
OptiX-based Raytracing with Volumetric Effects

Lawrence Sebald
University of Maryland Baltimore County

Abstract

In the past decade, the GPU has quickly become a
powerhouse of computation. Even commodity machines have
GPUs capable of hundreds of gigaflops of computation. Most
of the computational power that exists in the GPUs of today
is within the shading units of the device. These shading units
are highly optimized SIMD floating-point engines that can be
used for various types of computation, not just simply
shading traditional Z-buffer rendered scenes as they were
originally intended.

Nevertheless, traditional Z-buffer based rendering is still the
most common operation performed on GPUs today.
Computer games have taken advantage of GPUs by pumping
greater amounts of polygons into scenes to produce more
lifelike images. Recently, work has been done in the area of
GPU-based real-time raytracing. Raytracing has many
advantages over traditional Z-buffer based rendering in
visual quality; however, its computational complexity has
limited its applications in real-time rendering. This paper
builds on the work done in real-time raytracing to add
randomized volumetric effects to the scenes, in an attempt to
add effects such as smoke and fog in a visually pleasing
manner.

1. Introduction

The computing landscape has changed greatly over the past
several years. As recent as five or so years ago, in the
consumer market, only the higher end enthusiast machines
would have multiple CPU cores, often provided by two
separate CPUs. These machines, while they would have
GPUs, had nowhere near the computational power seen
today. Now, one would be hard pressed to find a machine that
did not have at least a dual-core CPU, even in the fairly low
end laptop space (ignoring the space of ultra-low power
laptops and netbooks). This has prompted a paradigm shift
away from single-threaded monolithic programs into multi-
and many-threaded programs designed to use this additional
CPU horsepower.

In line with the shift from single-core to dual-core general
purpose CPUs, GPUs have, likewise, seen a shift to having
more computational cores. The initial impetus for the
expanding of the number of cores in GPUs was for real-time
shading applications. In the past ten years, the landscape of
real-time visual programs has gone from a fixed-function
pipeline to a programmable pipeline with many options to be

tweaked by programmers. Real-time shading led to vast
improvements in the visual quality of games and other
applications, without decreasing the frame rate.

As these shading cores are, at their root, highly optimized
floating-point computational engines, it is only natural that
they would be used for more general purpose computation.
At first, general purpose computation on a GPU had to be
molded to fit the shader-based pipeline through OpenGL or
DirectX; however, since that time, frameworks have begun to
spring forth that make matters simpler for general purpose
computation. NVIDIA’s CUDA framework was the first of
these to gain mass acceptance in the field; however, other
frameworks not limited to NIVIDA’s GPUs, such as
OpenCL and Microsoft’s DirectCompute have recently been
implemented. These frameworks can be used to create
general purpose programs, but they can also be used to
accelerate classic rendering techniques other than Z-buffer
based rendering.

Various work has been done in the recent past on GPU-based
raytracing. Raytracing is essentially an embarrassingly
parallel algorithm that can benefit from the many-core nature
of GPUs. While the images produced by such programs are
visually pleasing and do run at interactive speeds, they often
lack many effects that can add to their visual appeal and
realism. Notably, volumetric effects like fog are all but
completely absent from consideration.

One important factor in generating convincing volumetric
effects is having appropriate noise backing the rendering.
Noise is used to bring variation to the volume data. While it
is possible to fully define a volumetric effect such as fog as a
series of voxels imported into the program from a data file,
this is suboptimal as it is possible to randomly generate the
data at runtime. Visually interesting and appealing fog
effects, for instance, can be generated by combining 2D
noise, such as that introduced by Perlin [Perlin 1985], with a
simple falloff function for height. Random generation of the
data has other advantages, such as the potential for making
the visual experience different each time the program is run,
which raises its appeal as well.

This paper has two primary contributions. The first of these is
an improvement upon existing pseudorandom number
generation techniques for noise data on a GPU. This paper
explores a PRNG based on the Tiny Encryption Algorithm

(TEA) and how to improve it across multiple-GPU systems
so that each GPU generates a unique stream of
pseudorandom numbers, regardless of the input stream. In
addition, this paper explores the use of noise based on these
pseudorandom numbers to generate simple volumetric effects
in a GPU-based raytracer using OptiX.

