
Locating Critical Points in 3D Vector Fields using Graphics Hardware

David Hyon Berrios ∗

University of Maryland, Baltimore County

Abstract

Calculating critical points in 3D vector fields is computationally ex-
pensive, and requires parameter adjustments to maximize the num-
ber and type of critical points found in a particular 3D vector field.
This paper details the modifications required to execute Greene’s
bisection method directly on graphics hardware, and compares the
performance of the CPU+GPU versions to the CPU only versions.

Keywords: critical points, singularities, vector fields, null points,
GPGPU

1 Introduction

3D vector fields are used in computational fluid dynamics, weather,
and physics simulations, among others. Because the size of the sim-
ulations usually grows as the computational capabilities increase,
better methods of reducing the search space within the simulation
bounds becomes more important. Manual methods of searching for
features can no longer keep pace with the increase in the size of the
datasets. Similarly, visualizing the evolution of structural changes
within the 3D vector fields through time becomes more difficult as
the 3D vector fields become larger (higher resolution, both temporal
and spatial) and the simulations become longer (more timesteps).

An example can illustrate the difficulty of searching a 3D vector
field for a particular feature. Suppose a user wanted to locate a
tornado in a weather simulation that spanned the entire earth. Nor-
mally, thresholds could be used to locate regions where the wind
speed was higher than the threshold. Although the wind speed is a
good heuristic for locating tornadoes, it does not uniquely identify
their locations. Hurricanes can also have strong winds, but their
behaviors and characteristics are vastly different. Alternatively, the
effort of finding this tornado in both the space of each individual
timestep, and across multiple timesteps, can be offset by using crit-
ical points. A tornado exists as a vortex within a 3D vector field,
with a sink or source at its base. The point at which the vector
field vanishes, a critical point, can be used to find a location in
each timestep that could possibly show a tornado. This narrows the
search space, both in time and space.

With the exception of a few algorithms [Globus et al. 1991; Parnell
et al. 1996], the algorithms used to calculate critical points share a
similar trait that make them perfect candidates for modern parallel
architectures: the operations applied to each sub-volume within a
simulation can be performed independently of all other operations
on other sub-volumes. Modern graphics hardware has been shown
to accelerate calculations for parallel problems, and conventional
parallel machines have been used to accelerate critical point calcu-
lations [Gerndt et al. 2006]. No work has been done to accelerate
the calculation of critical points using graphics hardware.

The rest of the paper is presented as follows. The background sec-
tion summarizes the information related to vector fields and crit-
ical points. The related work section is split into the two sub-
sections used in this work: an overview of Greene’s bisection
method [Greene 1992], and methods of accelerating problems using
parallel machines, including graphics hardware. The implementa-
tion section details the changes required to Greene’s bisection to

∗e-mail: david.berrios@umbc.edu

execute on modern graphics hardware. Finally, the results of bench-
marks are presented, comparing the CPU version of the algorithm
to a CPU+GPU version.

2 Background

This section provides background information on vector fields, crit-
ical points, and algorithms used to locate the critical points. The
vector fields are created either from simulations, or from derived
calculations of scalar fields.

2.1 Vector Fields

Figure 1: An example of a 2D vector field

A vector field consists of a grid of positions, with each position
having one or more vectors. An example 2D vector field is shown
in Figure 1. Vector fields are generally used in physics-based sim-
ulations from complex parallel codes. A scalar field is similar to a
vector field, but with scalars associated with the positions instead
of vectors. By calculating the gradient or some other function that
yields a vector, a derived vector field can be created from scalar
fields. Since the vector fields themselves share common properties
across disciplines, algorithms applied to vector fields will benefit
all domains that use vector fields. So, for example, visualization
techniques created for and applied to computational fluid dynamics
simulations can be applied and will benefit space weather simula-
tions and vice versa. A more thorough description of vector fields is
given by Morse and Feshbach [1953], with applications to physics
problems.

