GPU-Based Parallel Stackless BVH Traversal for Animated Di

stributed Ray

Tracing

Charles Lohr
UMBC

Abstract

This paper presents a series of accelerations and teclnicgee
ful for performing interactive GPU-based distributed aaied ray
tracing. By taking advantage of several techniques useddel-a
erate ray tracing along with some additional effects, orable to
achieve enough speed to perform distributed ray tracingateid
scenes at interactive rates.

A framework is provided to load both limited Standard Praced
ral Database files [Haines 1987] or from standard OBJ fileseth
objects can be assembled into scenes that can be intehaetive

plored. Use of transform nodes makes it possible to add addi-

tional features, including animation, without recompgtihe entire
bounding volume hierarchy.

Some acceleration structures used to achieve this resufitack-
less traversal of bounding volume hierarchies using sghanel
parallel traversal which will be presented in this paper.

CR Categories: 1.3.7 [Computing Methodologies]: Graphics—
Three-Dimensional Graphics and Realism

Keywords:
opengl|, bvh

ray tracing, distributed ray tracing, drt, realtime,

1 Introduction

Whitted-style ray tracing [Whitted 1980] has for many ydagen a
powerful mechanism for producing high quality computer ges
Ray tracing is a system of generating images that invohesgitrg
the output image pixels as a plane in front of location whieeaiser
wishes to place the "eye.” For every pixel on the view plangya
is cast out from the eye, through that point on the view plane i
the scene. All geometry is then intersected with that ray. the
closest piece of intersected geometry, new rays must beoséid
every light in the scene. If reflections are used, the intdirsg ray
must reflect off of the surface and check scene again. Adddfo
reflections causes the complexity of the ray tracer to groseas
in the tr term of Equation 1. Where andy are the width and
height of the screem, is the number of geometry elementss the
number of lights andr is the average number secondary rays from
reflection or refraction.

time =z xyxnx*xlxtr (1)
Ray tracing appears to be prohibitively expensive for thgppse
of rendering images at interactive rates. It can offer ¢ffehat
are either difficult or impossible to perform with rastetina. The

Figure 1: The top image shows a final output of our results ren-
dered at 640x480 with 16x DRT rays and 1767 pieces of geometry
The bottom image has no DRT.

addition of distributed ray tracing aids this by allowingeevmore
effects that are difficult to achieve when using rasterarati

With the innovation of distributed ray tracing (or DRT) [Coet al.
1984], even more effects are able to be included with only & mi
nor, constant increase per ray. This enables effects suctotisn
blur, anti-aliasing, depth of field, soft shadows and spacdflec-
tions. This raises the complexity, as seen in EquatioiRays is

the number of rays added. With a minimum number of additional
rays (16-64), one obtains all of the DRT effects at once atbtaf
needing to increase the number of additional rays for edelatef

t=xxyxnxlxtr=*rays

)

This is done is by choosing a fixed number of additional rags$ th
will be required Rays) and then proceeding to shoot them out into

the scene, applying randomness at each level. For instarnesy,
may start out at a random point on the view plane, shoot tirtieg
focal point for that pixel and into the scene. When it hits Hae,

it shoots out a shadow ray randomly at the volume represdayted
the light that is being targeted.

Ordinarily, generation of images can take extremely longops

of time to render when utilizing regular ray tracing, or DRTany
techniques, such as packeted scene traversal, are abtuterhe

x andy quantities in the traditional ray tracing. Most other tech-
niques attempt to attack, reducing the total number of geometry
intersections necessary to check.

People have attempted to leverage specialty programmablé G
hardware for some time in order to accelerate ray tracingciu
et al. 2002]. Since ray tracing is often referred to as enalsarr
ingly parallel, and programmable GPU hardware is also deghr
as highly parallel, people have found this a convenient matc

We have been unable to find any papers that have implemerged th
combination of these techniques on the GPU that can be dpplie
toward distributed ray tracing. The approach is straightéod.
However, interesting effects were found because of thewenel
used in GPUs. Traditional packetized traversal was not umskel

of a technique that is described in this paper catlacallel traver-

sal. Instead of treating a series of rays as a packet or coniasd fr
tum, we treat each ray individually, then traverse the BVHaon
either-or basis. If any of the rays that we are testing inplaiss hit

a volume, we traverse into that volume.

