
Real-time Curvature Estimation on Deformable Models

Wesley Griffin∗

University of Maryland, Baltimore County

Figure 1: Examples of estimated curvature on models. Curvature is re-computed each frame. The orange lines are the principal direction of
maximum principal curvature and the blue lines are the principal direction of minimum principal direction.

Abstract

Surface curvature and its derivative are used in a number of applica-
tions including non-photorealistic line drawing techniques. CPU al-
gorithms for estimating curvature are a reasonable choice for static
models, but curvature estimates for deformable models must be re-
computed every frame. For many deformable models, for exam-
ple those using vertex blending, the deformed model is only ever
present in the GPU. We introduce a GPU algorithm for estimating
curvature on any model using the programmable geometry shader.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation;

Keywords: NPR, line drawing, GPU, geometry shader, real-time
rendering

1 Introduction

Surface curvature and its derivative are used in a number of appli-
cations including non-photorealistic line drawing techniques. Sug-
gestive contours [DeCarlo et al. 2003] and apparent ridges [Judd
et al. 2007] use curvature to extract contours. These techniques are
object-based techniques. They work directly on the polygonal mesh
representation of objects. There is another set of line drawing tech-
niques which are image-based. These techniques render objects to
a framebuffer and then process the image to draw lines.

Rusinkiewicz [2004] estimates principal curvatures and principal
directions at each vertex using averages of normals over each face.
We discuss this algorithm in more detail in 3. This CPU algorithm
for estimating curvature is a reasonable choice for static models,
but curvature estimates for deformable models must be recomputed
every frame. For many deformable models, for example those using

∗e-mail: griffin5@cs.umbc.edu

vertex blending, the deformed model is only every present in the
GPU.

We introduce a GPU algorithm for estimating curvature on any
model using the programmable geometry shader [Blythe 2006].
Much like Rusinkiewicz, we estimate curvature at each vertex using
the averages of normals over each face. We describe our algorithm
in detail in Section 4.1.

For our initial demonstration, we implemented two simple defor-
mation primitives, tapering and bending [Barr 1984]. We also ex-
tract occluding contours from models and draw those as lines. The
specific contributions of this paper are:

• A multi-pass algorithm that computes principal curvatures,
principal directions of curvature, and the derivative of curva-
ture in graphics hardware.

2 Related Work

Cole and Finkelstein present a system for rendering textured lines
that runs completely on graphics hardware. While their system does
not use the geometry shader, it does support silhouette edge extrac-
tion. They introduce a segment atlas to efficiently compute line
visibility and then render stylized lines using textures. One limi-
tation of their system is that it only works with pre-extracted lines
from a model [Cole and Finkelstein 2009].

Lee et al. present an image-based algorithm for drawing lines.
Their algorithm renders the scene in grayscale and then draws lines
between areas of varying darkness and lightness. Their implemen-
tation runs at interactive rates and looks good visually. They men-
tion a limitation of their system in that it cannot vary the stylization
of lines without further post-processing [Lee et al. 2007].

Another real-time image-based system is presented by Kim et al.
Their system uses shading and ray-tracing to create an intensity
map, principal direction estimation and stroke direction propaga-

tion to create a stroke direction map and then uses both maps along
with a stroke texture in a stroke-mapping algorithm. While their
system produces very good visual results, their use of ray-tracing
is not well-suited to current graphics hardware. They do, however,
hint at the possibility of using geometry shader hardware to esti-
mate principal direction, but rule it out as too expensive [Kim et al.
2008].

DeCarlo et al. present a system that uses surface curvature of
meshes in an object-based algorithm to create suggestive contours.
Suggestive contours are lines that are near-contours from the cur-
rent viewpoint and real-contours in near-by viewpoints. By ren-
dering suggestive contours along with actual contours, their system
creates much more expressive line drawings that just using con-
tours alone. DeCarlo et al. then provide several modifications to
the system to enable real-time rendering as well as mentioning that
further performance improvements are likely possible if the full
programmable capabilities of graphics hardware are used [DeCarlo
et al. 2003; DeCarlo et al. 2004].

Another object-based method utilizing view-dependent differential
geometry is presented by Judd et al. Their system uses curvature as
well, but a key difference is that they derive in screen space instead
of object space. Their results look very good, however the sys-
tem has poor performance, especially for large meshes [Judd et al.
2007].

3 Background

Surface normals are considered first-order structure of smooth sur-
faces because because the normals define, along with the point p
where the normal sits, a first-order approximation to the surface as
a tangent plane [Rusinkiewicz et al. 2008].

Interesting second order structure is normal curvature. At a point p
on a smooth surface, normal curvature k(u) = S(u) ·u, where u is
a unit vector tangent to the surface at p and S(u) is the shape oper-
ator. Principal curvatures, k1 and k2, are defined as the maximum
and minimum values, respectively, of k(u) at p. Principal direc-
tions are the directions of the principal curvatures [O’Neill 1966].