The remainder of this paper is organized as follows. Related
work on GPGPU computation, GPU-based raytracing, and
GPU PRNGs is presented in section 2. The implementation
details of the improved TEA-based PRNG, as well as the
OptiX-based raytracer, is presented in section 3. Section 4
presents results and performance data. Future work is
presented in section 5, and conclusions are presented in
section 6.

2. Related Work

2.1. General Purpose GPU Computation
Many frameworks have been proposed for using the
computational power of the GPU for general purpose
computations. The first widespread framework for general
purpose computation on GPUs was the OpenGL Shading
Language [Kessenich et al. 2004]. The OpenGL Shading
Language (GLSL) was primarily designed for real-time
shading of Z-buffer rendered scenes but found acceptance as
a general purpose computational language as well, through
its support of a SIMD programming paradigm. More
recently, frameworks have begun appearing that focus
entirely on the general purpose aspect and do not constrain
the programmer to a graphics pipeline. The most widespread
of these is NVIDIA’s Compute Unified Device Environment
(CUDA), introduced in 2006 [NVIDIA 2010]. CUDA allows
programmers to think in terms more natural than graphics
shaders for computation. Specifically, CUDA allows one to
write so-called kernel functions that perform some
computation. These kernel functions are to be executed on
many threads at a time sectioned off in a grid. However, one
must pay careful attention to how memory is accessed, as the
memory access pattern can negatively affect the performance
of the application.

CUDA is a very good model for general purpose
programming on the GPU; however, it is limited in scope.
CUDA is only available for GPUs from NVIDIA. To rectify
this, Apple and the Khronos group proposed the Open
Compute Language (OpenCL) as a standard compute
framework for GPUs [Khronos Group 2010]. The design of
OpenCL closely resembles that of CUDA, as NVIDIA also
was involved in the development of OpenCL. Unlike CUDA,
OpenCL is available for use without an NVIDIA GPU, with
implementations provided by Apple, Intel, AMD, and IBM.

2.2. Real-time GPU-based Raytracing
There has been a recent interest in work on GPU-based real-
time raytracing algorithms. Among the early work on this
subject, a modified KD-tree algorithm found use [Foley and
Sugerman 2005]. Specifically, the algorithms kd-restart and

kd-backtrack were found to be quite helpful in developing
fast GPU-based raytracers. These algorithms are noteworthy
as they do not require the recursive structure that most
raytracing algorithms require. GPU compute languages all
disallow recursion due to a lack of a hardware supported
stack on the architectures. Various other work has also been
done on KD-Tree based acceleration of GPU raytracing
[Reiter Horn et al. 2007; Zhou et al. 2008].

In addition to KD-Tree based acceleration, other acceleration
structures have been investigated for GPU-based raytracing.
Bounding Volume Hierarchies have found use and have been
found to be quite suitable for acceleration of a GPU-based
raytracer [Carr et al. 2006; Günther et al. 2007]. In addition,
several more exotic approaches have been tried, including
using the GPU’s Z-buffer rasterization to accelerate
raytracing intersection operations [Chen and Liu 2007].

Recently, NVIDIA has proposed a system called OptiX,
which is developed in CUDA to provide a framework for
easy GPU-based raytracing [Parker et al. 2010]. The OptiX
framework was designed to help bring interactive raytracing
to programmers in a simple-to-use manner.

2.3. GPU Random Numbers
Generation of random numbers on a GPU has been
researched by many. Random numbers have many uses in
graphics related applications. Among these uses are
generation of noise for texture synthesis and various shading
effects. While it is possible to generate noise into a texture on
the CPU and upload that to the GPU, this is often suboptimal.
Doing so stresses the texture fetch unit of the GPU and can
cause slowdowns if a large amount of noise is needed. Thus,
it is helpful to have a completely computational solution that
does not stress the GPU’s memory or texture fetch units.

Many techniques for random number generation have been
ported from CPU-based systems to GPUs, and there is large
amounts of information about the techniques that have been
tried with success. One area that has seen research is in the
use of cryptographic and hashing algorithms to generate
random numbers. Often, the purpose of cryptography is to
make real data indistinguishable from random noise
(especially in the area of disk encryption), thus encryption
algorithms seem well suited to the task of generating random
numbers.