2.2 Critical Points

Critical points are positions within a vector field where the vector
field vanishes. More detailed information about critical points can
be found in the books by Arnold [1992; 1993], and Palais and Terng
[1988]. Finding these positions within a vector field is important
because it allows the exploration of a vector field by extracting fea-
tures from the vector field that exist near or are characterized by the
critical points. These features are enough to characterize the global
topology of the vector field, allowing less information to be dis-
played. When dealing with simulation data from complex parallel
codes, minimizing the search space helps the exploration process.

The topological degree, also called the Poincaré index, is a math-
ematical property from the Poincaré-Hopf theorem. It is used as a
value to determine whether a critical point exists within some vol-
ume of space. It represents the number of times the angle (2D)
or solid angle (3D) of the vectors at the boundary of a closed line
or volume, covers a unit circle (2D) or unit sphere (3D). The vol-
ume used is dependent on the algorithm, but normally a cube is



used, since it is topologically the same as a sphere, and is non-
overlapping. The two terms, degree and index, are used inter-
changeably. A critical point having an index of 1 represents a
source, while a critical point having an index of -1 represents a
sink. Higher order critical points are those critical points having an
index whose magnitude is greater than 1.

3 Related Work

Several algorithms can be used to calculate critical points in vector
fields; Greene’s bisection method was chosen because of its ease
of implementation, and quality of the results. Greene’s bisection
algorithm, along with other methods of calculating critical points
are discussed for completeness.

In 1992, Greene published the first method for locating first-order
critical points (i.e., index is -1 or 1) in 3D vector fields using the
topological degree. A previous algorithm used a similar initial
method [Globus et al. 1991], but found the nulls by using Newton-
Raphson iteration to converge to the solution for each cell; it re-
quired an initial guess and did not always converge to a solution.
Greene introduced the concept of the topological degree of a vol-
ume in a 3D vector field. The topological degree is the Poincare
index, evaluated using surface vector values of a sub-volume within
a 3D vector field. Greene’s algorithm evaluates sub-cubes within a
3D vector field. For each face of a cube, a diagonal line is created
that separates the face into two triangles. The vectors at the vertices
of each triangle are projected onto a unit sphere. The solid angle
formed by this projection is added or subtracted to a global value
for a given sub-volume, depending on the sign of the cross product
of two of the vectors, dotted with the third (essentially, either in-
ward or outward). In particular, Greene focused on locating critical
points with a topological degree of 1 or -1, which are critical points
with a degree of one. This was also a limitation of the algorithm,
since it could not find higher-order critical points (those points with
degrees higher than one).

Schaeuermann et al. [1997] created an algorithm, using the nota-
tions from clifford algebra, to find singularities having a higher-
order, but it only applied to 2D vector fields. Their work also
included diagrams showing higher-order critical points in the 2D
case.

Mann and Rockwood [2002] extended the work by Schauermann et
al., and introduced an algorithm to calculate singularities of higher-
order than previously possible for higher dimensions. Singularities,
in this case, are equivalent to critical points. They utilize multivec-
tors and operators from geometric algebra, using an implementation
provided by the work of Fonijne [2006], to calculate and evaluate
the topological degree of a sub-volume. For each face of a sub-
cube, a grid is created and vectors are interpolated onto the grid,
using trilinear interpolation of the vectors at the corners. The con-
tributions of the trivectors and bivectors from each face are added to
calculate the topological degree. As in Greene’s bisection method,
the cubes that have a non-zero index are bisected and the algorithm
repeats. Because Mann and Rockwood’s method projects the vec-
tors onto each face of the cube, the algorithm locates singularities
that exist only because of the projection of the vectors onto the
faces, but some of those singularities do not exist in the original
vector field. They use a heuristic to help eliminate these false sin-
gularities. Useful references for geometric algebra and its appli-
cations to computer science are included in books by Dorst et al.
[2007], and Vince [2008].