Normal curvature is often expressed in terms of the second funda-
mental form II:

II =
`

Dun Dvn
´

=

„

∂n
∂u

· u ∂n
∂v

· u
∂n
∂u

· v ∂n
∂v

· v

«

where n is the normal and Dun is the derivative of n in the direction
of u and Dvn is the derivative of n in the direction of v and u and
v are local coordinates in the tangent plane [Rusinkiewicz 2004].

The more interesting line drawing techniques use curvature and the
differential of curvature to determine where on models to create
lines [DeCarlo et al. 2004; DeCarlo et al. 2003; Judd et al. 2007].
Estimating curvature on polygonal meshes is a well understood
problem and there exists an algorithm for computing the estimation
at each vertex using differences in normals along edges between
vertices [Rusinkiewicz 2004; Rusinkiewicz 2009].

The algorithm described by Rusinkiewicz uses vertex normals and
edges to set up a set of linear constraints to solve for the second
fundamental form II:

Rusinkiewicz then approximates II in the discrete case by setting

up the following set of linear constraints:

II =

„

e0 · u
e0 · v

«

=

„

(n2 − n1) · u
(n2 − n1) · v

«

II =

„

e1 · u
e1 · v

«

=

„

(n0 − n2) · u
(n0 − n2) · v

«

II =

„

e2 · u
e2 · v

«

=

„

(n1 − n0) · u
(n1 − n0) · v

«

where ei are the three edges between the three vertices of a triangu-
lar face in the mesh and ni are the vertex normals. The constraints
are then used to solve for II using least squares. The result is then
added back to each vertex weighted by the amount of the triangular
face that is closest to the vertex [Rusinkiewicz 2004].

This algorithm is implemented in the trimesh2 library
[Rusinkiewicz 2009] and computes the curvature by looping
over the faces of the mesh. Since the algorithm approximates II at
each face, it has been limited to running on a host computer. With
the introduction of programmable geometry shaders [Blythe 2006],
however, this per-face computation can be performed directly on
graphics hardware.

4 Implementation

Our algorithm for estimating curvature is a straightforward adap-
tation of the host-based algorithm [Rusinkiewicz 2009]. Differ-
ent passes over the faces of the model become passes through the
graphics pipeline. Since the curvature computed at each face is
weighted and added to each vertex of the face, we use framebuffer
objects and blending functions to sum the curvature contribution of
each face.

4.1 Algorithm

Our algorithm consists of four passes. The output of each pass
is written to a floating-point texture attached to the framebuffer.
For three of the passes, we need the per-vertex computation to be
summed for all faces. We accomplish this by blending values into
the texture with clamping disabled.

For the passes that require summing over each face, we enable
blending with glEnable(GL_BLEND), leave the blending equa-
tion as GL_FUNC_ADD and set both the source and destination
blending functions to GL_ONE. This results in the values being
added in the normal fashion: Vs + Vd, where Vs is the source value
(the value being written to the framebuffer) and Vd is the destination
value (the value already in the framebuffer) [Shreiner et al. 2006].

Before each of the algorithm passes run, we create a 32-bit floating
point format texture with dimensions of the vertex map. The texture
is then attached to the framebuffer. Because we use floating point
format textures, we require the hardware to support floating point
format color buffers. We also disable all clamping when writing to
the color buffer and textures. The textures are properly addressed
by using a vertex map.

As a preprocessing step, we map each vertex of the model to a pixel
in the render target. The vertex mapping step starts by calculating
the dimensions of the two-dimensional map:

w = NP (⌊
p

|V |⌋)

h = NP (⌈
p

|V |⌉)

where |V | is the number of actual vertices in the model, and NP (x)
returns the next power of two for x. The dimensions are then used

Figure 2: Principal directions of curvature on a non-deformed
model.

to create a set of “vertices” from [−1.0 − 1.0) which are assigned
to each actual vertex in the model. The assignment is by simple
position association between the two vertex arrays since the same
index buffers for the triangles are used. The vertex map is also
used as the texture coordinates for the passes that read the output of
previous passes.

The first pass runs in the geometry shader and computes a weight
for each vertex based on the area of each connected face. These
weights are written for each vertex to the texture attached to the
framebuffer. Since the geometry shader outputs three values for
each face (the three connected vertices), and we have enabled alpha
blending in the framebuffer, the weights for each vertex are summed
for every face.

The second pass, also a geometry shader pass, starts by creating a
tangent frame in the face. The differences between the normals at
each vertex are taken and then, for each edge, a matrix is updated
with dot products between the edge and the tangent frame and the
normal deltas are weighted and summed. The matrix and summed
delta normals are used as the linear constraints for a least-squares
approximation to calculate a curvature tensor. The approximation
described in more detail in 3. The curvature tensor is then pro-
jected into the tangent frame and then weighted at each vertex by
the weight of the current face.