Among the work that has followed the path of using
cryptography to generate random numbers, many algorithms
have been tried. Olano’s mNoise algorithm, for instance, uses
the Blum Blum Shub pseudorandom number generator to
generate the random numbers needed for quality noise in
very few instructions in a GPU fragment shader [Olano
2005]. Following this, Tzeng and Wei implemented a
pseudorandom number generator on GPUs using the MD5
hashing algorithm as its base [Tzeng and Wei 2008]. This
approach vastly improved the randomness of the numbers
generated over the BBS-based approach of Olano. However,

this increase in quality was accompanied by a decrease in the
performance. Even the most highly optimized MD5-based
PRNG presented by Tzeng and Wei took over 28 times the
amount of time in their tests to generate a 4096x4096 patch
of random data when compared to BBS.

Zafar et al. proposed using the Tiny Encryption Algorithm to
produce high-quality random numbers on the GPU with
higher speed than MD5 [Zafar et al. 2010]. TEA is generally
used in encryption with 32 rounds; however, adequate
random numbers for noise generation can be generated with
as few as two rounds of the algorithm. In comparison, the
MD5-based approach was found to require at least 6 rounds
before adequate randomness for noise was found. Zafar et al.
demonstrated that a 2-round TEA PRNG compares quite well
in performance to the BBS approach of Olano; however, the
results are of greater quality. Higher quality numbers can be
obtained by performing additional rounds of TEA, which
makes the algorithm quite flexible and able to be tailored to
the application.

3. Implementation

To implement the raytracing application and the random
number generation driving the volumetric rendering,
NVIDIA’s CUDA was used. CUDA is perhaps the most
widespread GPGPU programming environment at the current
time, even though it is limited to supporting only NVIDIA’s
GPUs. OpenCL was a possibility; however, there is not as
full of a support infrastructure available with OpenCL as
there is for CUDA. Perhaps the most important infrastructure
piece to this project is NVIDIA’s OptiX framework, which is
built on top of CUDA. Indeed, the raytracing application is a
modification of one of the OptiX SDK example programs to
add the volumetric fog effect that demonstrates the
techniques described herein.

All benchmarking for the raytracing application was
performed on an Apple MacBook Pro using Mac OS X
10.6.7. The particular machine used is a mid 2010 model,
featuring a 2.66 Intel Core i7 (Arrandale) processor and 4GB
of RAM. The machine has two GPUs that the OS switches
between as applications demand it. This application only
makes use of the NVIDIA GeForce GT 330M GPU, as it is
based on CUDA. This particular GPU has 512 MB of
dedicated RAM and is run on a PCI Express x16 bus. The
GeForce GT 330M has a total of 48 unified shader cores
which are used for CUDA computation.

The version of the CUDA toolkit used for this research was
3.2, with CUDA driver version 3.2.17. The GPU driver was
version 1.6.26.31 (256.00.35f05). In addition, version 2.1.0
Release Candidate 2 of the OptiX SDK was used. During the
course of this research, NVIDIA released Version 4.0 RC2 of
the CUDA toolkit and the corresponding CUDA driver;
however, for consistency of results, these architectural pieces
were not updated.

Figure 1: Initial version of the tutorial application used to
develop the raytracing application for this research. This is
the tenth iteration of the “tutorial” example from the OptiX

SDK.

3.1. Implementation of the Raytracing Application
The raytracing application that was enhanced with
volumetric effects as a part of this work is based on an
example program provided with the OptiX SDK.
Specifically, the “tutorial” application was used. This
application is used by the OptiX SDK documentation to
teach application developers how to add features to a
raytracing application using OptiX one step at a time. For
this research, the tenth iteration of the tutorial was used, and
all nonessential pieces to that version were removed. The
tenth tutorial draws a reflective box and a translucent
crystalline object on a floor, with an environment map in the
background. Both the reflective box and the floor have
procedurally generated textures applied to them, as is shown
in Figure 1.

Once the tutorial program was adequately stripped down to
remove anything other than the tutorial that was modified,
the framework for the volumetric effects were added. To this
end, OptiX requires a set of material programs to be defined.
A set of material programs consist of two CUDA device
functions. The first, and simplest of these two functions is
called the “any hit” program. The any hit program is written
to be called for calculations involving shadows. It should be
fast and easy to compute, as it can be called quite often in the
execution of a scene. The any hit program for the volumetric
fog that is demonstrated simply ignores the intersection with
the object containing the fog. While this is not completely
physically accurate, it does reflect what the author generally
expects from fog. The second material program is called the
“closest hit” program. The closest hit program is responsible
for calculating the full model of the material in use on the
primitive that has been hit by a ray. Closest hit programs can
cast additional rays (for reflection or refraction, for instance),
and must calculate the full contribution of the ray that is
currently being cast to the visual output. For the volumetric
fog effect, a very simple “refraction” is performed through
the fog layer to determine what the ray would hit underneath