Because of relatively similar paths that rays shot out froensame
pixel on the screen take, it is likely there will be a high legé

coherence between all secondary rays related to that pathet

can yield a performance increase approaching that of théertotn-

ber of parallel rays shot out in the traversal step as can &e ise
Figure 2 and Figure 4.

Unlike many of the other ray tracing papers cited, we havédeec
to include techniques that are not trivial with rasteriaatiMuch of
the current research in this field of accelerated ray traicingves
ray tracing scenes that could have been rendered utilizingen-
tional rasterization.

Our discussion of the techniques will discuss both a CUDA and
OpenGL Shading Language (GLSL) implementation. We will
cover the acceleration structures as well as their perfocean
different systems. The final implementation is done in GL8L&
variety of reasons including compiler and performancedasswith
CUDA. All of our tests are run on NVIDIA hardware, including a
GeForce 8400G M, GeForce 9800GTX+ and a GeForce 9800.

tums or conical frustums. By doing this, traversal of theicture
needs only be done once per group of rays. Previous reseadsh fi
optimal groups to be of size 4x4 or 8x8 [Wald et al. 2006].

Many other techniques such as k-D trees for space divisiamr{H
et al. 2007], sphere, or box based bounding volume hiemschi
(BVHSs)[Christen 2005], [Glnther et al. 2007], and cohérgrnid
traversal [Wald et al. 2006] have been proposed to attack:the
term of the equation. While both k-D trees and BVHs are common
[Christen 2005] shows that both are viable options whenglcéy
tracing. Because of the simplicity of generation that BVHfem
we have chosen to use sphere-based BVHs.

Because of the limitations of GPUs in their limited regisipace
and difficulties in programming a stacks, stackless tral¢Popov

et al. 2007], using a system similar to geometry images [iaq

et al. 2002] is a very powerful mechanism. They can be seee mor
generally in [Carr et al. 2006]. Geometry images can elinanae
need for a stack with no added time-complexity overhead and a
minimal addition of space necessary to store the travenfaima-

tion in the structure itself.

Unlike many of the other papers that implement geometry &sag
we take the approach of including texture pointers, whidioisd

in some of the later papers. This enables us to have abngrmall
patterned data structures, including incomplete treegraed with
several leaves at any given level.

Recently, bump mapping [Blinn 1978] has been applied tceerast
zation rendering. This technique was applied originallyain trac-
ing and has continued in full force in that area. We will a#iit in
our ray tracing project. The application of bump mappingasye
on any of the surfaces within the scene.

3 General Setup

Because of the nature of GPUs and systems already in place for
texture fetching, we have chosen to store the scene anddaght
inside of textures similar to the geometry images listedrab®e-
cause of this, the CPU-side algorithm is uniform for both GUD
and GLSL. Because of the natural texture caching mechanisms
have chosen to make our texture elements 2-high in the ytdirec
and somewhat spatially coherent in the x direction. In albof
tests, the texture itself was square, 512x512.

The system directly uses an OpenGL output buffer to enalgde th
user to interactively work with the scene. This also progideon-
venient mechanism for displaying an output image: the sciee
self.

We can see that acceptable speedups are used in order to miniThe basic ray caster, with no reflections or lights, was @mitin

mize the cost of the DRT (as seen in Figure 1). Figure 1 (Top)

was rendered in 2.74 seconds on a GeForce 9800GTX+, 3.57s on E\‘N

GeForce 9800GT and 75.32s on a GeForce 8400GM. The bottoméeems t0 be sufficiently large for all systems. Also, a 16xb6k

image shows the same scene rendered with no DRT in .26 second
on a GeForce 9800GT.

The images used throughout this paper include an 882-polygo
"baddie” OBJ models, a texture- and bump-mapped groundeelsf
loose spheres, and the SPD "balls”.

2 Previous Work

Attempts to speed up ray tracing have been in the works faequi
some time. Attempts have been made with packeted traversal,
seen in [GlUnther et al. 2007] and [Boulos et al. 2007]. Pcke
traversal, as stated above attacksittendy components of Equa-
tion 1. It does this by binding all common rays together imtcs$

both CUDA and GLSL. A comparison can be seen in Figure 2.

hen operating in CUDA, we operate on an 8x8 block, since it

Size does not appear to run on GeForce 8 series cards; and 4x4
block sizes incur a performance hit on all tested systemsnyMa
common functions like cross products and dot products thabe
found in NVIDIA's set of functions [NVIDIA 1993-2007] are esl

in the code. We found that CUDA consistently produced codé th
ran more slowly than the GLSL implementations. We also found
that CUDA often produced incorrect output. We did, howefiad

that even when there was a major issue with the program, atid
cause the entire computer to crash.

