
GPU Processing Methods for Machine Vision
David Riley

1 Abstract

I present a novel model for performing 2D Gabor filtering for
images on the GPU. Ideally, the model is built upon the linear-
time recursive model from Young, van Vliet and Glinkel in
[Young et al. 2002]. I describe how the recursive, feedback-based
model upon which the algorithm is built can be adapted to the GPU
despite the parallel, independent nature of the shader units. I ex-
amine the properties of this implementation vs. a GPU convolution
implementation.

2 Introduction

The Gabor filter is a separable filter (extendable to multiple dimen-
sions) whose kernel is composed of a Gaussian modulated by a si-
nusoid. In machine vision, it is particularly popular due to the re-
semblance if its output to that of a number of structures in the visual
cortex of many animals (including humans) which detect edges at
a given orientation for high-level feature recognition. The typical
method of processing an image (or any data set) with the Gabor fil-
ter is through convolution. In recent times, a linear- time method
of closely approximating the Gabor filter through an IIR-like feed-
back structure [Young et al. 2002] has been developed which pro-
duces a significant speedup over the relatively expensive convolu-
tion method.

The increasing programmability of the processing units of
consumer-level GPUs has shown them to be of tremendous power
when applied to parallel processing, especially processing based on
floating-point math. The highly distributed nature of GPU process-
ing, however, presents a problem for the recursive Gabor algorithm:
most of the processing elements operate fully independently of each
other and are generally incapable of seeing each others’ outputs.
This makes it quite difficult to feed the results from previous stages
into the outputs of the recursive Gabor implementation. These ob-
stacles, however, are not insurmountable.

The motivation for implementing this algorithm on the GPU is quite
strong. The convolution-based method’s run time is directly pro-
portional to the number of pixels in the kernel; for a typical 32x32
kernel, this results in 1024 complex multiplications. Each dimen-
sion of the recursive filter requires a forward pass of 3 complex
multiplications and a reverse pass of 4; for a 2D image, this results
in 14 total complex multiplications per output pixel. In theory, this
method should outperform even a 4x4 filter kernel for convolution,
which would generally be too small to be useful.

3 Previous Work

The particular method of filtering I am attempting to implement on
the GPU is (as mentioned) not new. [Young et al. 2002] describes
a linear-time (with respect to the number of input pixels) method
of performing Gabor filtering using a recursive feedback method
similar to an IIR filter. The filtering process requires two passes in
each dimension, and a 2D filter can be accomplished by running
the filter on each dimension successively. The method is difficult
to implement on the GPU for the reasons mentioned before, but
the method for implementing recursive filters given in [Green 2005]
turns out to work quite well (though it does introduce a fair amount
of overhead).

Others have done Gabor shading on the GPU as well, typically us-
ing convolution. [Fung and Mann 2005] is a document describing
the OpeNVIDIA project, which aims to do a number of machine vi-
sion tasks on the GPU. The document claims that the project does
Gabor and Chirplet filtering in the GPU, but I have yet to find the
implementation of such in the Sourceforge repository containing
their code.

Most computer vision papers which use Gabor filters still
use the convolution method for their filtering (for example,
[Huang and Xie 2005], which was published significantly after
Young et al’s work, and [Liu and Wechsler 2002], which was pub-
lished before or concurrently with it). For real-time tasks, the
linear-time method can provide a significant speedup over convo-
lution (even a 8x8 filter kernel, which is usually too small to be
useful, requires 64 complex multiplications, while the linear-time
method requires about 16 total complex multiplications). The re-
cursive method also tends to be much more bandwidth-friendly as
compared to the convolution method, since it primarily uses the re-
sults of the previous three calculations as its inputs instead of a great
deal of memory locations.

There are a number of papers dealing with general-purpose com-
puting efficiency on the GPU, especially for matters of memory
bandwidth and cache management. In [Govindaraju et al. 2006],
Govindaraju et al present a framework for effectively utilizing the
caches and texture units on modern GPUs for efficient scientific
computation. This appears to be a great part of the success of the
FFT method presented in [Govindaraju et al. 2008]. The methods
found could prove quite useful if cache issues arise or if large areas
of memory end up needing to be used.

[Buck 2005] also supplies a number of helpful tips for executing
general- purpose code quickly on GPUs. It largely deals with prob-
lems which are familiar to authors of conventional software but ac-
centuated on GPUs, such as branching and memory bandwidth is-
sues. Many of these tips were likely gleaned from the development
of the framework described in [Buck et al. 2004], which details a
stream-computing framework for GPUs.

