
GPU-Based Parallel Stackless BVH Traversal for Animated Di stributed Ray
Tracing

Charles Lohr
UMBC

Abstract

This paper presents a series of accelerations and techniques use-
ful for performing interactive GPU-based distributed animated ray
tracing. By taking advantage of several techniques used to accel-
erate ray tracing along with some additional effects, one isable to
achieve enough speed to perform distributed ray tracing animated
scenes at interactive rates.

A framework is provided to load both limited Standard Procedu-
ral Database files [Haines 1987] or from standard OBJ files, these
objects can be assembled into scenes that can be interactively ex-
plored. Use of transform nodes makes it possible to add addi-
tional features, including animation, without recomputing the entire
bounding volume hierarchy.

Some acceleration structures used to achieve this result are stack-
less traversal of bounding volume hierarchies using spheres and
parallel traversal which will be presented in this paper.

CR Categories: I.3.7 [Computing Methodologies]: Graphics—
Three-Dimensional Graphics and Realism

Keywords: ray tracing, distributed ray tracing, drt, realtime,
opengl, bvh

1 Introduction

Whitted-style ray tracing [Whitted 1980] has for many yearsbeen a
powerful mechanism for producing high quality computer images.
Ray tracing is a system of generating images that involves treating
the output image pixels as a plane in front of location where the user
wishes to place the ”eye.” For every pixel on the view plane, aray
is cast out from the eye, through that point on the view plane into
the scene. All geometry is then intersected with that ray. For the
closest piece of intersected geometry, new rays must be sentout to
every light in the scene. If reflections are used, the intersecting ray
must reflect off of the surface and check scene again. Addition of
reflections causes the complexity of the ray tracer to grow asseen
in the tr term of Equation 1. Wherex and y are the width and
height of the screen,n is the number of geometry elements,l is the
number of lights andtr is the average number secondary rays from
reflection or refraction.

time = x ∗ y ∗ n ∗ l ∗ tr (1)

Ray tracing appears to be prohibitively expensive for the purpose
of rendering images at interactive rates. It can offer effects that
are either difficult or impossible to perform with rasterization. The

Figure 1: The top image shows a final output of our results ren-
dered at 640x480 with 16x DRT rays and 1767 pieces of geometry.
The bottom image has no DRT.

addition of distributed ray tracing aids this by allowing even more
effects that are difficult to achieve when using rasterization.

With the innovation of distributed ray tracing (or DRT) [Cook et al.
1984], even more effects are able to be included with only a mi-
nor, constant increase per ray. This enables effects such asmotion
blur, anti-aliasing, depth of field, soft shadows and specular reflec-
tions. This raises the complexity, as seen in Equation 2.Rays is
the number of rays added. With a minimum number of additional
rays (16-64), one obtains all of the DRT effects at once instead of
needing to increase the number of additional rays for each effect.

t = x ∗ y ∗ n ∗ l ∗ tr ∗ rays (2)

This is done is by choosing a fixed number of additional rays that
will be required (Rays) and then proceeding to shoot them out into

the scene, applying randomness at each level. For instance,a ray
may start out at a random point on the view plane, shoot through the
focal point for that pixel and into the scene. When it hits a surface,
it shoots out a shadow ray randomly at the volume representedby
the light that is being targeted.

Ordinarily, generation of images can take extremely long periods
of time to render when utilizing regular ray tracing, or DRT.Many
techniques, such as packeted scene traversal, are able to reduce the
x andy quantities in the traditional ray tracing. Most other tech-
niques attempt to attackn, reducing the total number of geometry
intersections necessary to check.

People have attempted to leverage specialty programmable GPU
hardware for some time in order to accelerate ray tracing [Purcell
et al. 2002]. Since ray tracing is often referred to as embarrass-
ingly parallel, and programmable GPU hardware is also regarded
as highly parallel, people have found this a convenient match.

We have been unable to find any papers that have implemented the
combination of these techniques on the GPU that can be applied
toward distributed ray tracing. The approach is straightforward.
However, interesting effects were found because of the hardware
used in GPUs. Traditional packetized traversal was not usedin lieu
of a technique that is described in this paper calledparallel traver-
sal. Instead of treating a series of rays as a packet or conical frus-
tum, we treat each ray individually, then traverse the BVH onan
either-or basis. If any of the rays that we are testing in thispass hit
a volume, we traverse into that volume.

