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Abstract

This paper presents a crowd simulation as a novel application of
texture synthesis. The motion of autonomous agents is simulated
using arbitrarily complex behavior, and captured to a 3D (i.e. ani-
mated) texture. The simulation is then expanded to a much larger
number of agents using texture synthesis techniques. We make use
of corner cubes for the synthesis, which are an extension to 3D of
corner tiles as described by [Lagae and Dutré 2006], and are similar
to Wang cubes.

Corner cubes have an advantage over Wang cubes in that they en-
force continuity with all 26 of their neighbors in 3D space; Wang
cubes are only continuous with their neighbors in the six cardi-
nal directions, and are as a result subject to the “corner problem”.
However, both corner cubes and Wang cubes offer a fast, effective
method of aperiodically tiling 3D space.

Keywords: texture synthesis, Wang tiles, corner tiles, crowd sim-
ulation

1 Introduction

Texture synthesis is perhaps best described as an attempt to gen-
erate a texture that is perceptually similar to a given example. (In
the context of this paper, we will ignore techniques that generate
new textures from scratch.) Typically, the generated texture is also
larger than the example. The simplest way to create a larger texture
from an example is to repeatedly tile the example, however this
tiling is often clearly visible in the output and detracts greatly from
the image quality. Texture synthesis algorithms aim to avoid such
artifacts, creating textures that could believably have come from the
same stochastic process as the example, but that are clearly different
from it.

It should be noted at this point that synthesis techniques are most
often applied to textures with an underlying stochastic nature. The
macroscopic appearance of materials such as stone, wood, paper,
or skin is governed by effectively random processes, and the goal
of texture synthesis is to capture the essence of these processes.
However, synthesis is applicable to domains other than generating
material textures with a particular appearance - anything with an un-
derlying stochastic nature is a candidate for application of synthesis
algorithms. For example, [Cohen et al. 2003] used texture synthe-
sis to generate Poisson distributions, which govern the growth of
plants.
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In a similar vein, this paper applies texture synthesis to the behav-
ior of crowds. An individual in a crowd will follow deterministic
behavior based on goals, interactions with his peers or his envi-
ronment, or other arbitrarily complex motives. When viewed on a
large enough scale however, the deterministic nature is hidden, and
the behavior of any single individual appears effectively random,
with only large-scale trends being visible. Crowd simulation can
therefore be seen as a good candidate for texture synthesis.

We simulate the behavior of a small crowd using deterministic
agents, and capture this behavior in a 3D texture (i.e. one that
varies in two spatial dimensions as well as time). We then syn-
thesize a larger crowd using corner cubes, which are an extension
to 3D of [Lagae and Dutré 2006]’s corner tiles. Corner tiles are
themselves a variant of Wang tiles [Cohen et al. 2003], which have
previously been extended to 3D as Wang cubes [Sibley et al. 2004].
The greater portion of this paper is given to describing the imple-
mentation of corner cubes and the issues encountered therein.

1.1 Related Work

1.1.1 Texture Synthesis

Texture synthesis has been the subject of research for over a decade,
and wide variety of techniques for it have been developed, but they
can generally be grouped into two classes. First are pixel-based
algorithms, which attempt to match a pixel in the source image to
a neighborhood in the output (which may only be partially gener-
ated). One of the earliest of these algorithms was introduced by
[Efros and Leung 1999]. Pixel-based techniques have a disadvan-
tage of being very slow, and consequently later research centered
around ways to accelerate the process. [Wei and Levoy 2000] used
vector quantization to reduce the time required to search for neigh-
borhood matches. [Zelinka and Garland 2004] alternatively pro-
posed the use of jump maps for similar purposes.

A second class of algorithms works by copying large patches of the
input texture into overlapping sections of the output. This type of
approach is generally faster than pixel-based synthesis, but also has
the advantage of better capturing large scale structures in the input
texture. The first of these algorithms, such as that of [Liang et al.
2001] worked by blending the overlapping regions of the patches,
however, later techniques were able to give more convincing results
by finding an optimal subset of the pixels in each patch to carry
over to the output. Image quilting [Efros and Freeman 2001] and
graphcut textures [Kwatra et al. 2003] are prime examples.