[Fatahalian et al. 2004] details a number of issues regarding mem-
ory bandwidth when doing high-throughput calculations on GPUs.
The paper notes a number of issues with GPU bandwidth, among
which are the fact that the arithmetic units often cannot acquire data
fast enough to feed their processors. It is worth noting that most of
the GPUs involved in the study are somewhat older, and some of
the issues may be somewhat ameliorated. The methods given in
[Govindaraju et al. 2006] may be useful in avoiding some of the
problems presented here; since this implementation of the filter is
not likely to consume a great deal of texture memory bandwidth
(except perhaps on the writing end).

Little information is available in the current academic literature on
methods for doing feedback-based filtering in the GPU, presumably
due to the difficulty of enforcing order of operation on the pixels.
The game development community, however, seems to have come
up with a few methods summarized in [Green 2005]. Most of the
methods appear to be for real-time blurring operations (e.g. for
depth-of-field approximations, among other things), however Green
offers examples of recursive, resonance-based filters similar to the
linear-time Gabor filter implemented here. The examples in that
paper form the basis of this work.



4 Implementation

The important aspects of this algorithm are in two parts: the image
processing algorithm itself, and the method by which the recursive
linear-time version is implemented in the GPU. We will first present
the various methods of obtaining a filtered image (culminating in
the recursive method from [Young et al. 2002]), then present the
obstacles to implementing them on a massively data-parallel ma-
chine such as a GPU. Finally, we will present the implementation
of the linear-time algorithm, surmounting the issues present in GPU
filtering.

4.1 Algorithm Descriptions

4.1.1 Typical Convolution-Based Method

The method used for most image filtering algorithms employs con-
volution, either using one 2D pass or two 1D passes (the latter is
only possible if the filter kernel is separable). Convolution itself is
a simple operation; an area of pixels is multiplied piecewise with
another area of pixels and summed together. This is especially sim-
ple on the GPU; the filter kernel can be implemented as a small 2D
texture (or two 1D textures, in the case of separable filters), and the
convolution is a relatively straightforward function to implement in
a fragment shader.

The problem with convolution-based methods, however, is their
computational complexity (particularly their memory bandwidth
requirements). A typical Gabor filter useful for machine vision
will be between 16x16 and 64x64 pixels. A 2D convolution for
these kernels would require between 256 and 4096 texture fetches
for both the kernel and the source image as well as a comparable
number of multiplication operations per pixel. Even the dual 1D
version will require between 64 and 256 fetches and multiplications
per pixel. This puts considerable strain on the memory bandwidth
of the GPU, especially considering that the units will likely thrash
the local texture cache due to the large area over which pixels must
be pulled. One could, conceivably, optimize the convolution pixel
shader to behave better with the cache, but the main problem re-
mains the fact that such a large amount of data must be gathered
from the source image and texture.

2D convolution filters have long been a bottleneck for machine vi-
sion research due to their high computational expense (though, de-
pending on the task, the filtering is not always the most significant
bottleneck). Thankfully, Young and Van Vliet developed a linear-
time (in terms of total source pixels) Gabor filter implementation in
[Young et al. 2002].

4.1.2 Linear-Time Recursive Method

Most of the details of the Young and Van Vliet method of filtering
are better left to the original paper, but the core of the algorithm
are two recursive, IIR-type filters (one each for the forward and
backwards directions):

w[n] = in[n] − (b1 ∗ ejΩ ∗ w[n − 1] +

b2 ∗ ej2Ω ∗ w[n − 2] + b3 ∗ ej3Ω ∗ w[n − 3]) (1)

out[n] = B ∗ w[n] − (b1 ∗ e−jΩ ∗ out[n − 1] +

b2 ∗ e−j2Ω ∗ out[n − 2] + b3 ∗ e−j3Ω ∗ out[n − 3]) (2)

The forward filter 1 is applied directly to the source image, while
the reverse 2 is applied to the intermediate (w) produced by the for-
ward filter. This bidirectional filter is common to recursive image
filters due to the phase shifting which occurs in the forward direc-
tion. The filter is applied separately to the horizontal and vertical
dimensions; the vertical filter is applied to the horizontal filter’s re-
sult (though the order is not important).

Note also that the numbers produced are complex quantities, which
makes the processing fairly daunting on a CPU (multiplies now take
4 multiplies and 2 adds). The operation isn’t considerably better on
a GPU; the GPU can perform some operations in parallel, but by
and large a complex multiply must still be computed via 4 multi-
plies and 2 adds.