Because of relatively similar paths that rays shot out from the same
pixel on the screen take, it is likely there will be a high level of
coherence between all secondary rays related to that packet. This
can yield a performance increase approaching that of the total num-
ber of parallel rays shot out in the traversal step as can be seen in
Figure 2 and Figure 4.

Unlike many of the other ray tracing papers cited, we have decided
to include techniques that are not trivial with rasterization. Much of
the current research in this field of accelerated ray tracinginvolves
ray tracing scenes that could have been rendered utilizing conven-
tional rasterization.

Our discussion of the techniques will discuss both a CUDA and
OpenGL Shading Language (GLSL) implementation. We will
cover the acceleration structures as well as their performance on
different systems. The final implementation is done in GLSL for a
variety of reasons including compiler and performance issues with
CUDA. All of our tests are run on NVIDIA hardware, including a
GeForce 8400G M, GeForce 9800GTX+ and a GeForce 9800.

We can see that acceptable speedups are used in order to mini-
mize the cost of the DRT (as seen in Figure 1). Figure 1 (Top)
was rendered in 2.74 seconds on a GeForce 9800GTX+, 3.57s on a
GeForce 9800GT and 75.32s on a GeForce 8400GM. The bottom
image shows the same scene rendered with no DRT in .26 seconds
on a GeForce 9800GT.

The images used throughout this paper include an 882-polygon
”baddie” OBJ models, a texture- and bump-mapped ground surface,
loose spheres, and the SPD ”balls”.

2 Previous Work

Attempts to speed up ray tracing have been in the works for quite
some time. Attempts have been made with packeted traversal,as
seen in [Günther et al. 2007] and [Boulos et al. 2007]. Packeted
traversal, as stated above attacks thex andy components of Equa-
tion 1. It does this by binding all common rays together into frus-

tums or conical frustums. By doing this, traversal of the structure
needs only be done once per group of rays. Previous research finds
optimal groups to be of size 4x4 or 8x8 [Wald et al. 2006].

Many other techniques such as k-D trees for space division [Horn
et al. 2007], sphere, or box based bounding volume hierarchies
(BVHs)[Christen 2005], [Günther et al. 2007], and coherent grid
traversal [Wald et al. 2006] have been proposed to attack then
term of the equation. While both k-D trees and BVHs are common,
[Christen 2005] shows that both are viable options when doing ray
tracing. Because of the simplicity of generation that BVHs offer,
we have chosen to use sphere-based BVHs.

Because of the limitations of GPUs in their limited registerspace
and difficulties in programming a stacks, stackless traversal [Popov
et al. 2007], using a system similar to geometry images [Xianfeng
et al. 2002] is a very powerful mechanism. They can be seen more
generally in [Carr et al. 2006]. Geometry images can eliminate the
need for a stack with no added time-complexity overhead and a
minimal addition of space necessary to store the traversal informa-
tion in the structure itself.

Unlike many of the other papers that implement geometry images,
we take the approach of including texture pointers, which isfound
in some of the later papers. This enables us to have abnormally
patterned data structures, including incomplete trees andtrees with
several leaves at any given level.

Recently, bump mapping [Blinn 1978] has been applied to rasteri-
zation rendering. This technique was applied originally inray trac-
ing and has continued in full force in that area. We will utilize it in
our ray tracing project. The application of bump mapping is easy
on any of the surfaces within the scene.

3 General Setup

Because of the nature of GPUs and systems already in place for
texture fetching, we have chosen to store the scene and lightdata
inside of textures similar to the geometry images listed above. Be-
cause of this, the CPU-side algorithm is uniform for both CUDA
and GLSL. Because of the natural texture caching mechanisms, we
have chosen to make our texture elements 2-high in the y direction
and somewhat spatially coherent in the x direction. In all ofour
tests, the texture itself was square, 512x512.

The system directly uses an OpenGL output buffer to enable the
user to interactively work with the scene. This also provides a con-
venient mechanism for displaying an output image: the screen it-
self.

The basic ray caster, with no reflections or lights, was written in
both CUDA and GLSL. A comparison can be seen in Figure 2.