1.1.2 Wang Tiles

The use of Wang tiles for texture synthesis was described in detail
by [Cohen et al. 2003], who used the tiles to construct Poisson dis-
tributions in addition to textures. In brief, Wang tiles are textured
tiles with “colored” edges, specially constructed so that tiles with
matching edge colors can be placed next to one another without vis-
ible artifacts at the edges. An arbitrarily large texture can be built
from a set of Wang tiles by traversing a grid in scan-line order and
selecting a tile for each grid cell, subject to the constraint that its
edge colors must match those of its already-placed neighbors. As
long as the tile set is large enough that at least two choices exist



when placing any tile, the generated texture is assured to be aperi-
odic.

The tiles themselves are generated through other texture synthe-
sis techniques. Cohen, et al.’s approach was to quilt (as in [Efros
and Freeman 2001]) four samples of an input texture together in a
diamond shape, and take the center square as a single Wang tile.
One might imagine image quilting easily being replaced by similar
methods, such as graph cuts [Kwatra et al. 2003] or improved im-
age quilting [Long and Mould 2007]. (For lack of a better term, we
will call all such methods “quilting”).

[Wei 2004] demonstrated direct texturing of 3D models in real time
using Wang tiles. Rather than generate a large texture by placing
tiles in scan-line order, Wei used a hash function in a GPU shader to
determine the appropriate tile, given texture coordinates in random
order. This necessitated generating a complete set of Wang tiles,
i.e. one tile for every possible combination of edge colors; Cohen
et al. required far fewer than this number. Wei also developed an
arrangement for packing the tiles into a single texture for access
on graphics hardware, such that the edges of the packed tiles had
matching colors; this avoids artifacts when mip mapping is used.

Wang tiles are readily extensible to 3D space, as demonstrated by
[Sibley et al. 2004], who used Wang cubes for video synthesis and
geometry placement, with time being the third dimension in video
synthesis. A difficulty arises in that the image quilting approach
used by Cohen, et al. does not have an obvious extension to 3D,
as it finds a minimum-error path through the overlapping texture
samples. What is required instead, is a minimum-error surface;
[Kwatra et al. 2003]’s graph cut technique can provide this. (Kwatra
et al. had investigated video synthesis in their work using graph cuts
alone.)

1.1.3 Corner Tiles

Cohen et al. identified a potential problem with Wang tiles, in that
the a tile is under no constraints to match its diagonal neighbors.
This can lead to artifacts at the tile corners. Although Cohen et
al. addressed the “corner problem”, it was more elegantly solved
by [Ng et al. 2005], who proposed coloring the corners of the tiles
instead of the edges. [Lagae and Dutré 2006] described this tech-
nique in more detail, and also developed a packing arrangement for
corner tiles, similar to that of [Wei 2004] for Wang tiles. ([Ng et al.
2005] refer to their scheme as omega tiles, but we will use Lagae
and Dutré’s term.)

The techniques for generating Wang tiles apply similarly to corner
tiles; one can arrange four samples of the input texture in a square
with overlapping seams, then cut a square tile out of the center.
[Dong et al. 2007] showed that the sample selection can be opti-
mized using genetic algorithms.

2 Implementation

2.1 Generating Corner Cubes

[Sibley et al. 2004] frames the generation of each Wang cube as a
minimum graph cut problem [Kwatra et al. 2003], and solves it us-
ing the Ford-Fulkerson method for network flow. Corner cubes are
created similarly, and the difference is analogous to the difference
between generating Wang tiles and corner tiles. This difference is
shown pictorially in Figure 1. Kwatra et al. make use of work by
[Max 2004] in their implementation, and we do the same.

Cohen et al.’s method of generating Wang tiles involves selecting
a single patch from the input texture for every possible edge color.
To generate a single Wang tile, four such patches are arranged in

a diamond shape, with an overlap region between them. The four
patches are then quilted together and a square tile is extracted from
the center; this yields a Wang tile with edge colors corresponding
to the colors of the original four patches.

This technique can be easily adapted to corner tiles, resulting in the
arrangement shown in Figure 1 (b); the four patches from the input
are placed in a square, such that each corner of the output tile is
centered on a single patch. [Lagae and Dutré 2006] modify this ap-
proach by eliminating the overlap regions, and instead placing ad-
ditional patches over the center of the square, to be merged in with
graph cuts. This ensures that there is at least one unique patch for
each generated tile, and increases the total number of samples taken
from the input texture. The final scheme is shown in Figure 1 (c).