The recursiveness, however, introduces issues when transitioning to
a GPU. The filter requires knowledge of its previous outputs, and
this is difficult to obtain in a GPU; most graphics frameworks do
not permit rendering to a texture that is being read from, or if they
do, the results are frequently undefined because:

• The parallel nature of the processing means that the previous
pixel is not even guaranteed to be complete before the next
pixel begins

• The GPU’s cache subsystem is often developed under the as-
sumption that the textures are not being modified, thus there
is no concept of making a “dirty” cache block (this prob-
lem is noted in [Green 2005], which also notes that this is
implementation-dependent; their summed area table imple-
mentation that wrote back to the same texture worked on one
generation of hardware and not the next)

Fortunately, methods of bypassing these issues (with some perfor-
mance overhead) exist, again as detailed in [Green 2005].

4.2 Implementation Details

4.2.1 Framebuffer Magic

The solution to the problem lies in restricting the area to which
the GPU renders. If we force the GPU to render one vertical line
at a time, we can rotate destination buffers and source textures so
that the shader used to compute the Gabor kernel uses the previous
three lines as source textures and the next line as a destination tex-
ture. This way, we are never rendering into a texture we are reading
from (as long as we have enough buffers, and generally the spacing
is enough to keep the cache from interfering anyway), and by ren-
dering individual lines, we enforce the order of rendering pixels to
make the process go left to right (or top to bottom).

For the reverse process, we can simply move in the opposite di-
rection (reversing the order of buffer rotation) and render the filter
again with different coefficients. Looking at the algorithms, we dis-
cover several optimizations:

• Since the bn and e±jnΩ terms are constant per filter, they can
be precomputed and pre-multiplied together, essentially form-
ing single -term bn coefficients for each recursive pixel

• Considering the above modification, formula 1 is basically
formula 2 with a B value of 1.0 and different bn values

Thus we only need one shader, with provisions for moving verti-
cally as well as horizontally and the ability to change out the coef-
ficients (accomplished through uniforms in the shader).

Additionally, the initial pixel values (the first three pixels defined
in either direction, important since they use “previous” pixels that
don’t really exist) are computed by dividing the first input pixel by



a complex value. A complex division is a very expensive optimiza-
tion, but it can be converted to a multiplication by simply storing
the reciprocal of the divisor as a coefficient. For example, the ini-
tial pixel in the forward dimension is defined by [Young et al. 2002]
as:

in[1]

(1 + b1 ∗ ejΩ + b2 ∗ ej2Ω + b3 ∗ ej3Ω)
(3)

If we store 1
(1+b1∗ejΩ+b2∗ej2Ω+b3∗ej3Ω)

as a coefficient called
init factor supplied to the shader, the equation in the shader sim-
ply becomes in[1] ∗ init factor.

4.2.2 Further Optimization

Singe GPUs typically actually render blocks of pixels in parallel,
the lines method is inefficient. Rendering to a 2xn series of rectan-
gles performs nearly twice as fast, but several problems are intro-
duced:

• Half of the previous pixel values (the odd ones) come from
different source textures depending on whether the destination
is on the left or right half of the quad

• When the destination is on the right half of the quad, the prob-
lem is compounded by the fact that the previous pixel sample
must come from the same texture as the source input (which
is not being written to)

The first problem is fairly easily surmounted by setting a color in
the left and right halves of the rectangles to 0 and 1, then using
the color as the parameter for the mix() instruction in GLSL; the
fetch can be performed from both prospective textures, and the mix
parameter determines which one is eventually used.

The second problem is a bit more difficult, since reading the source
from the destination buffer is not an option. The most useful option
turns out to be “unrolling” the shader somewhat: A fourth previous
pixel is retrieved (in addition to the three already being fetched)
and the previous pixel is reconstructed from the values loaded. The
overhead for this is actually surprisingly low compared to the over-
head contributed from other sources (particularly the fill rate and
vertex setup overhead).

When rendering a pass, the new values of the left/right indicator
are computed and stored in the new alpha so that it will be ready for
the next pass. For example, when rendering right to left (the first
pass), the indicator should be 0 on the left and 1 on the right. The
pass takes in a parameter for the delta direction of the next pass to
determine how to generate the selector values; in this case, the left-
right filter will generate the 0s on the right and the 1s on the left,
since the other filter moves in the opposite direction. The right-left
filter generates 0s on the bottom and 1s on the top, as the next pass
will be bottom-top.