The GLSL implementation uses native intrinsics suchcasss,

dot, etc. Overall, the code ends up being cleaner because the na-
ture of ray tracing more closely matches what fragment siseate
intended to be used for. We are able to consistently get &60-3

Test

256x256 coherent
256x256 incoheren
512x512 coherent
512x512 incoheren

Figure 2: This is the performance test on a single 882 polygon
'baddie’ numbers are in frames per second. It should be ntitatl
the second set of readings are with a slightly modified otitpage.

performance increase in our GLSL implementation as condp@are
the CUDA one.

The difference between the coherent and incoherent testisun
whether the rays of adjacent pixels go in remotely similaed
tions. Typically in ray tracing, primary rays are highly sply
coherent, traversing through many of the same portionseoBiH
as their neighbors. However, on secondary rays, it is veeplithe
rays may traverse through different parts of the tree. Ithmeeen
here that when considering the rendering process as a wishg
our stackless method means the GPU is not hindered by pamalspa
locality. Furthermore, when applying our parallel traedy& does
incur a fairly serious performance hit. Overall, we conéduwown
the path of using parallel traversal because of its benkéffiects.

Incorrect code was found generated by both the GLSL and CUDA
compilers that normally resulted from indirect memory adding

or complex looping structures. For this reason, both the IGAS1
CUDA implementations are written in a more awkward way, Whic

is necessary for removing the need for indirect addressingsing
#def i nes for many loops.

4 Stackless Traversal

Geometry images are the key component of our stacklesgs$edve
They enable us to traverse the entire scene’s BVH withoud fare
recursion or a stack. They require a BVH to be assembled which
can takeQ(n1gn) to O(n?) time to compute with relatively large
constant factors. This should only be done once for compéex g
ometry. The BVH structure is typically non-binary, with restyp-
ically having more than two children. By “throwing back” pat
logical spheres into the parent, one can get a more effidieat t

The trees start out on the CPU as arbitrary width trees anthare
a typical tree structure with pointers. They must be comebimto

a texture by baking the stack into it. This is a two-step pssce
The CPU-based tree must be traversed in order to find out vidich
the next element in an in-order traversal. Each node is théfied
what the next node in the in-order traversal is, and sto@gsibde’s
position in itsnexttexture pointer. Once this is done, a compression

CECHE
S1|S2|Ss3|s4|s5
{ X(\ G ‘G (T X
Object] On Hit | On Miss |

S1 S2 END |} 0000000 e

S2 S3 S5 T1

S3 Sphere sS4

S4 Sphere S5 pos|pos|Pos|xxx

- L1{L2[L3
S5 Triangle END coL|coL|cot [xxx

Figure3: The left image shows how lights and geometry are stored
within our texture. The right image shows the equivalent wé
geometry. Ss are spheres, T is triangle information, X igis
end-of-traversal, G indicates sphere geometry.

Because of the nature of GPUs and systems already in place for
texture fetching, the geometry and light data is storeddmsif
textures, similar to the geometry textures listed above.etaited
diagram of the memory layout can be seen in Figure 3. Because
of the layout, it made the CPU-side algorithm uniform for oot
the CUDA and the GLSL implementations. The hardware texture
caching mechanism lets us take advantage of the minor Ejatia
cality in the geometry image on both implementations.

The pointers are two floating point values that point to thet ne
place on the texturf) .. 1). There are integer offsets to determine
what type of node will be hit (sphere, triangle, transformend).

The traversal of the algorithm is very simple. The algoritstarts
at the upper left hand point in the texture and hops eithar out
depending on whether the bounding sphere is intersectdtehyay
or not.