Figure 3: Principal directions of curvature on a deformed model.

The third pass is a vertex-only pass and thus does not require blend-
ing. This pass takes the curvature tensor and uses a Jacobi rotation
to find principal curvatures and directions. This pass also ensures
that the principal directions at each vertex are perpendicular to the
vertex normal. Figures 2 and 3 show the output of this pass. The
orange lines are principal directions of maximum curvature and the
blue lines are principal directions of minimum curvature. As can be
seen in the bottom pictures, the directions orthogonal to each other.

The final geometry shader pass estimates the derivatives of curva-
ture at each vertex. This pass follows a process similar to the sec-
ond pass, by starting with a tangent frame in the face. The principal
directions of curvature are then projected into the tangent frame.
The differences between these local curvature vectors are then used,
along with dot products between the edges and tangent frame to cre-
ate a set of linear constraints. The linear constraints are used in a
least-squares approximation to the differential curvature. The dif-
ferential curvature at each vertex is weighted by the face.

4.2 Deforming Models

For our initial demonstration, we implemented two simple defor-
mation primitives, tapering and bending [Barr 1984].

Tapering The tapering primitive is a global deformation along the
z axis. From Barr, the vertex deformation is calculated as:

r = f(z) = (1.0 − z2) + 0.01 (1)
X = rx

Y = ry

Z = z

where x, y, z are the original components of the vertex, and X, Y, Z
are the deformed components. The normals are easily deformed as
well using the following transformation matrix:

r2J−1T =

0

@

r 0 0
0 r 0

−rf ′(z)x −rf ′(z)y r2

1

A

where f ′(z) = −2z from Equation 1 above.

Bending The bending primitive is a global deformation along the
y axis. From Barr, the bending angle is calculated as:

θ = 0.01ŷ

Cθ = cos(θ)

Sθ = sin(θ)

where

ŷ =

8

>

<

>

:

−1.0, y ≤ −1.0

y, −1.0 < y < 1.0

1.0, y ≥ 1.0

The vertex deformation is calculated as:

X = x

Y =

8

>

<

>

:

−Sθ(z − 1
k
) + Cθ(y + 1.0), y < −1.0

−Sθ(z − 1
k
), −1.0 ≤ y ≤ 1.0

−Sθ(z − 1
k
) + Cθ(y − 1.0), y > 1.0

Z =

8

>

<

>

:

Cθ(z − 1
k
) + 1

k
+ Sθ(y + 1.0), y < −1.0

Cθ(z − 1
k
) + 1

k
, −1.0 ≤ y ≤ 1.0

Cθ(z − 1
k
) + 1

k
+ Sθ(y − 1.0), y > 1.0

where x, y, z are the original components of the vertex, and X, Y, Z
are the deformed components. Again, the normals are deformed
using the following transformation matrix:

(1 − k̂z)J−1T =

0

@

1 − k̂z 0 0

0 Cθ −Sθ(1 − k̂z)

0 Sθ Cθ(1 − k̂z)

1

A

where

k̂ =

(

k, ŷ = y

0, ŷ ̸= y

4.3 Line Creation

As part of our demonstration we extract occluding contours and
stroke them as simple lines. Occluding contours are the easiest type
of contour to extract from a model. The naı̈ve algorithm simply
checks the angle between between the view vector (V) and normal
(N) at each vertex of a triangle. If V · N < 0 at one vertex and
V · N > 0 at another vertex, then the edge is a contour and a
line is drawn. This method has the problem that it can easily cause
artifacts where lines flip between edges of a triangle.

Figure 4: Two methods to extract occluding contours on a trian-
gular mesh. The bottom contour is the naı̈ve method which only
checks the dot product at each vertex. The top contour is an im-
proved method that interpolates the zero crossing of the dot product
across each face.

A more advanced technique is to interpolate the dot product across
the edges and find where the actual zero crossings of the dot product
occur. These locations are then used to draw a line. The differences
between these two techniques are illustrated in Figure 4. Figure 5
shows drawing occluding contours on a torus model.

We have an initial implementation of suggestive contours using the
derivative of curvature. Figure 7 illustrates the results of these con-
tours. While the results are promising, there are obvious artifacts,
most notably the lines above the trunk and between the eyes. The
implementation does, however, demonstrate that we are calculating
curvature and its derivative and using those results.

4.4 Drawing Lines

Once the various types of lines have been created, they need
to be drawn. We currently use the OpenGL line primitive to
draw the lines. Future work will implement stylization of the
lines by extruding fins in the geometry shader. Properly draw-
ing anti-aliased lines in OpenGL is non-obvious, the most impor-
tant step being to ensure writing the depth buffer is disabled with
glDepthMask(GL_FALSE).