The filter, as you will recall, must be run in both the horizontal and
vertical dimensions. The filter leaves its output behind in “stripes”
across each of the textures it renders to, and the Gabor passes ex-
pect the source data to be laid out in the stripes. In the preparatory
filter for the horizontal pass, which mainly does the job of convert-
ing the color values to luminosity and generating the first left-right
selector values, the striping is accomplished simply by virtue of the
fact that the render target changes every 2 pixels. To convert the
left-right stripes to bottom-top stripes, we need to make a separate
pass in order to pick up the data from the left-right stripes and, ren-
dering from the bottom to the top in stripes, deposit them back.
This requires picking up all four textures in the “tween” shader and
selecting which one to pull the data out of by using the texture coor-
dinate to determine which stripe is currently under the pixel. Note
that the source textures (for obvious reasons) do not rotate when

performing this pass. After this pass, the source textures are ready
for the bottom-top pass.

Once the filters have been rendered, the results must be collated
into the framebuffer in a final blitting pass. This pass is neces-
sary because the shader cannot render into a single buffer due to
the problems retrieving the previous pixels from one. There are
advantages to performing this pass, however, as the visual repre-
sentation of complex numbers is generally not particularly appeal-
ing, and the blit shader can be useful for extracting only the real or
imaginary parts (or generating the magnitude). In the current imple-
mentation, the blit shader places the magnitude of the complex data
(
√
re2 + im2) into the pixel and multiplies it by a gamma correc-

tion value (since the filters tend to produce somewhat dark images).

The final pass order, then, is:

1. YUV conversion (saving only Y) and preliminary striping

2. Gabor horizontal forward pass (left-right)

3. Gabor horizontal reverse pass (right-left)

4. Horizontal-to-vertical conversion

5. Gabor vertical forward pass (bottom-top)

6. Gabor vertical reverse pass (top-bottom)

7. Complex-to-magnitude conversion with gamma correction
and blitting

5 Results

5.1 Filter Implementation

5.1.1 Texture Juggling

The filter turned out to be remarkably difficult to implement prop-
erly; there are a variety of preturbations that must be made to the
texture-juggling routine depending on whether we are going in the
reverse direction, the next pass will be going in the reverse di-
rection, whether the pass needs a constant texture for a “backup”
source (true for Gabor for the init pixel, false for all others), whether
the textures should be rotated at all (no for the “tween” pass) and
how many previous textures needed to be used.

The rotation logic actually ended up needing to use a queue to en-
sure that all textures were rotated in in the proper order; this is not
strictly necessary, but provides an overall cleaner implementation
than hackery with counters would; the queue is present in the first
place because the Gabor filter requires the following textures:

• A “base source” texture to pull the init values from when nec-
essary (tex0)

• A source texture for pulling input pixels from (tex1)

• The first previous texture, for pulling the second previous
pixel (and possibly the first and third previous pixels) from
(tex2)

• A second previous texture, for pulling the fourth previous
pixel (and possibly the third previous pixel) from (tex3)

As it turns out, the “source” texture (tex1) and the first previous
texture (tex2) are the same texture most of the time, since the pass
is usually writing into the texture one ahead in the rotation of the
source; the next stripe will therefore take (tex1 + 1) as the previous
value, since it has just been written and take (tex1 + 1) as the new
tex1, since the texture indices increment in a linear fashion.



5.1.2 Shader details

The shader implements the linear gabor filter as described in
[Young et al. 2002]. The underlying hardware must support
floating-point textures in order to give adequate visual quality; im-
plementations which convert the shader’s internal floating-point
values back to 8-bit integers suffer an unacceptable degradation of
quality (on the author’s MacBook with an Intel GMAX3100, which
does not support floating-point textures, the results fail to even look
like Gabor- filtered images).

As mentioned before, in order to support the use of 2-pixel-wide
“stripes” in rendering the passes, the filter is “unrolled”, recon-
structing the first previous pixel half the time in order to meet the
requirements of shaders. The 0-or-1 indicator value present in the
alpha value of the pixel helps determine whether the pixel is left or
right; it is fed into the control parameter of the mix() linear inter-
polation function (mix(x, y, a): out = x ∗ (1−a) + y ∗a) in
order to switch between the two sources without using conditionals
such as if() or ternary expressions (which incur a large perfor-
mance penalty on most shader units). The left-right indicator also
determines which pixel is used for the source for the third previous
pixel, as it can be pulled from either tex2 or tex3 depending on the
position; the shader just pulls both and switches afterwards.