It should be noted that Lagae and Dutré’s method can lead to point
defects in the generated tiles, as shown in Figure 1 (d). The four
samples from the input texture meet at the center of each edge, but
are not merged in any special way. Single-pixel discontinuities are
a very minor problem in the 2D case, but these defects become lines
when moving to 3D. Therefore, we combine approaches (b) and (c)
- the corner patches are quilted together using graph cuts, and then
another patch is added to the middle of the combined texture. The
2D analog of our approach is shown in Figure 1 (e). Because of the
overlap region, the initial samples must be somewhat larger than
the extracted tile. We typically extend them by 50

Sibley et al. adapt Wang tiles to three dimensions by taking octahe-
dral patches from the input texture and quilting six of them together
to form a larger patch, from which a single Wang cube is taken. This
arrangement resembles Figure 1 (a) when viewed from one of the
cardinal directions.

We follow a similar approach in adapting Lagae and Dutré’s method
to create corner cubes. Figure 2 shows how this is done. First, eight
cubic patches are sampled from the input texture and arranged to
form a single, larger cube, shown in (a). There is one unique sample
cube for each of the possible corner colors. Two graph-cutting steps
follow, as shown in Figure 2 (b-c): an additional arbitrary patch is
merged into the center of the cube, and the eight sample cubes are
quilted together. Finally, a single corner cube is extracted from the
center, as shown in Figure 2 (d).

For the central patch, the graph cutting problem is set up such that
voxels outside of a fixed radius are guaranteed to come from the
initial eight patches, i.e. the cutting surface is bounded by a sphere.
We use the square of the L2 metric between pixel values to deter-
mine the edge capacities in the graph, rather than the L2 metric as is
normally used. [Long and Mould 2007] suggests that better results
can be obtained by favoring multiple small pixel differences over a
single large one, and in any case the square of the metric is cheaper
to compute.

As in other applications of patch-based synthesis, the patches do
not always quilt together well, and there are some scenarios where
visible defects are unavoidable. Therefore, when applying the cen-
tral patch, we take the best result from multiple different patches,
chosen randomly. The best result is determined by the result of the
graph cutting algorithm - lower values for the maximum flow are
better. We generally do not use more than four trial patches for this
purpose due to computational expense. The initial samples may
also have visible seams where they are quilted together, but these
are in most cases overwritten by the central patch.

To perform the actual synthesis, multiple cubes are arranged in a 3D
array, such that their corner colors match. The simplest way to do
this is in scan-line order - the first cube is generated randomly, then
the cube on its right is determined, with the unconstrained corners
assigned randomly, then the next cube to the right is determined,



Figure 1: (a) Wang tiles. Four texture samples are quilted together and a tile is extracted from the center. (b) Simple formulation of corner
tiles, analogous to (a). (c) Lagae and Dutré’s approach to corner tiles. Four texture samples are arranged and a fifth sample is quilted on top
of them. (d) Four corner tiles created using method (c). Potential error regions are circled in white. (e) The approach used in this paper is a
combination of (b) and (c), when reduced to two dimensions.

and so on until a wide enough output is reached. Another line of
cubes is then written with one side constrained by the previous line,
and so on until an entire plane of cubes is generated. Another plane
is then generated constrained by the previous one, and so on for an
arbitrary depth.

In general, any cube will have three of its faces constrained by ex-
isting cubes (the exceptions being the first plane, the first line in any
plane, and the first cube in any line). The three constrained faces
correspond to seven constrained corners, leaving one randomly as-
signed corner for most cubes. Since the constrained corners can
have any color, the synthesis algorithm must be able to provide c7

different cubes, if there are c colors.

Furthermore, since the synthesized texture should be non-repeating,
there must always be a choice of at least two possible cubes in any
situation. This increases the required number of cubes to 2c7. For
useful values of c (i.e. 2 or 3), this is not much better than requiring
a full set of cubes, that is, one cube for every possible combination
of corner colors (c8). Note that, given the way we generate cubes,
two cubes with the same corner colors need not be the same; hence
it is possible to generate more than a full set.

For values of c larger than 2, generating a full set of cubes quickly
becomes infeasible. However, note that in some situations the num-
ber of cubes desired for the output is much smaller than the “re-
quired” number of cubes. For this reason, we generate cubes on-
demand as they are needed for the output and cache them for later
use, rather than generating all the cubes in advance. Some results
for c = 4 are presented in a later section. Most often, however, we
use the more practical value of c = 2.