Furuheim wrote a masters thesis that compares an analytical
method to Greene’s bisection method and demonstrates new meth-
ods of visualizing 3D vector fields using the calculated critical
points [2008]. Furuheim’s algorithm locates more first order critical

points than Greene’s bisection method, but like Greene’s algorithm,
it cannot find critical points of higher degree than one. This work
demonstrates that Greene’s algorithm is still comparable to newer
techniques.

All current algorithms used to calculate critical points in vector
fields rely on the Poincare index and all bisect the volume to narrow
the search for the true location. The difference exists in how they
setup the calculations to approximate the index.

4 Implementation

Algorithm 1 Greene’s Bisection

1: function calculate-degree (Cell c)
2: degree← 0
3: for all t ∈ triangles in c do
4: degree← degree + compute-solid-angle (t)
5: end for
6: degree← degree ∗ 1.0/(4.0 ∗ π)
7: return degree
8: end function

9: function calculate-solid-angle(Triangle t)
10: anglesolid ← 0
11: v ← vectors of t
12: θ1 ← arccos((v2 • v3)/(length(v2)∗length(v3)))
13: θ2 ← arccos((v1 • v3)/(length(v1)∗length(v3)))
14: θ3 ← arccos((v1 • v2)/(length(v1)∗length(v2)))
15: result← tan((θ1+θ2+θ3)/4.0)∗tan((θ1+θ2−θ3)/4.0)∗

tan((θ2 + θ3 − θ1)/4.0) ∗ tan((θ3 + θ1 − θ2)/4.0)

16: result←
√
result

17: if v1 • v2 × v3 < 0 then
18: anglesolid = −a ∗ 4.0
19: else
20: anglesolid = a ∗ 4.0
21: end if
22: return anglesolid

23: end function

24: function locate-critical-points (Cells)
25: criticalpoints← {}
26: for all cells ci of Cells do
27: degree← calculate-degree(ci)
28: if degree 6= 0 then
29: if size(ci) < threshold then
30: append center of ci to criticalpoints
31: else
32: children← bisect(ci)
33: childrenresults← locate-critical-points(children)
34: append childrenresults to criticalpoints
35: end if
36: end if
37: end for
38: return criticalpoints
39: end function

Greene’s bisection has been implemented using C++ and NVIDIA’s
CUDA SDK. CUDA allows transferring data to the graphics card
and performing calculations on the hardware; although it can per-
form almost any calculation, the problem to be calculated on the
graphics hardware has to be reformulated to take advantage of the
parallel architecture of the hardware. For all the cells within the
simulation, cubes are created, containing the vertices at the corners
and the positions of those corners. Each face of the cube is split
into two triangles. The CPU version operates on each cube inde-



pendently of all other cubes, while the GPU version operates on all
triangles independently of all other triangles.

NVIDIA hardware can operate on 32 thread chunks, called warps,
at a time. The number of threads should be multiples of 16 or 32
to maximize the number of calculations performed. Blocks are
groups of threads that share memory. When threads in one block
require access to data in memory (requiring a significant number
of clock cycles), the graphics hardware can swap that block for an-
other one and continue operating. As a result, the more blocks that
are available to operate on a problem, the more the built-in sched-
uler can hide the memory latencies. For the two graphics cards
benchmarked, the 8600M GT and the 8800 GT, the warp size is
32. To maximize the parallelism, each warp should have 32 threads
to execute. See the CUDA programming guide[NVIDIA 2008] for
more technical aspects for programming on NVIDIA hardware .

Each cube created from the data was separated into twelve triangles
(two triangles per face, six faces). The grid was specified as 512
blocks × 32 threads per block for a total grid size of 16384. Each
thread operated on an individual triangle, performing the series of
operations listed in function calculate-solid-angle. Whenever pos-
sible, faster, less accurate single precision versions of operations
were used. These include tanf, and fdividef. For each mem-
ory transfer to the graphics device, 16384 triangles are sent, and
the results are then inspected. The candidate cells are created from
the cells having a non-zero index; these cells are bisected into eight
children, and added to a candidate cells list. When the initial pass is
complete, the candidate cells are then processed and the algorithm
continues. The results are returned when the cells being inspected
are smaller than a threshold size.