When operating in CUDA, we operate on an 8x8 block, since it
seems to be sufficiently large for all systems. Also, a 16x16 block
size does not appear to run on GeForce 8 series cards; and 4x4
block sizes incur a performance hit on all tested systems. Many
common functions like cross products and dot products that can be
found in NVIDIA’s set of functions [NVIDIA 1993-2007] are used
in the code. We found that CUDA consistently produced code that
ran more slowly than the GLSL implementations. We also found
that CUDA often produced incorrect output. We did, however,find
that even when there was a major issue with the program, it didnot
cause the entire computer to crash.

The GLSL implementation uses native intrinsics such ascross,
dot, etc. Overall, the code ends up being cleaner because the na-
ture of ray tracing more closely matches what fragment shaders are
intended to be used for. We are able to consistently get a 10-35%

Test CUDA GLSL
256x256 coherent 50 72
256x256 incoherent 45 64
512x512 coherent 33 51
512x512 incoherent 24 45

Figure 2: This is the performance test on a single 882 polygon
’baddie’ numbers are in frames per second. It should be notedthat
the second set of readings are with a slightly modified outputimage.

performance increase in our GLSL implementation as compared to
the CUDA one.

The difference between the coherent and incoherent test runs is
whether the rays of adjacent pixels go in remotely similar direc-
tions. Typically in ray tracing, primary rays are highly spatially
coherent, traversing through many of the same portions of the BVH
as their neighbors. However, on secondary rays, it is very likely the
rays may traverse through different parts of the tree. It canbe seen
here that when considering the rendering process as a whole,using
our stackless method means the GPU is not hindered by poor spatial
locality. Furthermore, when applying our parallel traversal, it does
incur a fairly serious performance hit. Overall, we continued down
the path of using parallel traversal because of its beneficial effects.

Incorrect code was found generated by both the GLSL and CUDA
compilers that normally resulted from indirect memory addressing
or complex looping structures. For this reason, both the GLSL and
CUDA implementations are written in a more awkward way, which
is necessary for removing the need for indirect addressing by using
#defines for many loops.

4 Stackless Traversal

Geometry images are the key component of our stackless traversal.
They enable us to traverse the entire scene’s BVH without need for
recursion or a stack. They require a BVH to be assembled which
can takeΩ(n lg n) to O(n2) time to compute with relatively large
constant factors. This should only be done once for complex ge-
ometry. The BVH structure is typically non-binary, with nodes typ-
ically having more than two children. By “throwing back” patho-
logical spheres into the parent, one can get a more efficient tree.

The trees start out on the CPU as arbitrary width trees and arein
a typical tree structure with pointers. They must be converted into
a texture by baking the stack into it. This is a two-step process.
The CPU-based tree must be traversed in order to find out whichis
the next element in an in-order traversal. Each node is then notified
what the next node in the in-order traversal is, and stores that node’s
position in itsnexttexture pointer. Once this is done, a compression
step can be performed, where each element that would end in a
terminated state terminates immediately.

S1

S2
S3

S5

T1

S4

S1

S2 S5

S3 T1S4

Object On Hit On Miss

S1

S2

S3

S4

S5

S2

S3

Sphere

Sphere

Triangle

END

S5

S4

S5

END

S1 S2 S3 S4

T1

G

POS

COL

POS

COL

POS

COL

XXX

XXX

.....

X

L1 L2 L3

S5

XG T

Figure 3: The left image shows how lights and geometry are stored
within our texture. The right image shows the equivalent tree of
geometry. Ss are spheres, T is triangle information, X indicates
end-of-traversal, G indicates sphere geometry.

Because of the nature of GPUs and systems already in place for
texture fetching, the geometry and light data is stored inside of
textures, similar to the geometry textures listed above. A detailed
diagram of the memory layout can be seen in Figure 3. Because
of the layout, it made the CPU-side algorithm uniform for both
the CUDA and the GLSL implementations. The hardware texture
caching mechanism lets us take advantage of the minor spatial lo-
cality in the geometry image on both implementations.

The pointers are two floating point values that point to the next
place on the texture[0 . . 1). There are integer offsets to determine
what type of node will be hit (sphere, triangle, transform, or end).

The traversal of the algorithm is very simple. The algorithmstarts
at the upper left hand point in the texture and hops eitherin or out
depending on whether the bounding sphere is intersected by the ray
or not.