2.2 Crowd Simulation

2.2.1 Initial Simulation

The crowd is modeled as a collection of agents, each of which
acts independently. Any given agent has a state associated with it,
for example REST, WANDER, FLEE, etc. In the REST state, the
agent does nothing, in the WANDER state the agent moves slowly
through the environment, or in the FLEE state the agent moves
quickly. One can imagine various other more nuanced states, but
these are sufficient for an example. Furthermore, agents transition
between states according to a probability distribution, so for ex-
ample, REST has a high probability of transitioning to WANDER,
and WANDER has a high probability of transitioning to a different
instance of itself (that is, the agent wanders in a different direction).

Transition probabilities are easily defined in a matrix, for example:

From To
DEAD REST WANDER FLEE

DEAD 0 0 0 0
REST 0 0 0.2 0.01

WANDER 0 0.04 0.08 0.01
FLEE 0 0.02 0.14 0.05

Interesting large-scale behavior arises when an agent’s environment
is allowed to affect the transition probabilities. The simplest exam-
ple is that agents that wander out of the bounds should have their
chances of entering the DEAD state increased to 1. We have imple-
mented a few other rules that involve agent-agent interaction:

• If an agent is in the FLEE state, other nearby agents have an
increased chance of entering the FLEE state as well.

• If an agent is in the WANDER state and there is a resting
agent in front of it, the first agent has an increased chance of



Figure 2: (a) Corner cube generation begins with eight sample cubes. (b) A ninth is quilted over top of the samples from (a). This is a direct
extension of Lagae and Dutré’s method to three dimensions. (c) The eight samples are also quilted together (done in addition to (b), but
shown independently here). (d) The corner cube is extracted from the center of the samples.

changing its direction.

• Similarly, if an agent’s path is blocked by another wandering
agent, the first agent has an increased chance of transitioning
to the REST state.

2.2.2 Capture to Texture

The simplest way to capture the crowd’s behavior is just to render
images of it at successive time steps. We can do this, for example,
by drawing every agent as a black pixel on a white background. The
resulting images are not be very visually appealing, but can be fed
directly into a texture synthesis algorithm. In effect, we are then
synthesizing pictures of crowds, rather than the actual behavior.

3 Results and Discussion

Figure 3 shows the result of the synthesis algorithm on an ordinary
texture. Since our method requires a 3D texture as input, we used
a stack of 48 copies of the olive texture. For this instance, the al-
gorithm was run with c = 4, meaning there are four base samples
(32x32 pixels each) taken from the input texture. The output is a
4x4 arrangement of 16 32x32 cubes. Each cube here is unique - this
is a case where the output uses far fewer than the full set of cubes.

Some defects are visible, where the samples used to create the cubes
did not mesh well. However, it is worth noting that the defects al-
ways occur in the interior of the cubes; our method of cube gener-
ation ensures that they always tile seamlessly. [Kwatra et al. 2003]
uses the same input texture with generally better results, as their
algorithm is much less restricted in its placement of new patches.

Figure 4 shows a few slices of texture from the initial crowd sim-
ulation, followed by Figure 5, which shows a few slices from the
synthesis results. Sample sizes are the same as before, but the al-
gorithm was run with c = 2. The motion of the agents in the syn-
thesized result is generally coherent, but some discrepancies exist

in the animation that are not apparent in the still images - agents do
occasionally disappear and reappear without cause.

However, the larger problem is the obvious repetition in most of the
frames - the scenes looks like they were generated with repeating
tiles, which we had hoped to avoid. Recall that when generating
a cube, the final sample merged into the center is bounded by a
sphere. This means that if we look at slices of the cube along the
vertical axis, slices near the middle of the cube will contain a large
portion of the final sample, and slices near the top and bottom will
contain very little of it.

Hence animation frames that are nearly a multiple of the cube size
will be composed almost entirely of the two initial samples from the
input (i.e. one for each of the two colors), with none of the per-cube
samples added by the graph cut procedure. Two samples are clearly
not enough to convincingly tile the output. Conversely, frames that
are offset by half the cube size (here, frames 16, 48, 80, etc.) can
have a large portion of unique per-cube samples, and do not show
as much evidence of tiling. Hence in the best case, the animation
alternates between looking tiled and looking random.

In the worst case, the graph cut procedure does not actually add any
new sample data to the cubes, i.e. it finds the minimum error can be
obtained by only copying the minimum number of pixels from the
central patch (the pixels overlapping the seams between the initial
samples are required). This scenario is actually fairly likely given
the nature of the textures being used - large portions of it are nothing
but white space.