Figure 2: Raytracing application with added volumetric fog
effect. This image was rendered with 2 rounds of the Tiny
Encryption Algorithm used to generate noise for the fog.

the fog and calculate its contribution to the scene. After
performing this step, the actual fog rendering is performed by
stepping the incoming ray through the volume until it exits
the volume. The step size can be controlled by setting a
variable in the material program. The contribution of each
step is determined by a TEA-based noise function in the XZ
plane and a linear falloff in the Y direction. The TEA-based
noise is detailed further later in this section. The resulting
program is shown in Figure 2.

The fog is implemented inside of a box primitive, which was
provided with the tutorial example. In this application, the
box is the same dimensions in the XZ plane as the floor
underneath, however it, unlike the floor, has height in the Y
direction. In the example shown in Figure 2, the fog
primitive has a height of 2 units (to give context, the
reflective box has a height of 7 units).

3.2. Implementation of Pseudorandom Numbers
To generate gradient noise, a pseudorandom number
generator is used to generate some data. While many
different PRNGs are available, one that has been studied on
GPUs for efficient implementation is based on the Tiny
Encryption Algorithm. Zafar et al. demonstrated that TEA is
capable of generating relatively high quality pseudorandom
numbers on a GPU with relatively little code and thus with
high performance. A simple implementation of TEA with
CUDA is shown in Figure 3.

This simple implementation has one major drawback that this
research hopes to address. Namely, how to choose and
appropriate key to perform the encryption. This key must be
chosen such that it generates data that appears to be random.
In the research of Zafar et al., the key used was chosen
somewhat arbitrarily, and no further explanation is given for
why that key was used over any other key. While many
methods are available for generating a cryptographically
random key, none seem well suited to generate such a key on
a GPU.

__device__ uint2 tea(uint2 v, uint4 k) {
 unsigned int v0 = v.x;
 unsigned int v1 = v.y;
 unsigned int sum = 0;
 unsigned int delta = 0x9E3779B9;
 int i;
 uint2 rv;

 for(i = 0; i < NROUNDS; ++i) {
 v0 += ((v1 << 4) + k.x) ^
 (v1 + sum) ^ ((v1 >> 5) + k.y);
 v1 += ((v0 << 4) + k.z) ^
 (v0 + sum) ^ ((v0 >> 5) + k.w);
 }

 rv.x = v0;
 rv.y = v1;
 return rv;
}

Figure 3: CUDA implementation of TEA. Input is two 32-bit
words containing the data to be encrypted (v) and four 32-bit

words containing the key to use for the encryption (k). The
result is the encrypted data. Note that for performance, the

loop should be unrolled.

In addition to the key being random, it would be desirable for
a system containing multiple GPUs to be able to have
separate random streams for each GPU. The initial work of
Zafar et al. would generate the same random number given
the same input on all GPUs if run in parallel. This is quite
undesirable for some types of applications, even if the
objective is only to generate random data for a noise
function. To this end, a relatively simple bootstrapping
procedure to be performed on the PRNG is proposed, using
the same algorithm to generate the key that is used to
generate the random numbers later on. The general idea is
relatively simplistic, however it is found to create decent
results that are comparable to the fixed key used by Zafar et
al.

The approach taken is to essentially encrypt some device-
specific information along with a seed value to become the
key. The initial key chosen to encrypt the data can be
arbitrary. While 2 rounds of TEA are appropriate for
generating random data used for noise, this is not quite as
appropriate for generating the key to be used. At least 6
rounds of TEA should be used, but more can be used for
additional assurance of the randomness of the key. As the key
generation phase only occurs once for the duration of the
program, it does not negatively affect the performance of the
random number generation to use many rounds for the key
generation. The only difference is in the startup time for the
algorithm, which is not terribly significant. Pseudocode for
the method used to combine the device-specific data and the
random seed value is shown in Figure 4.

uint4 generate_key(uint4 ik, uint2 d) {
 uint4 rv;

 rv.yw = tea(d, ik);
 rv.xz = ik.yw;
 rv.xz = tea(d, rv);

 return rv;
}

Figure 4: Function to be used to combine the unique device
information and a random seed (stored as the elements of d)

to form a device-unique key. ik is an initial key, chosen
arbitrarily. The tea() function is as defined in Figure 3, with

NROUNDS equal to 16.