FINDNEXTINTERSECTION: [= (V,E) — C

1 ptr < (0.,0.,0.)
2 do
3 do
4 sphere «— GeometryImage(ptr.xy)
5 jmp «— GeometryImage(ptr.zy + Offset,)
6 ptr.z «— DETERMINANT(sphere)
7 ptr.xy «— (ptr.z > 0.)?7jmp.xy : jmp.zw
8 whileptr.x > —0
9 if ptr.x < Ty5 break
10 PROCES$GEOMETRY
11 ptr.xy «— jmp.zw
12 whiletrue
13 PERFORMGLOBAL GEOMETRYTESTS
14 return parameters

The geometry image cannot use any texture filtering, less¢kae

step can be performed, where each element that would end in agraph become corrupted due to the filtering modifying ounpoi

terminated state terminates immediately.

ers. It should be noted that in some cases it is necessaryst of

Test FPS
512x512 (single) 51
512x512 (2xAA) coherent 44
512x512 (2xAA) partially-coherent| 26
512x512 (2xAA) incoherent 14
256x256 (single) 72
256x256 (2xAA) coherent 66
256x256 (2xAA) partially-cohereny| 54
256x256 (2xAA) incoherent 36

Figure 4: This shows how coherence effects our parallel traversal
algorithm. All frame rates are on a GeForce9800GT with thmea
image as shown in Figure 2

the pointer when looking up into the texture to prevent aecidlly
going into the wrong data element. If one operates on theedgg

of a cell, it is possible to look up into its neighbor. Thissafts can
be baked directly into the table. For all texture pointedssWidth

of Geometry Image, 0.5/Height of Geometry Image) may be @dde
as a valid offset.

In PROCESSSEOMETRY ONne may use integer values betwégp

and 0 in order to discern different primitives. Since theedetinant
is already calculated, it is possible to do only a minimal armaf
computation to get the actual depth to intersection of amesgs
or other objects that could use that data. Other primitivadd:
include transforms, triangles, spheres, cylinders, etus Project
only includes triangles, spheres and transforms as pviesiti

PERFORMGLOBAL GEOMETRYTESTS handles any pieces of ge-
ometry that one may wish to leave outside of the tree and tatd c
into the tracer itself. An example of this would be the rounaumd
plane that can be seen in Figure 1 and Figure 6. It can be ltandle
in any way and should only modify the&xrameters return value

if it is closer than the current minimum depth.

By writing the code in this manner, an entire group of shadinigs
will traverse through the spheres until all have hit the ehthe
innermost loop. Then, all processors at once will execuwte-P
CESYGEOMETRY. This helps prevent issues with poor granularity
on the GPU regardless of how fragmented the traversal iso, Als
by writing the loops as do-while-break, they can take achgabof
the native methods by which GPU executes loops and branth sta
ments under shader model 3.0 and 4.0.

5 Parallel Traversal

One of the major innovations in this project is the usearfallel

Two copies of all parameters, including eye location, ragation,
normal of hit surface, and distance to surface are requiredder
to perform parallel traversal. Once both rays have thearmation
stored, it is then possible to simply mix the two rays’ outpator
for the end result.

6 Built-in Transforms

The layout of the overall program enables mounting a large su
of geometry to specific, easily controllable nodes. A scemaply
can be generated out of this. Utility functions have beerteni
to take select nodes and tree-ify them. It is possible to lhege
portions of the scene graph manually controlled as well herot
parts automatically controlled with a highly compressesténichy.

It is prohibitively expensive to pack every polygon in theise,
however, it is not difficult to pack a few manually controlleabt
level objects.

In a typical scene, a series of nodes can be loaded usingaregul
models from OBJ or a subset of NFF files. These can be high poly-
gon. These objects can be attached to a large root node throug
transform nodes. The transform nodes can be moved, rotated a
scaled however needed on a per-frame basis and re-insetodté
geometry texture without recomputing the structures ferttans-
form node’s children. Children of transform nodes will take all

of the modifications that the parent has.

When traversing into a transform node, all components (Dioa,
Eye, Normal...) are modified by the transform’s matrix. When
traversing out of a transform node, all the parameters argéi-mo
fied by the transform’s inverse matrix. Itis important to Heeg the
traversing-out stage cannot be overlooked. If it were, thenal
and other properties will still be in the object’s local spdecause
of the stackless traversal. Because of corner cases, oretnaus
verse into a transform node even if it is behind the eye.

The use of these transforms makes it possible for us to pecid
animated scene or add motion blur to static scenes with axmaini
amount of CPU overhead each frame.

Due to difficulties coding this feature, it was not implenezhin
the CUDA code base.