4 Future Work

4.1 Increasing the number of samples

It is evident from the results that a better method of cube generation
is needed. Most important is introducing a better distribution of



(a) Input texture (b) Single tile
(scaled)

(c) Synthesis result (d) Kwatra et al. (cropped)

Figure 3: Corner cube algorithm run on a 2D texture.

(a) Frame 0 (b) Frame 4 (c) Frame 8 (d) Frame 12

(e) Frame 16 (f) Frame 20 (g) Frame 24 (h) Frame 28

Figure 4: Sample frames from the initial crowd simulation. 200 agents were used.

samples from the input, though this is difficult because the number
of corner colors is so severely limited. Lagae and Dutré’s method
of adding a unique patch to the center of each tile/cube is a good
start, but it leaves far too much of the cube untouched to effectively
address the problem in 3D.

One possibility is to introduce additional per-face samples - imag-
ine the extra sample from Figure 2 (b) shifted out to one of the cube
faces. Care would then need to be taken to ensure that cubes with
identical corner configurations share the same samples. Since there
are c4 possible face configurations, this approach would introduce
16 new samples in the two-color case (or 48, if each axis is treated
independently).

Of course, such a method would begin to resemble Wang tiles, and
we would be left wondering why we bothered to color the corners
at all.

4.2 Higher quality synthesis

Another area in which our implementation is lacking is patch se-
lection. In their original graph cutting paper, Kwatra et al. devote
much effort to choosing patches from the input that will work well
together, using FFT-accelerated search through texture space to find
close-matching patches. Random selection (as used in this paper)
is only left for the most basic textures. Furthermore, researchers
such as [Dong et al. 2007] have directly addressed patch selection
for Wang tiles (they used genetic algorithms). Incorporating these
techniques could lead to much higher quality synthesis.

4.3 Deterministic cube selection

In their work, Lagae and Dutré introduce a hash function to deter-
ministically find the corner colors of an arbitrary tile, i.e. without
checking any of its neighbors ([Wei 2004] does the same for Wang
tiles). This makes it possible to effectively synthesize texture di-
rectly on graphics hardware, but requires generating a full set of



(a) Frame 0 (b) Frame 4 (c) Frame 8 (d) Frame 12

(e) Frame 16 (f) Frame 20 (g) Frame 24 (h) Frame 28

Figure 5: Results the from texture synthesis algorithm, which generated a 10x10x16 array of cubes, each 32x32x32 pixels. Two possible
corner colorings were used.

tiles (c4 in their case).

Since we typically generate a full set of corner cubes anyway, it
would make sense to implement a hash function for deterministic
cube selection. When applied to crowd simulation, this would allow
(for example) users to skip forward in the simulation by arbitrary
time steps.

4.4 Improved texture capture

The synthesized animation that results from our technique shows
the high-level behavior of the crowd, but does not allow any direct
analysis of individual agents. Ideally, we would like to extract the
locations of the agents after running the synthesis algorithm, then
store them in some other data structure that might be more suitable
(e.g. a list of coordinates). This would make various operations on
the data much easier, including for example, re-rendering the agents
as 3D models.

To do this, it would probably be necessary to store separately a
texture representing the appearance of the crowd, and another rep-
resenting the actual presence of agents (either a true of false flag at
each location). The first texture could be tweaked to best work with
existing synthesis algorithms (for example, by using a more diverse
range of colors), and synthesis would be performed on it alone.

Whenever patches of the first texture are copied to the output, corre-
sponding patches from the second should be copied as well. Since
the resulting cubes would consist of just true/false flags, it would be
a simple matter to scan through them linearly and construct a list of
all agent locations.

5 Conclusion

This paper has shown that crowd simulation can be recast as a tex-
ture synthesis problem. It has also shown that [Lagae and Dutré

2006]’s corner tiles can be extended to 3D to form corner cubes. Al-
though generating corner cubes can be computationally expensive,
once created they provide an easy method for generating arbitrary
amounts of 3D texture.

What has not been shown is whether or not corner cubes can be used
to synthesize texture of high enough quality to be useful for the pur-
pose of simulating believable crowds. When extended to 3D, Lagae
and Dutré’s approach has severe disadvantages that were either not
apparent in two dimensions, or were more easily avoidable. While
some of these problems have been addressed, others (particularly
undersampling of the input texture) require further work.
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