FPS

No Fog

Fog, step size = 0.1

Fog, step size = 0.05

Fog, step size = 0.01

8.63031

3.32626

2.0666

0.556651

Table 1: Average Frames Per Second (FPS) rendered with
and without added volumetric fog. All tests were averaged

over 30 seconds, with a moving camera.

4. Results

4.1. Effects of Volumetric Fog on Performance
Volumetric fog that is rendered by marching along rays can
reasonably be expected to be quite expensive to render,
especially when many rays will need to be traced. As the
primitive containing the fog covered the entirety of the floor
of the scene, fog calculations were involved in almost every
pixel that did not fall completely through to the background
environment map.

The OptiX SDK examples have built-in support for
performing benchmarks, and this support was used to
generate the results shown in Table 1. For the first of these
experiments, fog was disabled completely and the program
was tested to get a baseline. This is equivalent to the original
Tutorial 10 SDK example. For the tests with fog enabled, the
effect of the step size of rays within the volume was tested.
A smaller step size produces more visually pleasing fog, but
it also can have a drastic influence on the rendering speed. As
the step size is the amount along each ray that each sample is
taken within the volume, the effect on rendering speed is
easily understandable. As would be expected, for more
realistic volume rendering, there is quite a bit of a
performance degradation.

Figure 5: 64 x 64 pixel white noise produced by the original
GPU-based TEA implementation of Zafar et al. on the left,

modified TEA implementation on the right (both using 4
rounds of TEA). Both produce similarly random results.

Figure 6: 256 x 256 pixel gradient noise produced by the
original GPU-based TEA implementation of Zafar et al. on

the left, modified TEA implementation on the right. Both
render a single octave of noise, using 4 rounds of TEA.

Figure 7: Fourier Transform of a larger patch of noise
(1024x1024 pixels). As with earlier images, the technique of
Zafar et al. is on the left. Both were created with The GIMP
and the G’MIC plugin, and are shown with 4 rounds of TEA.

4.2. Analysis of Modifications to the TEA PRNG
The version of the TEA-based pseudorandom number
generator presented by Zafar et al. uses one key that is never
modified and produces decent results. With the modifications
to TEA proposed in this paper, similar visual results are seen.
In addition, the results produced by the modified TEA are
different for each run and potentially each device available in
the system.

Time to Generate
(μs)

Megabytes Per
Second

Original

Modified

444,180 4,610.74

457,443 4,477.06

Table 2: Performance of modified TEA versus the technique
of Zafar et al. Numbers given are for generating 2048 MB of
data. Tests were performed by running 2048 calculations of

1MB of data each using each of the two algorithms.

As can be seen from Figures 5, 6, and 7, the quality of
random data and noise between the implementation of Zafar
et al. and that of this paper is quite comparable.

One side effect of the way the key generation is performed in
the modified TEA algorithm is that the key is stored in the
device memory on the GPU. In the original algorithm, the
constant key would be rolled into the code directly. The fact
that the key is stored in device memory does decrease
performance a slight amount, as the data must be loaded into
the registers of the GPU to be used. However, the flexibility
afforded by the modified algorithm more than makes up for
the small difference in time to run. Table 2 summarizes the
timing information for generating 2048MB of random data
using the original and modified TEA.

5. Future Work

There are several areas in which this work can be extended in
the future. The most obvious of these is to address some of
the limitations of the design that was chosen. As the fog
volume was contained within a single large box primitive,
there is no way for rays originating inside of the volume to
be properly shaded. This could be alleviated somewhat by
dividing the volume into smaller boxes, but this would not
solve the problem in its entirety. A deeper understanding of
the way that OptiX handles some aspects would certainly
help solve this problem as well.

The voxel traversal code used for the benchmarking is
somewhat simplistic and is not particularly well optimized.
The code used essentially blindly steps along the ray cast into
the volume, not using any sort of more optimized approach to
volume rendering.

A second area where this work could be extended is in
automatically determining the device specific information
that is needed to initialize the key generation phase of the
algorithm. For the data in this paper, the device specific
identifier was simply an index. The random seed spoken of
was simply the UNIX timestamp when the initialization
function was called. It would be interesting to research
whether there are registers available to CUDA device code
that could be used to determine some more unique identifier
than just an index into the devices available on the system.