FINDNEXTINTERSECTION: I = (V, E)→ C

1 ptr ← (0., 0., 0.)
2 do
3 do
4 sphere← GeometryImage(ptr.xy)
5 jmp← GeometryImage(ptr.xy + Offsety)
6 ptr.z ← DETERMINANT(sphere)
7 ptr.xy ← (ptr.z > 0.)?jmp.xy : jmp.zw
8 while ptr.x > −0
9 if ptr.x < Tval break

10 PROCESSGEOMETRY
11 ptr.xy ← jmp.zw
12 while true
13 PERFORMGLOBAL GEOMETRYTESTS
14 return parameters

The geometry image cannot use any texture filtering, lest thescene
graph become corrupted due to the filtering modifying our point-
ers. It should be noted that in some cases it is necessary to offset

Test FPS
512x512 (single) 51
512x512 (2xAA) coherent 44
512x512 (2xAA) partially-coherent 26
512x512 (2xAA) incoherent 14
256x256 (single) 72
256x256 (2xAA) coherent 66
256x256 (2xAA) partially-coherent 54
256x256 (2xAA) incoherent 36

Figure 4: This shows how coherence effects our parallel traversal
algorithm. All frame rates are on a GeForce9800GT with the same
image as shown in Figure 2

the pointer when looking up into the texture to prevent accidentally
going into the wrong data element. If one operates on the veryedge
of a cell, it is possible to look up into its neighbor. This offsets can
be baked directly into the table. For all texture pointers, (0.5/Width
of Geometry Image, 0.5/Height of Geometry Image) may be added
as a valid offset.

In PROCESSGEOMETRYone may use integer values betweenTval
and 0 in order to discern different primitives. Since the determinant
is already calculated, it is possible to do only a minimal amount of
computation to get the actual depth to intersection of any spheres
or other objects that could use that data. Other primitives could
include transforms, triangles, spheres, cylinders, etc. This project
only includes triangles, spheres and transforms as primitives.

PERFORMGLOBAL GEOMETRYTESTS handles any pieces of ge-
ometry that one may wish to leave outside of the tree and hard code
into the tracer itself. An example of this would be the round ground
plane that can be seen in Figure 1 and Figure 6. It can be handled
in any way and should only modify theparameters return value
if it is closer than the current minimum depth.

By writing the code in this manner, an entire group of shadingunits
will traverse through the spheres until all have hit the end of the
innermost loop. Then, all processors at once will execute PRO-
CESSGEOMETRY. This helps prevent issues with poor granularity
on the GPU regardless of how fragmented the traversal is. Also,
by writing the loops as do-while-break, they can take advantage of
the native methods by which GPU executes loops and branch state-
ments under shader model 3.0 and 4.0.

5 Parallel Traversal

One of the major innovations in this project is the use ofparallel
traversal which closely resembles packeted traversal. Instead of
transforming all rays into a packet or other structure that can contain
all rays, we can simply ray cast all rays that we are checking against
at the same BVH structure. These rays can be spawned out of a
single pixel which cuts down on then term in Equation 2.

When two rays intersect all of the same elements in the structure,
the only time that is lost is in the time that is needed to perform an
additional determinant test followed by aMAX operation on the two
determinants. One can see from Figure 4 that in cases where there
is virtually no coherence, much more time is wasted performing
this optimization in comparison to the single-ray method. However,
most scenes tested have a high level of coherence and thus enjoy a
speedup even in detailed scenes (Figure 6).

In tracing three or more rays per pixel, a minimal speedup wasno-
ticed over two. When moving beyond three rays per pixel, issues
were encountered that produced an extreme slowdown. In future
generations of video cards, these concerns may not exist.

Two copies of all parameters, including eye location, ray direction,
normal of hit surface, and distance to surface are required in order
to perform parallel traversal. Once both rays have their information
stored, it is then possible to simply mix the two rays’ outputcolor
for the end result.

6 Built-in Transforms

The layout of the overall program enables mounting a large sum
of geometry to specific, easily controllable nodes. A scene graph
can be generated out of this. Utility functions have been written
to take select nodes and tree-ify them. It is possible to havelarge
portions of the scene graph manually controlled as well as other
parts automatically controlled with a highly compressed hierarchy.
It is prohibitively expensive to pack every polygon in the scene,
however, it is not difficult to pack a few manually controlledroot
level objects.

In a typical scene, a series of nodes can be loaded using regular
models from OBJ or a subset of NFF files. These can be high poly-
gon. These objects can be attached to a large root node through
transform nodes. The transform nodes can be moved, rotated and
scaled however needed on a per-frame basis and re-inserted into the
geometry texture without recomputing the structures for the trans-
form node’s children. Children of transform nodes will takeon all
of the modifications that the parent has.