The init pixel values, as described before, are computed by mul-
tiplying the init source pixel (the first in the line or column) by
a pass-specific coefficient in order to get an appropriate starting
value. This init value, as described in [Young et al. 2002], is used
for the first three pixels as there is not enough previous data to prop-
erly construct them. Calculating the source pixel coordinate is not
particularly elegant; one minus the absolute value of the delta vec-
tor (the direction in which we are proceeding) must be multiplied
by the texture coordinate to obtain the correct line (for the hori-
zontal pass) or column (for the vertical pass), and then the absolute
value of the delta vector is multiplied by a pass-specific parame-
ter indicating the extent of the source texture (as the shader has no
information on this):

init coord = tex coord ∗ (< 1.0, 1.0 > −abs(delta)) +

(extent ∗ abs(delta)) (4)

The “tween” pass for converting the vertical stripes from the hori-
zontal pass to horizontal stripes for the vertical pass has a difficult
job. It must pull from different textures depending only on its loca-
tion in the horizontal direction. Therefore, we cannot parameterize
which texture the stripe pulls data from, as it pulls it from all of
them (we can and must, however, send parameters describing the
order of textures to pull from). The shader itself, then, decides
which texture it must pull pixels from by its texture coordinate. Be-
cause most hardware implementations do not support variable in-
dexing of array elements (i.e. if the shader pulls all four textures
into an array of four pixels, the shader cannot just assign the output
to be pix[i]), we use a series of if()/else if() statements.
This theoretically has performance implications, since shader units
do not branch well, but the approach seems to work quite well and
may prove useful in handling some of the performance issues men-
tioned later.

5.2 Performance

Method Recursive Conv. 4x4 Conv. 8x8 Conv. 16x16
FPS 31 234 88 impossible

5.2.1 The convolution method runs faster?

The results table above bear some explanations and disclaimers.
The first is the obvious problem: The convolution method seems
faster. However, the convolution could only be implemented at a
size of up to 8x8 on the test hardware (owing to limits on the size of
a program and the fact that loops actually multiply the instruction
count inside them). Anything larger would not execute. In any
case, the performance decreases by a factor of 3 between the 4x4
and 8x8 cases, and it is reasonable to expect that a 16x16 kernel
might reduce performance by a factor of 2-4 from the 8x8 case.

An 8x8 kernel is too small to be used on any useful machine vision
tasks; it could realistically represent a sigma of about 2 or 3 without
clipping the Gaussian, and 2 or 3 only covers the most minute of
features. In the pictures later on in this section, you will see sigma
values up to around 17 being usefully obtained from the data (and
on higher resolutions, even larger sigmas would be appropriate).
This would require at least a 32x32 kernel and more likely a 64x64
kernel (which may even surpass the limits of most newer hardware,
since 4096 pixels must be calculated).

A separable kernel convolution implementation has not been tested;
this would likely get better results (and would only require two
passes to calculate).

5.2.2 Optimizations awaiting implementation

The recursive method used could be optimized somewhat. Its pri-
mary limitation is fill rate; at seven passes, even if drawing all
passes as single quads (which does not produce correct results), the
maximum frame rate is a bit over 100 fps at 640x480. The com-
putational complexity of the Gabor passes seems to have very little
effect; when a simple pass-through shader is used, the frame rate
barely changes.

The fill rate issues, unfortunately, cannot be resolved unless a
method to use fewer passes can be determined (which is not im-
possible, but is difficult). Our remaining major bottleneck is setup
overhead; the 3-fold difference in performance when drawing as
a single quad instead of many 2-pixel-wide strips should indicate
this.

One potential optimization is to use wider strips. This reduces the
number of calls made to glDrawArrays(), and experimentally
does improve things somewhat; if the stripe width is set to 4 in-
stead of 2, the frame rate jumps to over 40. Some hardware also
renders pixels in 4x4 blocks instead of 2x2; this hardware would
benefit much more from a wider stripe. The shader would have to
be unrolled further, however, and some of the texture lookups could
get somewhat complicated, but it would be surprising if this had a
major impact on performance (also, we could get away with using
only two alternating textures instead of four rotating ones, which
ought to make things a little easier).

