to empty and then iterate
through the 27 neighbor cells of interest, using the offsets from our
pre-computed neighbor offset table. We simply add the values from
the table to the current grid position and use that new grid position
for the hash calculation. We use a simple sorted list approach for
collecting photons. As long as the list is empty, we just keep adding
photons until it is full. If we find a closer photon and the list is al-
ready full, then we insert that photon to its sorted position in the list
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Figure 6: Calculating neighbor cells’ grid positions
using the values from the offset lookup table

and shift all the following photons back, losing the last item. A heap
data-structure might give a better performance for such storage. Af-
ter the kernel finishes the processing of all the cells, the remaining
k photons in the shared memory list are written to the result array,
stored in global memory. Spatial Hashing Images courtesy: [Fleisz
2009] Photon-Pipeline Image courtesy: [Neumann 2010]

4 Results and Comparisions

In order to validate and compare our technique we use a few mea-
surements as explained below. We use Spatial Hashing only for
the construction and retrieval of photon map. At the other places
requiring an acceleration structure we use a Kd-Tree.

Comparision: Construction Time Performance

Benchmark Speedup: Kd-Tree Construction for SimpleDragon
scene

Warmup Runs: 10

Runs: 200

Total Time: 38561.992 ms

Average Time: 192.810 ms for each run

Benchmark Speedup: Spatial Hashing for SimpleDragon scene
‘Warmup Runs: 10

Runs: 200

Total Time: 35702.654 ms

Average Time: 178.513 ms for each run

As seen in the comparision above, the spatial hashing technique
is much faster than the Kd-Tree approach. It is seen that the Kd-
Tree construction cost increases with the amount of photons in the
photon map, whereas the hash-table creation takes almost constant
time. This is because the hash table creation is fully parallelized,
beginning with the hash calculaiton for each photon and ending
with the hash table creation and the re-ordering of photons. In con-
trast the Kd-Tree technique iteratively executes several kernels for
scan and split operations at each tree level. Excessive kernel invo-
cation performs implicit synchronization, since a GPU can run only
one kernel function at a time.

Comparision: Frame Rate

We compare the overall frame-rates of different scenes achieved for
rendering the complete scene by both the techniques

It is clearly seen above that the average frame rate of Spatial Hash-
ing is higher than that achieved by Kd-Tree technique, for the same
reasons mentioned above.

Comparision: Ray Tracing rates

Now we compare the time for ray tracing taken by CUDA and Op-
tiX engines.

Table 1: Comparing frame-rates from different data-structures

Scene Data-Structure ~ Avg Rate Range
Cardioid Kd-Tree 1.21fps 1.1to 1.4 1ps
Cardioid Spatial Hash 0.7fps 0.4t00.9 fps

Ring Kd-Tree 0.2 fps 0.2 fps

Ring Spatial Hash 0.6 fps 0.6t0 0.8 fps

Room Kd-Tree 0.2 fps 0.2 fps

Room Spatial Hash 1.2fps 1.0tp 1.2 fps

Simple Box Kd-Tree 0.3 fps 0.3 fps
Simple Box Spatial Hash 141fps 1.0to 2.1 fps
Simple Dragon Kd-Tree 0.1 fps 0.1 fps
Simple Dragon Spatial Hash 0.6fps 0.6t00.7 fps
Sponza Kd-Tree 0.2 fps 0.2 fps
Sponza Spatial Hash 0.7fps  0.6t0 0.9 fps
Sibenik Kd-Tree 0.1fps 0.1t00.2 fps
Sibenik Spatial Hash 0.8fps 0.5t00.9 fps

Table 2: Comparing time taken for ray tracing

Scene Ray Tracing Engine  Trace Time
Cardioid CUDA 49 ms
Cardioid OptiX 12 ms

Sponza CUDA 119 ms
Sponza OptiX 15 ms
Sibenik CUDA 132 ms
Sibenik OptiX 18 ms

The OptiX engine focuses exclusively on the fundamental computa-
tions required for ray tracing only and avoids embedding rendering
specific constructs, and demonstrates that most ray tracing algo-
rithms can be implemented using a small set of light-weight pro-
grammable operations. It provides a very simple and abstract ray
tracing execution model with the most accustomed execution mech-
anisms and a domain specific compiler. This is the reason it gives
much higher ray tracing speeds than a normal cuda ray tracer.

5 Conclusion

The goal of the project was to come up with an implementation
of Photon mapping which would enable real-time rendering. We
began looking at exisitng papers published for photon mapping and
how they exploited parallelism. After analyzing the strengths and
weaknesses of various techniques, we concluded that using a hybrid
approach would avoid the previously discovered shortcomings. We
discovered that OptiX is a recent advancement in the field of Ray-
tracing, and it would be beneficial to put its potential to our use. Our
results concluded that using OptiX, would speed up the process of
ray-tracing and hence the photon mapping, by leaps.

Another optimization that we delved into was for the creation and
retrieval of photon map data. We observed that if a Spatial Hashing
technique was used for creating hash-tables to store photon maps
and retrieve them, it gives a considerable amount of speedup. The
construction time was observed to be greatly reduced compared to
the kD-Tree solution. The Spatial Hashing technique works well
with both the global as well as caustic photon maps.

We display in our results, the summary of our observations and
proving that if the mentioned approach was used for photon map-
ping, it is possible to achieve very high frame-rates.



6 Future Work

Due to a limited time frame, it has not been possible to incorporate
the entire approach in a single project. Due to the incompatibility of
OptiX API with the CUDA API, the desired goal was not achieved.
It would be interesting to know the actual frame-rates this hybrid
approach can achieve.

There is a lot of scope in Photon Mapping and new implementa-
tions, acceleration structures, APIs, ray tracing engines etc. would
definitely benefit it.

Future developments in graphics hardware will also have an impor-
tant impact on Photon mapping techniques.
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