7 Distributed Ray Tracing

Once we have a complete working ray tracer that can maximize
the number of rays per time on any given scene, augmentirag it t
add distributed ray tracing is trivial. A random texture &ed to
generate at least partially random numbers to perturb théora

traversal which closely resembles packeted traversal. Instead of every effect. We have found that by updating the noise evammé

transforming all rays into a packet or other structure thateontain
all rays, we can simply ray cast all rays that we are checkiagret

with new random data generated on the CPU, we can trace anothe
set of rays. This allows us to lose temporal coherence andena

at the same BVH structure. These rays can be spawned out of agyr eye to blur together the scenes, thus getting additfakelrays

single pixel which cuts down on theterm in Equation 2.

When two rays intersect all of the same elements in the streict
the only time that is lost is in the time that is needed to penfan
additional determinant test followed bywex operation on the two
determinants. One can see from Figure 4 that in cases whene th
is virtually no coherence, much more time is wasted perfogmi
this optimization in comparison to the single-ray methodwidver,
most scenes tested have a high level of coherence and thaysaenj
speedup even in detailed scenes (Figure 6).

In tracing three or more rays per pixel, a minimal speedupneas
ticed over two. When moving beyond three rays per pixel,essu
were encountered that produced an extreme slowdown. Imefutu
generations of video cards, these concerns may not exist.

for the distribution and improving image quality when tharfre
rate is increased.

Examples of each of these effects running at interactiesredn be
seen with our tracer in Figure 5.

7.1 Depth of Field

Depth of field can be achieved by simply treating the imageela
as being a fixed point in front of the camera. Then, the raytsattea
being shot out into the scene can be rotationally perturlbednal
these points in order to blur points closer or further from fibcal
point. It is important that the rays still start near the kbma of the
original eye, so that we do not end up tracing from in frontref t

Figure 5: Top: Depth of Field, Center: Soft shadows (labeled),
Bottom: Specular Reflections

geometry that we need to render. We are currently perturbjng
a random xyz value that is not uniform over what a realisticsp
for distributed ray tracing would be. We have found this todurce
acceptable results.

The perturbation of the source of the ray in depth of field seed
be done only once for every ray emitted. It is not necessary fo
secondary bounces.

7.2 Soft Shadows

Soft shadows can be calculated in the lighting stage by peny
the location of the light around where the light's centefTiBe sur-
face then shoots a single ray off at where it perceives the tig
be. If the light is in shadow for that ray, then that ray doesaom-
tribute a lighting component. If it is in view of the light,eh both
specular and diffuse components are added. This is an abdept
way to simulate soft shadows since any points within the @anabr
other objects will have no shadow rays able to reach the Aght

all. Objects in the penumbra have a stochastic possibifitiyito
ting the light source based on how much of the area of the ight
visible by the light's position modified by the random dibtriion.
A side effect of this is any points that are in the antumbrahef t
light source will continue to have the appropriate amouniighft
on them because of the mechanism of simulation.

7.3 Specular Reflections

Specular reflections are used to simulate surfaces thabacom-
pletely reflective. This helps to add to the realism of thenedae-
cause most objects we observe in life that are shiny are nfetqbly
shiny. We can perturb the normal once the normal has hit the su
face; this causes all secondary rays to be perturbed by titloma
amount and to simulate a more realistic, imperfect surface.

Itis advised to keep this separate from the diffuse/spetiglating
terms. These terms help provide a large degree of appraximat
that would be extremely costly if all that was being done veesste

if the surface point reflected directly into the light.

8 Conclusion

We have shown that by utilizing distributed ray tracing wa{Hs,

we have been able to accelerate our system to provide near-
interactive highly realistic environments utilizing rélgcavailable
consumer hardware. While it does not appear to be usefuideov
games at the moment, it is conceivable that at some poingineghar
future, more geometry and pixels could be added to techsisjne-

ilar to this to help produce highly realistic realtime eviments.

The use of parallel traversal aids in systems with high ceies
which can be helpful when attempting DRT. By making use of sev
eral of these systems together, we are able to reduceatheand

n terms in Equation 2.

In doing so, we have been able to make a ray tracer that pesform
well when attempting to perform DRT and does not have the same
asymptotic properties as the above equations in practioe.cai

see from Figure 6 that our performance does not decreas®liine
with n. This is ideal for a ray tracer that is intended to be scalable

9 Future Work

It would be useful to be able to examine different forms of B3MHI
order to see if AABB's or other such shapes would be beneficial
the algorithm’s traversal. Since most of this paper is atints the
bounding algorithm used, it should be possible with miniefédrt
to analyze other algorithms such as k-D trees, taking adganof
benefits like early-intersection.