Two versions of the GPU accelerated Greene’s bisection were cre-
ated: one that performed all the triangle calculations on graphics
hardware, and one that only performed the initial scan on graphics
hardware. In most cases, the number of candidate cells after the
first pass is significantly less than the number of total cells. Very
rarely will the number of critical points equal the number of cells in
the 3D vector field. By eliminating the necessary overhead of trans-
ferring a smaller number of cells after each pass, the performance
is increased.

5 Results

Average Performance (seconds)
CPU GPU GPU+CPU Speedup

MacBook Pro 29.742 8.893 8.654 5.191
Mac Pro 24.307 4.834 4.682 3.437

Table 1: Average runtimes of the three methods of calculating
Greene’s bisection on two different systems. Each method was ex-
ecuted ten times on each system. The MacBook Pro has a 2.6 GHz
Core 2 Duo processor and an NVIDIA 8600M GT graphics proces-
sor. The Mac Pro has two 3.2GHz Quad-Core Intel Xeon processors
and an NVIDIA 8800GT graphics processor. Only one CPU core
was used for benchmarking purposes.

To compare the performance of GPU versions to the CPU version,
some assumptions need to be made. All the times are compared
to the relative performance of a single core of a multicore proces-
sor. This was done because, for any given problem, more processor
cores can be added to solve the problem faster. More graphics cards
can also be added to solve the problem faster. To get a better sense
of how a graphics processor performs relative to the base unit of
a processor, comparing the graphics card performance to that of a
single core makes more sense.

For all three versions, only the time spent computing the degrees
of each cell was measured (function locate-critical-points listed
above). The setup time to construct the structures necessary to pass
the data between the GPU and CPU, or the time spent to open and
load the data was not timed. The file tested, a space weather sim-
ulation file, contained 3077514 cells. Recent simulations contain
approximately 30 million cells. The algorithm stops when the di-
agonal of a cell < .005.

The GPU version performed all solid angle calculations on the
graphics card. As the stages of the algorithm progress (the depth
of the breath first search), the number of completely filled blocks
decreases, and the time for the memory transfers to and from the
graphics card increases with respect to the calculation times. This
can be seen in the performance results shown in Table 1. By only
performing the initial scan of the cells on the graphics card, and
completing the resulting scans with the CPU, the GPU+CPU algo-
rithm consistently performs better than completing all the scans by
the graphics card.

The accuracy of the GPU and GPU+CPU versions were virtually
identical to the CPU only version, even with the use the less ac-
curate single precision intrinsic functions tan and fdividef. The
same number of critical points were found, with the same index
values. At most, the error was ± ∼ .01.

6 Future Work

CUDA, as it exists on OSX, does not support 64-bit code. This re-
mains a major limitation; the 4GB memory limit was encountered
during testing of the techniques in this paper. Porting it to Linux
or obtaining a 64-bit compatible version for OSX needs to be ex-
plored.

The Mann and Rockwood method has not yet been applied to real
data. It is not clear if this is because it is not feasible, computation-
ally, for real data, or because the technique would not work with
perturbed or noisy vector fields. This needs to be explored. Also,
a direct comparison between different methods of calculating the
critical points can be presented. The parameters of all algorithms
can be explored to determine which parameters affect the resulting
number and quality of critical points found.