Unfortunately, no such information seems to be available in
documentation.

The key generation function used was chosen for its
simplicity, and only a few alternatives were tried before
deciding on the function used. A more exhaustive review of
potential key generation functions, including those that do
not use TEA themselves for generating the key could very
likely produce a more useful key generation function than
what is provided here.

6. Conclusions

This paper demonstrates that it is not only possible, but fairly
straightforward to create a real-time raytracing application
using OptiX that has volumetric fog effects. Also, this paper
demonstrates that it is possible to modify the TEA algorithm
for random number generation on a GPU to handle multiple
separate random streams without a major performance
impediment and without degrading the quality of the random
number generation. While the volumetric fog effects
demonstrated herein have degraded performance
significantly, future optimization work and future directions
in GPU technology should alleviate these concerns.

Acknowledgements

I would like to thank Fahad Zafar for providing the GLSL
implementation of TEA-based noise that was used as a basis
for this project, and aiding my understanding of how it
worked. In addition, I would like to thank Marc Olano for his
assistance in directing this research.

References

[Kessenich et al. 2004] KESSENICH J., BALDWIN D., ROST
R.: The OpenGL® Shading Language. <http://
www.opengl.org/registry/doc/GLSLangSpec.Full.
1.10.59.pdf>.

[NVIDIA 2010] NVIDIA: NVIDIA CUDA C Programming
Guide. <http://developer.download.nvidia.com/compute/
cuda/3_2_prod/toolkit/docs/
CUDA_C_Programming_Guide.pdf>.

[Khronos Group 2010] KHRONOS OPENCL WORKING
GROUP: The OpenCL Specification. Munshi A. (Ed). <http://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf>.

[Foley and Sugerman 2005] FOLEY T. AND SUGERMAN J.:
KD-Tree Acceleration Structures for a GPU Raytracer. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (HWWS '05). pp. 15-22.

[Reiter Horn et al. 2007] REITER HORN D., SUGERMAN J.,
HOUSTON M., AND HANRAHAN P.: Interactive k-d tree GPU
raytracing. In Proceedings of the 2007 symposium on
Interactive 3D graphics and games (I3D '07). pp 167-174.

http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.10.59.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[Zhou et al. 2008] ZHOU K., HOU Q., WANG R., GUO B.:
Real-time KD-tree construction on graphics hardware. In
ACM Transactions on Graphics 27, Article 126.

[Carr et al. 2006] CARR N., HOBEROCK J., CRANE K., AND
HART J.: Fast GPU ray tracing of dynamic meshes using
geometry images. In Proceedings of Graphics Interface 2006
(GI '06). pp. 203-209.

[Günther et al. 2007] GÜNTHER J., POPOV S., SEIDEL H.,
SLUSALLEK P.: Realtime Ray Tracing on GPU with BVH-
based Packet Traversal. In IEEE Symposium on Interactive
Raytracing 2007. pp. 113-118.

[Chen and Liu 2007] CHEN C., LIU D.: Use of hardware Z-
buffered rasterization to accelerate ray tracing. In
Proceedings of the 2007 ACM Symposium on Applied
Computing. pp. 1046-1050.

[Parker et al. 2010] PARKER S., BIGLER J., DIETRICH A.,
FRIEDRICH H., HOBEROCK J., LUEBKE D., MCALLISTER D.,
MCGUIRE M., MORLEY K., ROBISON A., STICH M.: OptiX: a
general purpose ray tracing engine. In ACM SIGGRAPH
2010 papers, Hugues Hoppe (Ed.). Article 66, 13 pages.

[Perlin 1985] PERLIN K.: An image synthesizer. In
Proceedings of the 12th annual conference on Computer
graphics and interactive techniques (SIGGRAPH '85). pp.
287-296.

[Olano 2005] OLANO M.: Modified noise for evaluation on
graphics hardware. In Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS conference on Graphics hardware
(HWWS '05). pp. 105-110.

[Tzeng and Wei 2008] TZENG S., WEI L.: Parallel white
noise generation on a GPU via cryptographic hash. In
Proceedings of the 2008 symposium on Interactive 3D
graphics and games (I3D '08). pp. 79-87.

[Zafar et al. 2010] ZAFAR F., OLANO M., CURTIS A.: GPU
random numbers via the tiny encryption algorithm. In
Proceedings of the Conference on High Performance
Graphics (HPG ’10). pp. 133-141.