When traversing into a transform node, all components (Direction,
Eye, Normal...) are modified by the transform’s matrix. When
traversing out of a transform node, all the parameters are modi-
fied by the transform’s inverse matrix. It is important to seethat the
traversing-out stage cannot be overlooked. If it were, the normal
and other properties will still be in the object’s local space because
of the stackless traversal. Because of corner cases, one must tra-
verse into a transform node even if it is behind the eye.

The use of these transforms makes it possible for us to provide an
animated scene or add motion blur to static scenes with a minimal
amount of CPU overhead each frame.

Due to difficulties coding this feature, it was not implemented in
the CUDA code base.

7 Distributed Ray Tracing

Once we have a complete working ray tracer that can maximize
the number of rays per time on any given scene, augmenting it to
add distributed ray tracing is trivial. A random texture is used to
generate at least partially random numbers to perturb the ray for
every effect. We have found that by updating the noise every frame
with new random data generated on the CPU, we can trace another
set of rays. This allows us to lose temporal coherence and enables
our eye to blur together the scenes, thus getting additionalfake rays
for the distribution and improving image quality when the frame
rate is increased.

Examples of each of these effects running at interactive rates can be
seen with our tracer in Figure 5.

7.1 Depth of Field

Depth of field can be achieved by simply treating the image plane
as being a fixed point in front of the camera. Then, the rays that are
being shot out into the scene can be rotationally perturbed around
these points in order to blur points closer or further from the focal
point. It is important that the rays still start near the location of the
original eye, so that we do not end up tracing from in front of the

Figure 5: Top: Depth of Field, Center: Soft shadows (labeled),
Bottom: Specular Reflections

geometry that we need to render. We are currently perturbingby
a random xyz value that is not uniform over what a realistic space
for distributed ray tracing would be. We have found this to produce
acceptable results.

The perturbation of the source of the ray in depth of field needs to
be done only once for every ray emitted. It is not necessary for
secondary bounces.

7.2 Soft Shadows

Soft shadows can be calculated in the lighting stage by perturbing
the location of the light around where the light’s center is.The sur-
face then shoots a single ray off at where it perceives the light to
be. If the light is in shadow for that ray, then that ray does not con-
tribute a lighting component. If it is in view of the light, then both
specular and diffuse components are added. This is an acceptable
way to simulate soft shadows since any points within the umbra of
other objects will have no shadow rays able to reach the lightat

all. Objects in the penumbra have a stochastic possibility of hit-
ting the light source based on how much of the area of the lightis
visible by the light’s position modified by the random distribution.
A side effect of this is any points that are in the antumbra of the
light source will continue to have the appropriate amount oflight
on them because of the mechanism of simulation.

7.3 Specular Reflections

Specular reflections are used to simulate surfaces that are not com-
pletely reflective. This helps to add to the realism of the scene be-
cause most objects we observe in life that are shiny are not perfectly
shiny. We can perturb the normal once the normal has hit the sur-
face; this causes all secondary rays to be perturbed by the random
amount and to simulate a more realistic, imperfect surface.

It is advised to keep this separate from the diffuse/specular lighting
terms. These terms help provide a large degree of approximation
that would be extremely costly if all that was being done was to see
if the surface point reflected directly into the light.

8 Conclusion

We have shown that by utilizing distributed ray tracing withBVHs,
we have been able to accelerate our system to provide near-
interactive highly realistic environments utilizing readily available
consumer hardware. While it does not appear to be useful for video
games at the moment, it is conceivable that at some point in the near
future, more geometry and pixels could be added to techniques sim-
ilar to this to help produce highly realistic realtime environments.

The use of parallel traversal aids in systems with high coherence
which can be helpful when attempting DRT. By making use of sev-
eral of these systems together, we are able to reduce therays and
n terms in Equation 2.

In doing so, we have been able to make a ray tracer that performs
well when attempting to perform DRT and does not have the same
asymptotic properties as the above equations in practice. We can
see from Figure 6 that our performance does not decrease linearly
with n. This is ideal for a ray tracer that is intended to be scalable.

9 Future Work

It would be useful to be able to examine different forms of BVHs in
order to see if AABB’s or other such shapes would be beneficialto
the algorithm’s traversal. Since most of this paper is agnostic to the
bounding algorithm used, it should be possible with minimaleffort
to analyze other algorithms such as k-D trees, taking advantage of
benefits like early-intersection.