More real-world experiments with parallel traversal wil beeded
to determine in what situations it is most, and least effiectiThis
could be done by running a single-ray-per-pixel tracer énés
many times as a parallel-tracing one and comparing the twesti

It would also be interesting to investigate different valder the
width factors of bounding trees in order to optimize for thieltiv-
factor of the bounding trees. This could affect the runningeton
different hardware with different input parameters anchdats.

Modifying the system in order to enable a non-binary treecttire
increased frame rate. It is conceivable that the choice of two
split the scene up could have a high degree of dependenceson th
hardware on which the system is operating.

Using a GPU-based random function, such as MD5 [Curtis 2009]
may be useful for accelerating the run-time performanceshyov-

ing the need for a random texture and thus enabling the cadbe t
used for more important data such as the tree data.

Acknowledgments

I'd like to thank Dr. Marc Olano for his assistance and gui&an
in this project. I'd like to thank the UMBC MC2 group for theais

of a GeForce 9800GT and Chris Putsche for the use of a GeForce

9800GTX+. Will Murnane helped with*TeXand provided input
on the original algorithm. David Chapman helped find refeesn
for various papers. David Chapman, Will Murnane and MaryrLoh
helped edit the final paper.

References

BLINN, J. F. 1978. Simulation of wrinkled surface§omputer
Graphics 12 3 (August), 286—292.

BouLos, S., EbwarDS, D., J DrLAN LACEWELL, J. K.,
KAUTZ, J., HIRLEY, P.,AND WALD, |. 2007. Packet-based
whitted and distribution ray tracingProceedings of Graphics
Interface 2007.

CARR, N. A., HOBEROCK, J., QRANE, K., AND HART, J. C.
2006. Fast gpu ray tracing of dynamic meshes using geometry
images.Graphics Interface203—-209.

CHRISTEN, M., 2005. Ray tracing on the gpu, January.

Cook, R. L., PORTER, T., AND CARPENTER L. 1984. Dis-
tributed ray tracingSIGGRAPH 137-145.

CURTIS, A. 2009. Real-time Soft Shadows on the GPU via Monte
Carlo Sampling Master’s thesis, University of Maryland, Balti-
more County.

GUNTHER, J., PoPoV, S., SIDEL, H.-P.,AND SLUSALLEK, P.
2007. Realtime ray tracing on the gpu with bvh-based packet
traversal.Proceedings of the IEEE/Eurographics Symposium on
Interactive Ray Tracing.

HAINES, E. 1987. A proposal for standard graphics environments.
IEEE Computer Graphics and Applications 71 (November),
3-5.

HoRN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN,
P. 2007. Interactive k-d tree gpu raytracirRyesented at 13D

NVIDIA. 1993-2007. vectamath.h.
http://stdcuda.googlecode.com/svn/trunk/stdcudadvemath.h.

Popov, S., GINTHER, J., EIDEL, H.-P.,AND SLUSALLEK, P.
2007. Stackless kd-tree traversal for high performance @GRU
tracing.Computer Graphics Forum 28 (Sept.), 415-424. (Pro-
ceedings of Eurographics).

PURCELL, T. J., Buck, I., MARK, W. R.,AND HANRAHAN, P.
2002. Ray tracing on programmable hardwaf&CM Transac-
tions on Graphics. 213, 703-712.

WALD, I., IzE, T., KENSLER, A., KNOLL, A., AND PARKER,
S. G. 2006. Ray tracing animated scenes using coherent grid
traversal. SIGGRAPH 485-493.

WHITTED, T. 1980. An improved illumination model for shaded
display. ACM Transactions on Computing Machinery, 23
(June), 343-349.

XIANFENG, G., J., G. S.AND HUGHES, H. 2002. Geometry
images.article ACM Transactions Graphics 23, 355-361.

Test
Balls(s 3) (2xAA) Parallel

Primitives | Seconds| Pos

Balls(s 3) (16xAA) Parallel 2
Balls(s 3) (16xAA) Naive

Balls(s 4) (2xAA) Parallel 3
Balls(s 4) (16xAA) Parallel 4

Balls(s 4) (16xAA) Naive

Figure 6: Demonstration of performance between varying levels of
geometry. All timings are taken on a GeForce 9800GT.