A further optimization might be to do the texture lookup determina-
tion inside the shader instead of manually reassigning texture units
on the CPU before drawing each strip. Theoretically, this would
allow us to make a single call to glDrawArrays() to draw the
entire strip of quads, assuming that the hardware will still draw all
the quads in sequence. Truthfully, this is probably where most of
the bottleneck is, since the vertex setup and texture unit reassign-
ment overhead from drawing single quads must be enormous.



Figure 1: Our base image

Figure 2: σ = 1.5, θ = 0 deg

Figure 3: σ = 3.375, θ = 0 deg

Figure 4: σ = 3.375, θ = 30 deg

Figure 5: σ = 3.375, θ = 45 deg

Figure 6: σ = 3.375, θ = 60 deg

Figure 7: σ = 3.375, θ = 90 deg

Figure 8: σ = 3.375, θ = 120 deg

Figure 9: σ = 7.5, θ = 0 deg

Figure 10: σ = 7.5, θ = 45 deg



Figure 11: σ = 7.5, θ = 60 deg

Figure 12: σ = 7.5, θ = 90 deg

Figure 13: σ = 7.5, θ = 120 deg

Figure 14: σ = 7.5, θ = 135 deg

Figure 15: σ = 11, θ = 0 deg

Figure 16: σ = 17, θ = 0 deg

5.3 Pictures

References

BUCK, I., FOLEY, T., HORN, D., SUGERMAN, J., FATAHALIAN,
K., HOUSTON, M., AND HANRAHAN, P. 2004. Brook for gpus:
stream computing on graphics hardware. In SIGGRAPH ’04:
ACM SIGGRAPH 2004 Papers, ACM, New York, NY, USA,
ACM SIGGRAPH, 777–786.

BUCK, I. 2005. Gpu computation strategies & tricks. In SIG-
GRAPH ’05: ACM SIGGRAPH 2005 Courses, ACM, New York,
NY, USA, ACM SIGGRAPH, 134.

FATAHALIAN, K., SUGERMAN, J., AND HANRAHAN, P. 2004.
Understanding the efficiency of gpu algorithms for matrix-
matrix multiplication. In HWWS ’04: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS conference on Graphics hard-
ware, ACM, New York, NY, USA, ACM SIGGRAPH, 133–137.

FUNG, J., AND MANN, S. 2005. Openvidia: parallel gpu computer
vision. In MULTIMEDIA ’05: Proceedings of the 13th annual
ACM international conference on Multimedia, ACM, New York,
NY, USA, ACM SIGGRAPH, 849–852.

GOVINDARAJU, N. K., LARSEN, S., GRAY, J., AND MANOCHA,
D. 2006. A memory model for scientific algorithms on graphics
processors. In SC ’06: Proceedings of the 2006 ACM/IEEE con-
ference on Supercomputing, ACM, New York, NY, USA, ACM,
89.

GOVINDARAJU, N. K., LLOYD, B., DOTSENKO, Y., SMITH, B.,
AND MANFERDELLI, J. 2008. High performance discrete
fourier transforms on graphics processors. In SC ’08: Pro-
ceedings of the 2008 ACM/IEEE conference on Supercomputing,
IEEE Press, Piscataway, NJ, USA, IEEE, 1–12.

GREEN, S. 2005. Image processing tricks in opengl. In GDC 2005
Presentations, NVIDIA, Game Developers Conference.

HUANG, Y., AND XIE, M. 2005. A novel character-recognition
method based on gabor transform. Communications, Circuits
and Systems, 2005. Proceedings. 2005 International Conference
on 2 (May), 815–819.

LIU, C., AND WECHSLER, H. 2002. Gabor feature based classi-
fication using the enhanced fisher linear discriminant model for
face recognition. Image Processing, IEEE Transactions on 11, 4
(Apr), 467–476.

YOUNG, I., VAN VLIET, L., AND VAN GINKEL, M. 2002. Recur-
sive gabor filtering. Signal Processing, IEEE Transactions on
50, 11 (Nov), 2798–2805.


	1 Abstract
	2 Introduction
	3 Previous Work
	4 Implementation
	4.1 Algorithm Descriptions
	4.1.1 Typical Convolution-Based Method
	4.1.2 Linear-Time Recursive Method

	4.2 Implementation Details
	4.2.1 Framebuffer Magic
	4.2.2 Further Optimization


	5 Results
	5.1 Filter Implementation
	5.1.1 Texture Juggling
	5.1.2 Shader details

	5.2 Performance
	5.2.1 The convolution method runs faster?
	5.2.2 Optimizations awaiting implementation
	5.2.3 Pictures