5 Results

Our current implementation has not been optimized for graphics
hardware execution, however, we are able to achieve moderate per-
formance without optimization. Table 1 lists the frame rates for
various models of increasing complexity. For medium complexity
models, such as the elephant, we are close to interactive frame rates
and we believe an optimized version of our algorithm, along with
fixing the bug described below, will yield greater than interactive
rates on the moderately complex models.

We have a bug that is reducing performance that we have yet to
solve. In the curvature estimation passes, we are unable to load the
vertex map into the graphic card memory as a buffer object. Thus,
as model complexity increases, we must transfer the entire set of
map vertices onto the graphics card every frame. For small models,
this overhead does not affect performance, but with 80K vertices or
280K vertices, performance suffers drastically.

Figure 5: Occluding contours.

Model Vertices Triangles FPS
torus 4,800 9,600 300
rings 14,400 28,800 100
elephant 78,793 157,160 10
heptoroid 286,679 573,400 0.1

Table 1: Frame rates for various models of increasing complexity.

Figure 6: Examples of our algorithm rendered with tone shading
[Gooch et al. 1998].

6 Future Work

There are several aspects to extending out initial implementation.
First, we need to optimize our algorithm for execution on graphics
hardware. We also need to fix the bug mentioned in 5. Both changes
should increase performance to acceptable interactive frame rates
for even highly complex models.

Another obvious avenue for future work is to improve our sugges-
tive contours implementation as well as add extraction of additional
contours, such as apparent ridges. Additionally, we would like to
add stylization of lines by extruding fins in the geometry shader.
Examples of line stylization can be found in [Kalnins et al. 2003;
Rusinkiewicz et al. 2008].

We also plan to add more complex model deformation such as ver-
tex blending to enable line drawing on more interesting animated
models. Another possible extension is to implement recent work in
accelerated line visibility [Cole and Finkelstein 2009].

References

BARR, A. 1984. Global and local deformations of solid primitives.
ACM SIGGRAPH Computer Graphics, 21–30.

Figure 7: Our initial attempt at implementing suggestive contours.

BLYTHE, D. 2006. The direct3d 10 system. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Papers, 724–734.

COLE, F., AND FINKELSTEIN, A. 2009. Fast high-quality line
visibility. Proceedings of the 2009 symposium on Interactive 3D
graphics and games, 115–120.

DECARLO, D., FINKELSTEIN, A., RUSINKIEWICZ, S., AND
SANTELLA, A. 2003. Suggestive contours for conveying shape.
In ACM SIGGRAPH 2003 Papers, 848–855.

DECARLO, D., FINKELSTEIN, A., AND RUSINKIEWICZ, S. 2004.
Interactive rendering of suggestive contours with temporal co-
herence. In Proceedings of the 3rd international symposium on
Non-photorealistic animation and rendering.

GOOCH, A., GOOCH, B., SHIRLEY, P., AND COHEN, E. 1998.
A non-photorealistic lighting model for automatic technical il-
lustratio n. In SIGGRAPH ’98: Proceedings of the 25th annual
conference on Computer g raphics and interactive techniques,
447–452.

JUDD, T., DURAND, F., AND ADELSON, E. 2007. Apparent ridges
for line drawing. In ACM SIGGRAPH 2007 Papers.

KALNINS, R. D., DAVIDSON, P. L., MARKOSIAN, L., AND
FINKELSTEIN, A. 2003. Coherent stylized silhouettes. ACM
Transactions on Graphics 22, 3, 856–861.

KIM, Y., YU, J., YU, X., AND LEE, S. 2008. Line-art illustration
of dynamic and specular surfaces. In ACM SIGGRAPH Asia
2008 Papers.

LEE, Y., MARKOSIAN, L., LEE, S., AND HUGHES, J. F. 2007.
Line drawings via abstracted shading. In ACM SIGGRAPH 2007
Papers.

O’NEILL, B. 1966. Elementary Differential Geometry. Academic
Press, Inc.

RUSINKIEWICZ, S., COLE, F., DECARLO, D., AND LSTEIN,
A. F. 2008. Line drawings from 3d models. SIGGRAPH 2008
Classes (Aug), 1–356.

RUSINKIEWICZ, S. 2004. Estimating curvatures and their deriva-
tives on triangle meshes. Proceedings of the 2nd International
Symposium on 3D Data Processing, Visualization and Transmis-
sion, 486–493.

RUSINKIEWICZ, S. 2009. trimesh2.
http://www.cs.princeton.edu/gfx/proj/trimesh2/ .

SHREINER, D., WOO, M., NEIDER, J., AND DAVIS, T. 2006.
OpenGL Programming Guide, fifth ed. Addison-Wesley.