More real-world experiments with parallel traversal will be needed
to determine in what situations it is most, and least effective. This
could be done by running a single-ray-per-pixel tracer twice as
many times as a parallel-tracing one and comparing the two times.

It would also be interesting to investigate different values for the
width factors of bounding trees in order to optimize for the width-
factor of the bounding trees. This could affect the running time on
different hardware with different input parameters and data sets.

Modifying the system in order to enable a non-binary tree structure
increased frame rate. It is conceivable that the choice of how to
split the scene up could have a high degree of dependence on the
hardware on which the system is operating.

Using a GPU-based random function, such as MD5 [Curtis 2009],
may be useful for accelerating the run-time performance by remov-

ing the need for a random texture and thus enabling the cache to be
used for more important data such as the tree data.

Acknowledgments

I’d like to thank Dr. Marc Olano for his assistance and guidance
in this project. I’d like to thank the UMBC MC2 group for the use
of a GeForce 9800GT and Chris Putsche for the use of a GeForce
9800GTX+. Will Murnane helped with LATEXand provided input
on the original algorithm. David Chapman helped find references
for various papers. David Chapman, Will Murnane and Mary Lohr
helped edit the final paper.

References

BLINN , J. F. 1978. Simulation of wrinkled surfaces.Computer
Graphics 12, 3 (August), 286–292.

BOULOS, S., EDWARDS, D., J DYLAN LACEWELL, J. K.,
KAUTZ , J., SHIRLEY, P., AND WALD , I. 2007. Packet-based
whitted and distribution ray tracing.Proceedings of Graphics
Interface 2007..

CARR, N. A., HOBEROCK, J., CRANE, K., AND HART, J. C.
2006. Fast gpu ray tracing of dynamic meshes using geometry
images.Graphics Interface, 203–209.

CHRISTEN, M., 2005. Ray tracing on the gpu, January.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing.SIGGRAPH, 137–145.

CURTIS, A. 2009. Real-time Soft Shadows on the GPU via Monte
Carlo Sampling. Master’s thesis, University of Maryland, Balti-
more County.

GÜNTHER, J., POPOV, S., SEIDEL, H.-P., AND SLUSALLEK , P.
2007. Realtime ray tracing on the gpu with bvh-based packet
traversal.Proceedings of the IEEE/Eurographics Symposium on
Interactive Ray Tracing..

HAINES, E. 1987. A proposal for standard graphics environments.
IEEE Computer Graphics and Applications 7, 11 (November),
3–5.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN ,
P. 2007. Interactive k-d tree gpu raytracing.Presented at I3D.

NVIDIA. 1993-2007. vectormath.h.
http://stdcuda.googlecode.com/svn/trunk/stdcuda/vector math.h.

POPOV, S., GÜNTHER, J., SEIDEL, H.-P., AND SLUSALLEK , P.
2007. Stackless kd-tree traversal for high performance GPUray
tracing.Computer Graphics Forum 26, 3 (Sept.), 415–424. (Pro-
ceedings of Eurographics).

PURCELL, T. J., BUCK, I., MARK , W. R., AND HANRAHAN , P.
2002. Ray tracing on programmable hardware.ACM Transac-
tions on Graphics. 21, 3, 703–712.

WALD , I., IZE, T., KENSLER, A., KNOLL , A., AND PARKER,
S. G. 2006. Ray tracing animated scenes using coherent grid
traversal.SIGGRAPH, 485–493.

WHITTED, T. 1980. An improved illumination model for shaded
display. ACM Transactions on Computing Machinery 23, 6
(June), 343–349.

X IANFENG, G., J., G. S.,AND HUGHES, H. 2002. Geometry
images.article ACM Transactions Graphics 21, 3, 355–361.

Test Primitives Seconds Pos
Balls(s 3) (2xAA) Parallel 821 .35 1
Balls(s 3) (16xAA) Parallel 812 2.11 2
Balls(s 3) (16xAA) Naive 821 2.52
Balls(s 4) (2xAA) Parallel 7382 1.1 3
Balls(s 4) (16xAA) Parallel 7382 8.28 4
Balls(s 4) (16xAA) Naive 7382 9.93

Figure 6: Demonstration of performance between varying levels of
geometry. All timings are taken on a GeForce 9800GT.