7 Conclusion

This paper presented several methods of calculating critical points
in 3D vector fields. Greene’s bisection method was selected, and
implemented using C++ and NVIDIA’s CUDA SDK. The perfor-
mance on both the mobile graphics chip, as well as the desktop
graphics card, show promising results. The performance on the
MacBook Pro demonstrates that the graphics chip can be used to
outperform both cores of the host machine when calculating a suit-
able parallel problem. The NVIDIA Tesla S1070 should show sim-
ilar performance gains; each card alone should equal the perfor-
mance of all 8 cores of the host machine. Since the system has four
cards, this will be an economical and powerful way of performing
complex calculations using commodity hardware.

References

ARNOLD, V. I. 1992. Ordinary Differential Equations. Springer-
Verlag.

ARNOLD, V. I. 1993. The Theory of Singularities and Its Applica-
tions. Press Syndicate of the University of Cambridge.



Figure 2: Performance of the different methods of calculating the critical points using Greene’s bisection. The CPU times represent the time
it takes for one core to complete the calculations. The MacBook Pro has an NVIDIA 8600M GT graphics card, and the Mac Pro has an
NVIDIA 8800GT graphics card. The GPU times represent the time it takes for the respective graphics cards to complete the calculations.

(a) A fluxrope on the day-side of a global magneto-
sphere simulation.

(b) A single fieldline that characterizes the boundary
between three different topologies.

Figure 3: Visualizations showing a feature that can be found using critical points.



DORST, L., FONTIJNE, D., AND MANN, S. 2007. Geometric
Algebra for Computer Science: An Object-Oriented Approach
to Geometry. Morgan Kaufmann Publishers.

FONTIJNE, D. 2006. Gaigen 2:: a geometric algebra implemen-
tation generator. In GPCE ’06: Proceedings of the 5th interna-
tional conference on Generative programming and component
engineering, ACM, New York, NY, USA, 141–150.

FURUHEIM, K. 2008. Classification and Visualization of Critical
Points in 3D Vector Fields. Master’s thesis, University of Oslo.

GERNDT, A., SARHOLZ, S., WOLTER, M., MEY, D. A.,
BISCHOF, C., AND KUHLEN, T. 2006. Nested OpenMP for
efficient computation of 3D critical points in multi-block CFD
datasets. In SC ’06: Proceedings of the 2006 ACM/IEEE confer-
ence on Supercomputing, ACM, New York, NY, USA, 93.

GLOBUS, A., LEVIT, C., AND LASINSKI, T. 1991. A tool for
visualizing the topology of three-dimensional vector fields. In
VIS ’91: Proceedings of the 2nd conference on Visualization ’91,
IEEE Computer Society Press, Los Alamitos, CA, USA, 33–40.

GREENE, J. M. 1992. Locating three-dimensional roots by a bisec-
tion method. Journal of Computational Physics 98, 2, 194–198.

MANN, S., AND ROCKWOOD, A. 2002. Computing singularities
of 3D vector fields with geometric algebra. In VIS ’02: Pro-
ceedings of the conference on Visualization ’02, IEEE Computer
Society, Washington, DC, USA, 283–290.

MORSE, P. M., AND FESHBACH, H. 1953. Methods of Theoretical
Physics: Part 1. McGraw-Hill Book Company, Inc.

NVIDIA. 2008. NVIDIA CUDA Compute Unified Device Archi-
tecture Programming Guide. NVIDIA.

PALAIS, R. S., AND TERNG, C. 1988. Critical Point Theory and
Submanifold Geometry. Springer-Verlag.

PARNELL, C. E., SMITH, J. M., NEUKIRCH, T., AND PRIEST,
E. R. 1996. The structure of three-dimensional magnetic neutral
points. Physics of Plasmas 3 (Mar.), 759–770.

SCHEUERMANN, G., HAGEN, H., KRÜGER, H., MENZEL, M.,
AND ROCKWOOD, A. 1997. Visualization of higher order sin-
gularities in vector fields. In VIS ’97: Proceedings of the 8th
conference on Visualization ’97, IEEE Computer Society Press,
Los Alamitos, CA, USA, 67–74.

VINCE, J. 2008. Geometric Algebra for Computer Graphics.
Springer.


